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Abstract: A graph G = (V, E) is called a Power mean

graph with p vertices and q edges, if it is possible to

label the vertices x ∈ V with distinct elements f (x)

from 1, 2, 3, · · · , q + 1 in such way that when each edge

e = uv is labeled with

f (e = uv) =











(

f (u) f (v) f (v) f (u)
)

1

f (u) + f (v)











or

f (e = uv) =

⌊

(

f (u) f (v) f (v) f (u)
)

1
f (u)+ f (v)

⌋

then the resulting edge labels are distinct. Here f is called

a Power mean labeling of G. We investigate Power mean

labeling for some standard graphs.

Key Words: Graphs, Power mean labeling, Power Mean

graph, Path, Cycle, Comb, Ladder, Kn, K1,n .

I. INTRODUCTION

The graphs considered here are finite and undirected

graphs. For a detailed survey of graph labeling one may

refer to Gallian[2] and also [1]. For all other standard

terminology and notations we follow Harary[3]. In [4],

Somasundaram and Ponraj introduced and studied mean

labeling for some standard graphs. Somasundaram et al.

[5], [7] introduced Harmonic mean labeling of graphs.

Somasundaram et al. [6] introduced the concept of

Geometric mean labeling of graphs and studied their

behaviour. Somasundaram et al. [6] studied harmonic

mean labeling technique. In this paper we define Power

∗Corresponding Author

mean labeling and investigate some standard graphs like

Path, Cycle, Complete graph, Star, Comb , Ladder, Kn ,

K1,n for power mean labeling.

II. DEFINITION AND RESULTS

Now we introduce the main concept and its related

results in this paper.

Definition 2.1. A graph G = (V, E) with p vertices and

q edges is said to be a Power Mean Graph if it is possible

to label the vertices x ∈ V with distinct labels f (x) from

1, 2, 3, ..., q+ 1 in such a way that when each edge e = uv

is labeled with

f (e = uv) =











(

f (u) f (v) f (v) f (u)
)

1

f (u) + f (v)











or

f (e = uv) =

⌊

(

f (u) f (v) f (v) f (u)
)

1
f (u)+ f (v)

⌋

then the resulting edge labels are distinct. In this case, f

is called a Power mean labeling of G .

Remark 2.1. If G is a Power mean labeling graph, then 1

must be a label of one of the vertices of G , since an edge

should get label 1.

Remark 2.2. If p > q + 1 , then the graph G = (p, q) is

not a Power mean graph, since it doesn’t have sufficient

labels from {1, 2, 3, ..., q+ 1} for the vertices of G.

The following Proposition will be used in the edge

labelings of some standard graphs to get Power mean

labeling.
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Proposition 2.1. Let a, b and i be positive integers with

a < b. Then

(i) a < (abba)
1

a+b < b,

(ii) i < (i1+2(i + 2)i)
1

2i+2 < (i + 1),

(iii) i < (ii+3(i + 3)i)
1

2i+3 < (i + 2),

(iv) i < (ii+4(i + 4)i)
1

2i+4 < (i + 2), and

(v) (1ii1)
1

i+1 = i
1

i+1 < 2.

Proof. (i) Since aa+b = aaab
< baab

< babb = ba+b,

we get the inequality in Proposition 2.1.( i ). That is, the

Power mean of two numbers lies between the numbers a

and b. This leads to infer that if vertices u, v have labels

i, i + 1 respectively, then the edge uv may be labeled i

or i + 1 for Power mean labeling.

(ii) As a proof of this inequality, we see

ii+2(i + 2)i
< i2[i(i + 2)]i,

< i2(i + 1)2i,

since i(i + 2) < (i + 1)2,

< (i + 1)2(i + 1)2i,

= (i + 1)2i+2.

This leads to [(ii+2(i + 2)i)
1

2i+2 ] < i + 1.

Therefore, if u, v have labels i, i+ 2 respectively, then the

edge uv may be labeled i or i + 1.

(iii) Next we have

ii+3(i + 3)i = i3[i(i + 3)]i,

< i3(i + 2)2i, since i(i + 3) < (i + 2)2,

< (i + 2)3(i + 2)2i,

= (i + 2)2i+3.

This leads to [ii+3(i + 3)i]
1

2i+3 < (i + 2). Hence, if u, v

have labels i, i + 3 respectively, then the edge uv may be

labeled i + 1 without ambiguity.

(iv) Now

ii+4(i + 4)i = i4[i(i + 4)]i,

< i4(i + 2)2i, since i(i + 4) < (i + 2)2

< (i + 2)4(i + 2)2i,

= (i + 2)2i+4.

Therefore

[ii+4(i + 4)i]
1

2i+4 < i + 2.

Hence if u, v have labels i, i + 4 respectively , then the

edge uv may be labeled i + 1.

(v) Now

2i+1 = (i + 1)i+1,

= 1 + (i+1)C1 + · · ·+ (i+1)Ci+1,

≥ 1 + 1 + · · ·+ (i + 2) terms,

≥ i + 2 > i.

Therefore (1ii1)
1

i+1 = i
1

i+1 < 2. Thus we observe that if

u, v are labeled 1, i respectively, then the edge uv may

be labeled 1 or 2 . �

2.1 Power Mean labeling for Path Pn

Path: Path is a finite or infinite sequence of edges which

connect a sequence of vertices and all are distinct from

one another.

We examine the possibility of Power mean labeling to a

path with an example.

Theorem 2.1. Any path is a Power mean graph.

Proof. Let Pn be a path on n vertices namely

u1, u2, u3, ..., un with n − 1 edges. Define a function

f : V(Pn) −→ {1, 2, 3, . . . , q + 1 = n} by

f (ui) = i ; 1 ≤ i ≤ n.

Then we get edge labels as f (ei) = i; 1 ≤ i ≤ n − 1, by

Proposition 2.1.( i ). As the edge labels are distinct and

the graph, Pn is a Power mean graph. �

Example 2.1. A Power mean labeling of P6 is given by Figure

2.1.

1 2 3 4 5

u1=1

u2=2

u3=3

u4=4

u5=5

u6=6

Figure 2.1: Power mean labeling of Path P6
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2.2 Power Mean Labeling for Cycle Graph

Cn, n ≥ 3

Cycle Cn : Cycle is a connected closed path.

We investigate the assignment of Power mean labeling to

a Cycle with an example.

Theorem 2.2. Any cycle is a Power mean graph

Proof. Let Cn be the cycle u1, u2, u3, . . . , un, u1 of length

n.

Define a function

f : V(G) −→ {1, 2, 3, . . . , q + 1 = n + 1}

by

(i) f (u1) = 1,

(ii) f (ui−1) = i. ; 3 ≤ i ≤ n + 1.

We get edge labels as

(i) E(uiui+1) = i + 1. ; 2 ≤ i ≤ n − 1,

(ii) E(u1u2) = 1,

(iii) E(unu1) = 2.

by Proposition 2.1.( i ) , ( ii ) and ( iv ). Hence any cycle is

a Power mean graph. �

Example 2.2. A Power mean labeling of C8 is given below in

Figure 2.2.

1

3

4

5

6

7

8

2

u1=1 u2=3

u3=4

u4=5

u5=6u6=7

u7=8

u8=9

Figure 2.2: Power mean labeling of C8

2.3 Power Mean labeling for Comb

Comb: Comb is a graph obtained by joining a single

pendant edge to each vertex of a path.

We do here the Power mean labeling for a Comb with an

example.

Theorem 2.3. Comb is a Power mean graph.

Proof. Let G be a comb obtained from a path Pn =

u1, u2, u3, ...un by joining a vertex vi to ui ; 1 ≤ i ≤ n

Define a function f : V(G) −→ {1, 2, 3, ..., q+ 1} by

(i) f (vi) = 2i , 1 ≤ i ≤ n,

(ii) f (ui) = 2i − 1 , 1 ≤ i ≤ n.

We get edge labels as

(i) E(uivi) = 2i − 1 , 1 ≤ i ≤ n,

(ii) E(vivi+1) = 2i , 1 ≤ i ≤ n − 1.

by Proposition 2.1.( i ) and ( ii ). Thus f is a Power mean

labeling of G. �

Example 2.3. The Comb obtained from P4 is given in Figure

2.3.

2 4 6

1 3 5 7

v1=2 v2=4 v3=6 v4=8

u1=1 u2=3 u3=5 u4=7

Figure 2.3: Comb

2.4 Power Mean Labeling for Ladder Graph Ln,

n ≥ 2

Ladder

graph Ln : Ladder is an undirected graph consisting of

two paths u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn.

Herein, we establish the Power mean Labeling to a

Ladder with an example.
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Theorem 2.4. Any Ladder is a Power mean graph.

Proof. Let Ln denote the ladder graph. Ln has 2n

vertices and 3n − 2 edges

Define a function

f : V(Ln) −→ {1, 2, 3, ..., q+ 1 = 3n − 1} by

(i) f (u1) = 1,

(ii) f (u2) = 4,

(iii) f (ui) = 3i − 3 , 3 ≤ i ≤ n,

(iv) f (vi) = 2i , 1 ≤ i ≤ 2,

(v) f (vi) = 3i − 1 , 3 ≤ i ≤ n.

We get edge labels as

(i) E(uivi) = 3i − 2 , 1 ≤ i ≤ n,

(ii) E(uiui+1) = 3i − 1 , 1 ≤ i ≤ n − 1,

(iii) E(vivi+1) = 3i 1 ≤ i ≤ n − 1.

by Proposition 2.1.( i ), ( ii ) and ( iii ). Thus the Ladder

Ln is a Power mean graph. �

Example 2.4. Power mean labeling of L5 with 10 vertices and

13 edges is given in Figure 2.4.

2 5 8 11

1 4 7

3 6 9 1215

10 13

u1=1 u2=4 u3=6 u4=9 u5=12

v1=2 v2=4 v3=8 v4=11 v5=14

Figure 2.4: Power mean labeling of L5

2.5 Power Mean labeling for Complete Graph

Kn, n = 1, 2, 3

Complete graph Kn : Kn is a simple undirected graph

in which every pair of distinct vertices is connected by a

unique edge.

We analyse the possibility of assigning Power mean

labeling to Complete graph Kn, n = 1, 2, 3, . . . with

illustrative examples.

Theorem 2.5. If n > 3, Kn is not a Power mean graph.

Proof. Case(i): Clearly K1, K2 and K3 are Power mean

graphs as shown in figure 2.5.

Case(ii): Suppose Kn, n > 3 is a Power mean graph.

By Remark 2.1, a vertex, say u should get label 1. By

Proposition 2.1. (ii), an edge with vertex labels 1 and

i should get label 1 or 2. There are atleast 3 vertices

adjacent to the vertex u and hence atleast 3 edges

incident at u. Distinct labels of these edges with 1 or

2 are not possible. Hence Kn, n > 3 is not a Power mean

graph. �

Example 2.5. Power mean labeling of K1 , K2 and K3 are

given by Figure 2.5.

v1=1

(a) K1

1

u1=1

u2=2

(b) K2

1

32

w1=1 w2=2

w3=3

(c) K3

Figure 2.5: Power Mean labeling for Complete Graph
Kn, n = 1, 2, 3
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2.6 Power Mean Labeling for Star

K1,n, n ≤ 8

K1,n : K1,n is a graph with a central vertex u and n

pendant vertices adjacent to u. We investigate the star

graph K1,n for Power mean labeling.

Theorem 2.6. K1,n is a Power mean graph if and only if

n ≤ 8.

Proof. Case(i): The Power mean labelings for K1,n , n ≤

8 are given below Figure 2.6.

1

1

2

K1,1

21

1 2

3

K1,2

1
2

3

4

1 2 3

K1,3

1
2 3

4

5

1 2 3 4

K1,4

1 2 3 4 5

6

1 2 3 4 5

K1,5

1 2 3 4 5 6

7

1 2 3 4 5 6

K1,6

1 2 3 4 5 6 7

8

1 2 3 4 5 6 7

K1,7

1 2 3 4 5 6 8 9

9

1 2 3 4 5 6 7 8

K1,8

Figure 2.6: Power Mean Labeling for Star K1,n, n ≤ 8
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Case(ii): We discuss K1,9 with different central vertex labels (Figure 2.7).

1 2 3 5 6
or
7

7
or
8

7
or
8

8
or
9

9
or
10

10

1 2 3 4 5 6 7 8 9

K1,9(a)

In this case, no edge will get label 4.

1 2 3 5 5
or
6

6
or
7

7
or
8

8
or
9

9
or
10

9

1 2 3 4 5 6 7 8 10

K1,9(b)

Figure 2.7: Star Graph

In this case also no edge will get label 4. Similarly, the argument extends for cases n ≥ 9. Thus K1,n is a Power mean

graph only for n ≤ 8. �
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III. CONCLUSION

In this paper we defined Power mean labeling concept

and showed how to label graphs like Path, Cycle,

Comb, Ladder, Complete graph Kn and Star K1,n .

We also provided illustrative examples for possible

implementation of power mean labeling technique.
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