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Abstract-In this paper we have discussed, an application of conformal mapping to the problems of finding complex 

velocity potential function 𝛺(z) for an irrotational flow of an incompressible fluid, that is, the flow of an ideal fluid 

in a domain D of the z-plane. In this application, our idea is to device an analytic mapping (in fact conformal 

mapping) from the z-plane to the w-plane, which maps the domain D conformally on to the domain D’ (precisely, 

either horizontal strip or vertical strip) in the w-plane, where the solution of problem is easy to find. The advantage 

of this technique is that, the theory of conformal mapping can be employed to reduce a problem to a simpler one 

whose solution is known. Determining the velocity potential 𝛷(𝑢,𝑣) in the w-plane and sending back to 𝜙(𝑥,𝑦) in the 

z-plane, gives the complex velocity potential 𝛺(z)= 𝜙 + i𝜓, where 𝜓 is a stream function. This technique is tested 

through examples.   

Keywords – complex velocity potential, conformal mapping, Laplace equation, ideal fluid, analytic function. 

1. INTRODUCTION  

 There are many classes of problemsin mathematics that are difficult to solve in their original form and in 

the given domain. Conformal mapping, maps an equation and a domain from its original form into another, after 

some mathematical manipulations we get the solution and the solution is then mapped back to the original form.  

 If 𝑓(𝑧)= 𝑢 +i 𝑣 is an analytic function in a domain D, then the functions 𝑢 and 𝑣 are harmonic [3,4,8] that 

is, ∇2𝑢=0 and ∇2𝑣=0 in D [7]. Thus, there is a close connection between analytic functions and Laplace equation. In 

mathematics, often we want to solve Laplace equation ∇2𝜙 =0 in a domain D in z-plane and for the reason of 

dependence of 𝜙 on the shape of D, it simply may not be possible to evaluate 𝜙. But it may be possible to determine 

an analytic mapping 𝑓(𝑧) from the z-plane to the w-plane so that D’, the image of a domain D under 𝑓(𝑧) , not only 

has a convenient shape but the function 𝜙 that satisfy the equation ∇2𝜙=0 in D also satisfies in D’ and then return to 

the z-plane and 𝜙(𝑥, 𝑦) by means of analytic mapping 𝑓(𝑧). 

 If the conformal mapping w= 𝑓(𝑧) takes the function 𝜙(𝑥, 𝑦) into a functionΦ(𝑢,𝑣) and if 𝑢 +i 𝑣 = 𝑓 

(𝑥 + 𝑖𝑦), where 𝑤 = 𝑢 + 𝑖𝑣 and 𝑧= 𝑥 + 𝑖𝑦 then 

∇2 Φ (𝑢,𝑣)=  
𝑑𝑧

𝑑𝑤
 

2

∇2𝜙(𝑥, 𝑦).              (1.1) 

 So that if   
𝑑𝑧

𝑑𝑤
 ≠ ∞ , and if  ∇2𝜙(𝑥, 𝑦)=0 then by (1.1)∇2 Φ(𝑢,𝑣)=0. Thus, if the function 𝜙(𝑥, 𝑦) is 

harmonic in the domain D of the z-plane, then the function Φ(𝑢,𝑣)is harmonic in the domain D’ of the w-plane. 

Moreover, any boundary of D in the z-plane along which the function 𝜙(𝑥, 𝑦) is constant is mapped on to a 

boundary of D’ in the w-plane along which the function Φ(𝑢,𝑣) is constant. 

If F(𝑥, 𝑦) is the velocity field of planar flow of an incompressible fluid then divF=0 and if the flow is 

irrotational then curlF=0 [1,2,6] also, there exists a real – valued function 𝜙(𝑥, 𝑦) such that F(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦). 

Thus, divF= ∇2𝜙 =0, that is 𝜙(𝑥, 𝑦) satisfies the Laplace equation. 

 The paper is organized as follows. In section 2, we give the preliminaries [8] and in section 3 we illustrate 

the applications of the above mentionedtechnique by solving few examples. 
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2. PRELIMINARIES 

Definition 2.1 Conformal Mapping 

𝐿𝑒𝑡 𝑤 = 𝑓(𝑧) be a complex mapping defined in a domain D and let 𝑧0 be a point in D. Then we say that 𝑤 = 𝑓(𝑧) 

is conformal at 𝑧0 if for every pair of smooth oriented curves 𝐶1and 𝐶2in D intersecting at 𝑧0the angle between 

𝐶1and 𝐶2 at 𝑧0 is equal to the angle between the image curves C’1and C’2 at 𝑓(𝑧0)in both magnitude and sense[8]. 

Definition 2.2 Complex Velocity Potential  

 If F(𝑥, 𝑦) is a two dimensional flow of an ideal fluid then there exist a real-valued function 𝜙(𝑥, 𝑦) such 

that  

F(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦)                      (2.1) 

The function 𝜙(𝑥, 𝑦) is called velocity potential, which satisfies the Laplace equation ∇2𝜙(𝑥, 𝑦)=0, hence is 

harmonic. The harmonic conjugate 𝜓(𝑥, 𝑦) of velocity potential 𝜙(𝑥, 𝑦) is called the stream function. And the 

function Ω(z)= 𝜙 (𝑥, 𝑦) + i𝜓(𝑥, 𝑦) is called the complex velocity potential [8]. 

Theorem 2.1  

If  𝑓 is an analytic function in a domain D containing 𝑧0, and if 𝑓′(𝑧0) ≠ 0, then 𝑤 = 𝑓 𝑧  is a conformal mapping 

at 𝑧0.[8] 

Theorem 2.2 

𝐿𝑒𝑡 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣 (𝑥, 𝑦) be an analytic mapping of a domain D in the z-plane onto a domain D’ in the w-

plane. If the function Φ(𝑢,𝑣) is harmonic in D’, then the function𝜙(𝑥, 𝑦)  = Φ(𝑢 𝑥, 𝑦 , 𝑣  𝑥, 𝑦 ) is harmonic in 

D[8]. 

3. EXAMPLES  

Example 1. Determine the complex velocity potential Ω(z) of moving ideal fluid in the domain D between two 

parabolas y2 = 4 𝑥 + 1  and y2 = 16 𝑥 + 2 .  

Such that  

𝜙(𝑥, 𝑦)  = 10, if y2 = 4 𝑥 + 1      = 20, if  y2 = 16 𝑥 + 4   (3.1) 

Suppose F(𝑥, 𝑦) is the two dimensional velocity field of an ideal fluid, then by equation (2.1) 

F(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦) 

Also,∇2𝜙(𝑥, 𝑦)=0 in a domain D satisfying the boundary conditions (3.1) 

To determine 𝜙(𝑥, 𝑦) we transform the domain D onto the horizontal strip by a conformal mapping 𝑓  defined from 

the z-plane to the upper half of the w-plane, by 

𝑤 = 𝑓 𝑧 = z
1

  2 ⇒ w2 = 𝑧 

If 𝑤 = 𝑢 + 𝑖𝑣 and 𝑧= 𝑥 + 𝑖𝑦  then  𝑥 = 𝑢2 − 𝑣2 , 𝑦 =2 𝑢𝑣. Thus, y2 = 4𝑣2(𝑥 + 𝑣2) 

Clearly Re𝑓 𝑧 = 𝑢 =  
 𝑧 +𝑥

2
   and Im 𝑓 𝑧 = 𝑣 =  

 𝑧 −𝑥

2
     (3.2) 

 

Therefore, the lines 𝑣=1 and 𝑣 =2 in the w-plane corresponds to the parabolas y2 = 4 𝑥 + 1  and y2 =
16 𝑥 + 2 in the z-plane (function  𝑤 = 𝑓 𝑧  being one-to-one). Hence the domain D is mapped onto the strip 

1 < 𝑣 < 2.  

 Thus, if 𝑤 = 𝑓 𝑧  takes 𝜙(𝑥, 𝑦) intoΦ(𝑢,𝑣) then the transformed boundary conditions are    
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Φ(𝑢,𝑣) =10  ,  if  v=1 

=20  ,  if  v=2    (3.3) 

The shape of strip  1 < 𝑣 < 2 , - ∞ < 𝑢 < ∞, itself suggest that Φ(𝑢,𝑣) is independent of 𝑢. and the transformed 

Laplace equation ∇2 Φ(𝑢,𝑣)=0, reduces to 
𝜕2Φ

𝜕v2 = 0. Therefore, the solution subject to (3.3) is given by Φ(𝑢,𝑣)=10 𝑣. 

Thus, the solution of original Laplace equation ∇2𝜙(𝑥, 𝑦)=0, by theorem (2.2)and using (3.2) is  

𝜙(𝑥, 𝑦) = 10 
 𝑧 −𝑥

2
 

To determine complex velocity potential Ω(𝑧) of which 𝜙(𝑥, 𝑦) is a real part. We proceed as under. 

As 𝑓 𝑧 = 𝑢 + 𝑖𝑣;−10 𝑖 𝑓 𝑧 = −10 𝑖  𝑢 + 𝑖𝑣 =  10𝑣 − 10𝑖𝑢 = 𝜙 (𝑥, 𝑦) + i𝜓(𝑥, 𝑦), where 𝜓(𝑥, 𝑦) = −10𝑖𝑢 =

−10𝑖 
 𝑧 +𝑥

2
 

Since,𝑓 𝑧 is analytic in D, it follows that the function −10𝑖𝑓 𝑧  is also analytic in D. 

Thus, Ω(𝑧) = −10𝑖𝑓 𝑧 = −10 𝑖z
1

  2 is the desired complex velocity potential. 

Example 2. Determine the complex velocitypotential Ω(𝑧) of moving ideal fluid in the domain D between two 

circles  𝑧 − 𝑖 = 1 and 𝑧 − 2𝑖 = 2 

Such that  

𝜙(x, y)  =20 ,    if 𝑥2 +   𝑦 − 2 2 = 4 

 =  40 ,    if 𝑥2 +   𝑦 − 1 2 = 1 (3.4) 

Suppose F(𝑥, 𝑦) is the two dimensional velocity field of an ideal fluid, then by equation (2.1) 

F(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦) 

Also ∇2𝜙(𝑥, 𝑦)=0 in a domain D satisfying the boundary conditions (3.4) 

To determine 𝜙(𝑥, 𝑦) we transform the domain D onto horizontal strip by a conformal mapping 𝑓defined from the z-

plane to the w-plane, by 

𝑤 = 𝑓 𝑧 =
1

𝑧
 

Clearly,𝑓 𝑧 is one-to-one conformal mapping from the z-plane to the w-plane   

If 𝑤= 𝑢 + 𝑖𝑣 and 𝑧= 𝑥 + 𝑖𝑦  then  𝑥 =
𝑢

u2+v2, 𝑦 =
−𝑣

u2+v2 

Clearly Re𝑓 𝑧 = 𝑢 =
𝑥

x2+y2  and Im 𝑓 𝑧 = 𝑣 =
−𝑦

𝑥2+𝑦2     (3.5) 

To find the image of the boundaries consider  

 𝑧 − 𝑖 = 1 ⇒ 𝑥2 + 𝑦2 − 2𝑦 = 0 

  ⇒
𝑢2+𝑣2

(𝑢2+𝑣2)2+
2𝑣

𝑢2+𝑣2= 0  

  ⇒  1+2 𝑣 =0   ⇒  𝑣 =
−1

2
 

Also, 𝑧 − 2𝑖 = 2 ⇒ 𝑥2 + 𝑦2 − 4𝑦 = 0 

  ⇒
𝑢2+𝑣2

(𝑢2+𝑣2)2+
4𝑣

𝑢2+𝑣2= 0  



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 3 December 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 199 

 ⇒  1+4 𝑣 =0   ⇒  𝑣 =
−1

4
 

Thus, the boundaries   𝑧 − 𝑖 = 1 and 𝑧 − 2𝑖 = 2 of the domain D are mapped onto the lines  

 𝑣 =
−1

2
    𝑎𝑛𝑑  𝑣 =

−1

4
  respectively of the horizontal strip 

−1

2
< 𝑣 <

−1

4
. Thus, the domain D is mapped onto the 

horizontal strip 
−1

2
< 𝑣 <

−1

4
 . 

Thus, if 𝑤 = 𝑓 𝑧  takes 𝜙(𝑥, 𝑦) intoΦ(𝑢,𝑣) then the transformed boundary conditions are    

Φ(𝑢,𝑣) = 20 ,  if  𝑣=
−1

4
 

     =40 ,  if  𝑣=
−1

2
              (3.6) 

As in example 1 the solution of transformed equation,∇2 Φ(𝑢,𝑣)=0,subject to (3.6) is given by Φ(𝑢,𝑣)=-80 𝑣. 

Thus, the solution of original Laplace equation,∇2𝜙(𝑥, 𝑦)=0 using (3.5) is  

𝜙 𝑥, 𝑦 = 80 
𝑦

𝑥2 + 𝑦2
 

To determine complex velocity potential Ω(𝑧) of which 𝜙(𝑥, 𝑦) is a real part. We proceed as under. 

As 𝑓 𝑧 = 𝑢 + 𝑖𝑣;80 𝑖 𝑓 𝑧 = 80 𝑖  𝑢 + 𝑖𝑣 =  −80𝑣 + 80𝑖𝑢 = 80 
𝑦

𝑥2+𝑦2 + 80𝑖 
𝑥

𝑥2+𝑦2 = 𝜙(𝑥, 𝑦) + i𝜓(𝑥, 𝑦) , 

where 𝜓(𝑥, 𝑦) = 80𝑖𝑢 = 80𝑖
𝑥

𝑥2+𝑦2 

Since , 𝑓 𝑧 is analytic in D, it follows that the function 80 𝑖𝑓 𝑧  is also analytic in D.  

Thus,  Ω 𝑧 = 80 𝑖𝑓 𝑧 = 80𝑖
1

𝑧
 is the desired complex velocity potential. 

Example 3. Determine the complex velocity potential Ω(z) of moving ideal fluid in the domain D, the wedge 

between two rays,𝑎𝑟𝑔 𝑧 =  
−π

4
and  𝑎𝑟𝑔 𝑧 =  

π

4
 

Such that  

𝜙 𝑥, 𝑦 =  0 ,    if 𝑎𝑟𝑔 𝑧 =  
−π

4
   

=30 ,  if  𝑎𝑟𝑔 𝑧 =  
π

4
 (3.7) 

Suppose F(𝑥, 𝑦) is the two dimensional velocity field of an ideal fluid, then by equation (2.1) 

F(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦) 

Also ∇2𝜙(𝑥, 𝑦)=0 in a domain D satisfying the boundary conditions (3.7) 

To determine 𝜙(𝑥, 𝑦) we transform the domain D onto horizontal strip by a conformal mapping 𝑓  defined from the 

z-plane to the w-plane, defined by the principal branch of the complex logarithm 

𝑤 = 𝑓 𝑧 = 𝐿𝑛 𝑧 = 𝑙𝑜𝑔𝑒𝑟 + 𝑖𝜃, −𝜋 < 𝜃 ≤ 𝜋 , 𝑟 > 0 

Where  𝑟 =  𝑧  and 𝜃 = arg 𝑧 . 
If 𝑤 = 𝑢 + 𝑖𝑣 and 𝑧 = 𝑥 + 𝑖𝑦  then  𝑢 = 𝑙𝑜𝑔𝑒𝑟,𝑣 = 𝜃 

The function being one-to-one, the lines𝑣 =  
−π

4
and𝑣 =  

π

4
corresponds to the rays, 

𝑎𝑟𝑔 𝑧 =  
−π

4
and  𝑎𝑟𝑔 𝑧 =  

π

4
emanating from origin (Note that origin is not included in the domain). Therefore, the 

domain D is conformally mapped on to the horizontal strip 
−π

4
< 𝑣 <

π

4
. 

Thus, if 𝑤 = 𝑓 𝑧  takes 𝜙(𝑥, 𝑦) intoΦ(𝑢,𝑣) then the transformed boundary conditions are    



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 3 December 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 200 

Φ(𝑢,𝑣) = 0 ,  if 𝑣 =
−π

4
 

= 30 ,  if  𝑣 =
π

4
        (3.8) 

Therefore, the solution subject to (3.8) is given by Φ(𝑢,𝑣)=
60

𝜋
𝑣 + 15 

Thus, the solution of original Laplace equation ∇2𝜙(𝑥, 𝑦)=0 is  

𝜙(𝑥, 𝑦) =
60

𝜋
𝑡𝑎𝑛−1 𝑦

𝑥
+ 15 

To determine complex velocity potential Ω(𝑧) of which 𝜙(𝑥, 𝑦) is a real part. We proceed as under. 

As 𝑓 𝑧 = 𝑢 + 𝑖𝑣;−60 
𝑖

𝜋
 𝑓 𝑧 = −60 

𝑖

𝜋
 𝑢 + 𝑖𝑣 =  

60

𝜋
 𝑣 −

60

𝜋
𝑖𝑢 + 15 = 𝜙 (𝑥, 𝑦) + i𝜓(𝑥, 𝑦) , where 𝜓(𝑥, 𝑦) = 

−
60

𝜋
𝑖𝑢 =

60

𝜋
𝑖 𝑙𝑜𝑔𝑒𝑟 

Since, 𝑓 𝑧 is analytic in D, it follows that the function −60
𝑖

𝜋
𝑓 𝑧  is also analytic in D.  

Thus,  Ω 𝑧 = −60
𝑖

𝜋
𝑓 𝑧 = −60

𝑖

𝜋
𝐿𝑛 𝑧 is the desired complex velocity potential. 

 

Example 4. Determine the complex velocity potential Ω(z) of moving ideal fluid in the domain D between two 

hyperbolas4𝑥2 − 12y2 = 3  𝑎nd 12𝑥2 − 4y2 = 3, 

Such that  

𝜙(𝑥, 𝑦)  = 5 ,    if 4𝑥2 − 12y2 = 3   

   = -5 ,   if  12𝑥2 − 4y2 = 3 (3.9) 

 SinceF(𝑥, 𝑦) =  ∇𝜙(𝑥, 𝑦) and ∇2𝜙(𝑥, 𝑦)=0 in a domain D satisfying the boundary conditions (3.9) 

Let 𝑓 be defined from the z-plane to the domain
−𝜋

2
< 𝑢 <

𝜋

2
and -∞ < 𝑣 < ∞ , a vertical strip, defined as 𝑤 =

𝑓 𝑧 = 𝑠𝑖𝑛−1𝑧 , −1 < 𝑅𝑒𝑧 < 1  and  - ∞ < 𝐼𝑚𝑧 < ∞. 

If 𝑤= 𝑢 + 𝑖𝑣 and 𝑧= 𝑥 + 𝑖𝑦  then  𝑥 =𝑠𝑖𝑛 𝑢 𝑐𝑜𝑠 𝑕 𝑣  , 𝑦 =𝑐𝑜𝑠 𝑢 𝑠𝑖𝑛 𝑕 𝑣 .  

Thus,      
𝑥2

𝑠𝑖𝑛 2𝑢
− 

𝑦2

𝑐𝑜𝑠 2𝑢
= 1       

Therefore, the lines 𝑢 =
𝜋

3
and𝑢 =

𝜋

6
in the w-plane corresponds to the hyperbolas 4𝑥2 − 12y2 = 3  𝑎nd12𝑥2 − 4y2 =

3  in the z-plane (function  𝑤 = 𝑓 𝑧  being one-to-one). Hence the domain D is mapped onto the vertical strip
−𝜋

2
<

𝑢 <
𝜋

2
and 

- ∞ < 𝑣 < ∞.  

Thus, if 𝑤 = 𝑓 𝑧  takes 𝜙(𝑥, 𝑦) intoΦ(𝑢,𝑣) then the transformed boundary conditions are    

Φ(𝑢,𝑣) = 5 ,  if  𝑢 =
𝜋

3
 

 = -5 ,  if  𝑢 =
𝜋

6
                                   (3.10) 

In the vertical strip< 𝑢 <
𝜋

2
  ,  - ∞ < 𝑣 < ∞ , Φ(𝑢,𝑣) is independent of 𝑣 and the transformed Laplace equation 

∇2 Φ(𝑢,𝑣)=0, reduces to 
𝜕2Φ

𝜕𝑢2 = 0. Therefore, the solution subject to (3.10) is given by Φ(𝑢,𝑣)=
60

𝜋
 𝑢 − 15. 

Thus, the solution of original Laplace equation ∇2𝜙(𝑥, 𝑦)=0 

𝜙(𝑥, 𝑦) =
60

𝜋
 𝑢 − 15 
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as 𝑤 = 𝑓 𝑧 = 𝑠𝑖𝑛−1𝑧, by Taylor’s series expansion 𝑤=𝑧 +
1

2

z3

3
+

1

2

3 

4

z5

5
 +

1

2

3 

4

5 

6

z7

7
 + … 

 𝑢 + 𝑖𝑣=𝑥 + 𝑖𝑦 +
1

2

(𝑥+𝑖𝑦 )3

3
+

1

2

3 

4

(𝑥+𝑖𝑦 )5

5
 +

1

2

3 

4

5 

6

(𝑥+𝑖𝑦)7

7
 + … 

therefore 𝑢 = 𝑥 +
1

2

1

3
 𝑥3 − 3𝑥𝑦3 +

1

2

3

4

1

5
 𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4 + ⋯  

and 𝑣 = 𝑦 +
1

2

1

3
 3𝑥2𝑦 − 𝑦3 +

1

2

3

4

1

5
 5𝑥4𝑦 − 10𝑥3𝑦3 + 𝑦5 + ⋯ 

To determine complex velocity potential Ω(𝑧) of which 𝜙(𝑥, 𝑦) is a real part. We proceed as under. 

As 𝑓 𝑧 = 𝑢 + 𝑖𝑣;
60

𝜋
 𝑓 𝑧 − 15 =

60

𝜋
 𝑢 + 𝑖𝑣 − 15 =  

60

𝜋
𝑢 +

60

𝜋
𝑖𝑣 − 15 =

60

𝜋
𝑢 − 15 +

60

𝜋
𝑖𝑣 = 𝜙(𝑥, 𝑦) + i𝜓(𝑥, 𝑦) 

, where 𝜓(𝑥, 𝑦) = 
60

𝜋
𝑖𝑣 

Since, 𝑓 𝑧 is analytic in D, it follows that the function 
60

𝜋
𝑖𝑣 𝑓 𝑧 − 15 is also analytic in D.  

Thus,  Ω(𝑧) =
60

𝜋
𝑖𝑣 𝑓 𝑧 − 15 =

60

𝜋
𝑖𝑣 𝑠𝑖𝑛−1𝑧 − 15 is the desired complex velocity potential. 

Figures:The domain and codomain for example 1, example 2, example 3 and example 4  are 

shown in figure 1, figure 2, figure 3 and figure 4 respectively. 

Fig. 1 

 

Fig.2 
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Fig.3 

 

Fig.4 

 

 

Conclusion:  

 Complex velocity potential of an ideal fluid can be determined by solving problem in either horizontal strip 

or vertical strip, which has simple geometric shape than any other type of region. 
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