Power Mean Graphs

S. Somasundaram ${ }^{\#, 1}$ and P. Mercy ${ }^{\#, 2 *}$
\#Department of Mathematics, Manomaniam Sundaranar University
Tirunelveli, Tamilnadu-627012, India

Abstract: A graph $G=(V, E)$ is called a Power mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $1,2,3, \cdots, q+1$ in such way that when each edge $e=u v$ is labeled with

$$
f(e=u v)=\left\lceil\left(f(u)^{f(v)} f(v)^{f(u)}\right) \frac{1}{f(u)+f(v)}\right\rceil
$$

or

$$
f(e=u v)=\left\lfloor\left(f(u)^{f(v)} f(v)^{f(u)}\right)^{\frac{1}{f(u)+f(v)}}\right\rfloor
$$

then the resulting edge labels are distinct. Here f is called a Power mean labeling of G. We investigate Power mean labeling for some standard graphs.

Key Words: Graphs, Power mean labeling, Power Mean graph, Path, Cycle, Comb, Ladder, $K_{n}, K_{1, n}$.

I. Introduction

The graphs considered here are finite and undirected graphs. For a detailed survey of graph labeling one may refer to Gallian[2] and also [1]. For all other standard terminology and notations we follow Harary[3]. In [4], Somasundaram and Ponraj introduced and studied mean labeling for some standard graphs. Somasundaram et al. [5], [7] introduced Harmonic mean labeling of graphs. Somasundaram et al. [6] introduced the concept of Geometric mean labeling of graphs and studied their behaviour. Somasundaram et al. [6] studied harmonic mean labeling technique. In this paper we define Power

[^0]mean labeling and investigate some standard graphs like Path, Cycle, Complete graph, Star, Comb , Ladder, K_{n}, $K_{1, n}$ for power mean labeling.

II. Definition and Results

Now we introduce the main concept and its related results in this paper.

Definition 2.1. A graph $G=(V, E)$ with p vertices and q edges is said to be a Power Mean Graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2,3, \ldots, q+1$ in such a way that when each edge $e=u v$ is labeled with

$$
f(e=u v)=\left\lceil\left(f(u)^{f(v)} f(v)^{f(u)}\right) \frac{1}{f(u)+f(v)}\right\rceil
$$

or

$$
f(e=u v)=\left\lfloor\left(f(u)^{f(v)} f(v)^{f(u)}\right)^{\frac{1}{f(u)+f(v)}}\right\rfloor
$$

then the resulting edge labels are distinct. In this case, f is called a Power mean labeling of G.

Remark 2.1. If G is a Power mean labeling graph, then 1 must be a label of one of the vertices of G, since an edge should get label 1 .

Remark 2.2. If $p>q+1$, then the graph $G=(p, q)$ is not a Power mean graph, since it doesn't have sufficient labels from $\{1,2,3, \ldots, q+1\}$ for the vertices of G.

The following Proposition will be used in the edge labelings of some standard graphs to get Power mean labeling.

Proposition 2.1. Let a, b and i be positive integers with $a<b$. Then
(i) $a<\left(a^{b} b^{a}\right)^{\frac{1}{a+b}}<b$,
(ii) $i<\left(i^{1+2}(i+2)^{i}\right)^{\frac{1}{2 i+2}}<(i+1)$,
(iii) $i<\left(i^{i+3}(i+3)^{i}\right)^{\frac{1}{2 i+3}}<(i+2)$,
(iv) $i<\left(i^{i+4}(i+4)^{i}\right)^{\frac{1}{2 i+4}}<(i+2)$, and
(v) $\left(1^{i} i^{1}\right)^{\frac{1}{i+1}}=i^{\frac{1}{1+1}}<2$.

Proof. (i) Since $a^{a+b}=a^{a} a^{b}<b^{a} a^{b}<b^{a} b^{b}=b^{a+b}$, we get the inequality in Proposition 2.1.(i). That is, the Power mean of two numbers lies between the numbers a and b. This leads to infer that if vertices u, v have labels $i, i+1$ respectively, then the edge $u v$ may be labeled i or $i+1$ for Power mean labeling.
(ii) As a proof of this inequality, we see

$$
\begin{aligned}
i^{i+2}(i+2)^{i}< & i^{2}[i(i+2)]^{i} \\
< & i^{2}(i+1)^{2 i} \\
& \text { since } i(i+2)<(i+1)^{2} \\
< & (i+1)^{2}(i+1)^{2 i} \\
= & (i+1)^{2 i+2}
\end{aligned}
$$

This leads to $\left[\left(i^{i+2}(i+2)^{i}\right)^{\frac{1}{2 i+2}}\right]<i+1$.
Therefore, if u, v have labels $i, i+2$ respectively, then the edge $u v$ may be labeled i or $i+1$.
(iii) Next we have

$$
\begin{aligned}
i^{i+3}(i+3)^{i} & =i^{3}[i(i+3)]^{i} \\
& <i^{3}(i+2)^{2 i}, \text { since } i(i+3)<(i+2)^{2} \\
& <(i+2)^{3}(i+2)^{2 i} \\
& =(i+2)^{2 i+3} .
\end{aligned}
$$

This leads to $\left[i^{i+3}(i+3)^{i}\right]^{\frac{1}{2 i+3}}<(i+2)$. Hence, if u, v have labels $i, i+3$ respectively, then the edge $u v$ may be labeled $i+1$ without ambiguity.
(iv) Now

$$
\begin{aligned}
i^{i+4}(i+4)^{i} & =i^{4}[i(i+4)]^{i} \\
& <i^{4}(i+2)^{2 i}, \text { since } i(i+4)<(i+2)^{2} \\
& <(i+2)^{4}(i+2)^{2 i} \\
& =(i+2)^{2 i+4} .
\end{aligned}
$$

Therefore

$$
\left[i^{i+4}(i+4)^{i}\right]^{\frac{1}{2 i+4}}<i+2
$$

Hence if u, v have labels $i, i+4$ respectively, then the edge $u v$ may be labeled $i+1$.
(v) Now

$$
\begin{aligned}
2^{i+1} & =(i+1)^{i+1} \\
& =1+{ }^{(i+1)} C_{1}+\cdots+{ }^{(i+1)} C_{i+1} \\
& \geq 1+1+\cdots+(i+2) \text { terms } \\
& \geq i+2>i
\end{aligned}
$$

Therefore $\left(1^{i} i^{1}\right)^{\frac{1}{i+1}}=i^{\frac{1}{i+1}}<2$. Thus we observe that if u, v are labeled $1, i$ respectively, then the edge $u v$ may be labeled 1 or 2 .

2.1 Power Mean labeling for Path P_{n}

Path: Path is a finite or infinite sequence of edges which connect a sequence of vertices and all are distinct from one another.

We examine the possibility of Power mean labeling to a path with an example.

Theorem 2.1. Any path is a Power mean graph.

Proof. Let P_{n} be a path on n vertices namely $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ with $n-1$ edges. Define a function

$$
f: V\left(P_{n}\right) \longrightarrow\{1,2,3, \ldots, q+1=n\} \text { by }
$$

$f\left(u_{i}\right)=i ; 1 \leq i \leq n$.

Then we get edge labels as $f\left(e_{i}\right)=i ; 1 \leq i \leq n-1$, by Proposition 2.1.(i). As the edge labels are distinct and the graph, P_{n} is a Power mean graph.

Example 2.1. A Power mean labeling of P_{6} is given by Figure 2.1.

Figure 2.1: Power mean labeling of Path P_{6}

2.2 Power Mean Labeling for Cycle Graph $C_{n}, n \geq 3$

Cycle C_{n} : Cycle is a connected closed path.
We investigate the assignment of Power mean labeling to a Cycle with an example.

Theorem 2.2. Any cycle is a Power mean graph

Proof. Let C_{n} be the cycle $u_{1}, u_{2}, u_{3}, \ldots, u_{n}, u_{1}$ of length n .

Define a function

$$
f: V(G) \longrightarrow\{1,2,3, \ldots, q+1=n+1\}
$$

by
(i) $f\left(u_{1}\right)=1$,
(ii) $f\left(u_{i-1}\right)=i . ; 3 \leq i \leq n+1$.

We get edge labels as
(i) $E\left(u_{i} u_{i+1}\right)=i+1 . ; 2 \leq i \leq n-1$,
(ii) $E\left(u_{1} u_{2}\right)=1$,
(iii) $E\left(u_{n} u_{1}\right)=2$.
by Proposition 2.1.(i), (ii) and (iv). Hence any cycle is a Power mean graph.

Example 2.2. A Power mean labeling of C_{8} is given below in Figure 2.2.

Figure 2.2: Power mean labeling of C_{8}

2.3 Power Mean labeling for Comb

Comb: Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

We do here the Power mean labeling for a Comb with an example.

Theorem 2.3. Comb is a Power mean graph.

Proof. Let G be a comb obtained from a path $P_{n}=$ $u_{1}, u_{2}, u_{3}, \ldots u_{n}$ by joining a vertex v_{i} to $u_{i} ; 1 \leq i \leq n$ Define a function $f: V(G) \longrightarrow\{1,2,3, \ldots, q+1\}$ by
(i) $f\left(v_{i}\right)=2 i, 1 \leq i \leq n$,
(ii) $f\left(u_{i}\right)=2 i-1, \quad 1 \leq i \leq n$.

We get edge labels as
(i) $E\left(u_{i} v_{i}\right)=2 i-1, \quad 1 \leq i \leq n$,
(ii) $E\left(v_{i} v_{i+1}\right)=2 i, 1 \leq i \leq n-1$.
by Proposition 2.1.(i) and (ii). Thus f is a Power mean labeling of G.

Example 2.3. The Comb obtained from P_{4} is given in Figure 2.3.

Figure 2.3: Comb

2.4 Power Mean Labeling for Ladder Graph L_{n}, $n \geq 2$

Ladder

graph L_{n} : Ladder is an undirected graph consisting of two paths $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$.

Herein, we establish the Power mean Labeling to a Ladder with an example.

Theorem 2.4. Any Ladder is a Power mean graph.

Proof. Let L_{n} denote the ladder graph. L_{n} has $2 n$ vertices and $3 n-2$ edges
Define a function

$$
f: V\left(L_{n}\right) \longrightarrow\{1,2,3, \ldots, q+1=3 n-1\} \text { by }
$$

(i) $f\left(u_{1}\right)=1$,
(ii) $f\left(u_{2}\right)=4$,
(iii) $f\left(u_{i}\right)=3 i-3,3 \leq i \leq n$,
(iv) $f\left(v_{i}\right)=2 i, 1 \leq i \leq 2$,
(v) $f\left(v_{i}\right)=3 i-1,3 \leq i \leq n$.

We get edge labels as
(i) $E\left(u_{i} v_{i}\right)=3 i-2,1 \leq i \leq n$,
(ii) $E\left(u_{i} u_{i+1}\right)=3 i-1, \quad 1 \leq i \leq n-1$,
(iii) $E\left(v_{i} v_{i+1}\right)=3 i \quad 1 \leq i \leq n-1$.
by Proposition 2.1.(i), (ii) and (iii). Thus the Ladder L_{n} is a Power mean graph.

Example 2.4. Power mean labeling of L_{5} with 10 vertices and 13 edges is given in Figure 2.4.

Figure 2.4: Power mean labeling of L_{5}

2.5 Power Mean labeling for Complete Graph $K_{n}, n=1,2,3$

Complete graph K_{n} : K_{n} is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.

We analyse the possibility of assigning Power mean labeling to Complete graph $K_{n}, n=1,2,3, \ldots$ with illustrative examples.

Theorem 2.5. If $n>3, K_{n}$ is not a Power mean graph.
Proof. Case(i): Clearly K_{1}, K_{2} and K_{3} are Power mean graphs as shown in figure 2.5.

Case(ii): Suppose $K_{n}, n>3$ is a Power mean graph. By Remark 2.1, a vertex, say u should get label 1. By Proposition 2.1. (ii), an edge with vertex labels 1 and i should get label 1 or 2 . There are atleast 3 vertices adjacent to the vertex u and hence atleast 3 edges incident at u. Distinct labels of these edges with 1 or 2 are not possible. Hence $K_{n}, n>3$ is not a Power mean graph.

Example 2.5. Power mean labeling of K_{1}, K_{2} and K_{3} are given by Figure 2.5.

(a) K_{1}

(b) K_{2}

(c) K_{3}

Figure 2.5: Power Mean labeling for Complete Graph $K_{n}, n=1,2,3$

2.6 Power Mean Labeling for Star

$$
K_{1, n}, n \leq 8
$$

$K_{1, n}: K_{1, n}$ is a graph with a central vertex u and n pendant vertices adjacent to u. We investigate the star graph $K_{1, n}$ for Power mean labeling.

Theorem 2.6. $K_{1, n}$ is a Power mean graph if and only if $n \leq 8$.

Proof. Case(i): The Power mean labelings for $K_{1, n}, n \leq$ 8 are given below Figure 2.6.

$K_{1,6}$

$$
K_{1,7}
$$

$K_{1,8}$
Figure 2.6: Power Mean Labeling for Star $K_{1, n}, n \leq 8$

Case(ii): We discuss $K_{1,9}$ with different central vertex labels (Figure 2.7).

In this case, no edge will get label 4 .

Figure 2.7: Star Graph

In this case also no edge will get label 4. Similarly, the argument extends for cases $n \geq 9$. Thus $K_{1, n}$ is a Power mean graph only for $n \leq 8$.

III. CONCLUSION

In this paper we defined Power mean labeling concept and showed how to label graphs like Path, Cycle, Comb, Ladder, Complete graph K_{n} and Star $K_{1, n}$. We also provided illustrative examples for possible implementation of power mean labeling technique.

REFERENCES

[1] B.D. Acharya, S. Arumugam and A. Rosa. (2008). Labeling of Discrete Structures and Applications. Narosa Publishing House, New Delhi. 1-14.
[2] J.A. Gallian. (2012). A dynamic Survey of graph labeling. The electronic Journal of Combinatories. 17 DS6.
[3] F. Harary. (1988). Graph Theory. Narosa Publishing House, New Delhi.
[4] S. Somasundaram and R. Ponraj. (2003). Mean Labelings of Graphs. National Academy Science Letters. 26, 210-213.
[5] S. Somasundaram, R. Ponraj and S.S. Sandhiya. Harmonic mean labeling of graphs. Communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
[6] S. Somasundaram, P. Vidhyarani and R. Ponraj. (2011). Geometric Mean Labeling of Graphs. Bullettin of Pure and Applied Sciences. 30E(2), 153-160.
[7] S. S. Sandhya and S. Somasundaram. (2013). Harmonic Mean Labeling for Some Special Graphs. International Journal of Mathematics Research. 5(1), 55-64.

[^0]: *Corresponding Author

