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1. INTRODUCTION  

We have already studied out the two important basic algebraic structures ‘groups’ and ‘rings’. In groups, we have 

studied the algebraic system with one binary operation and in the rings, integral domain and fields we have studied 

the algebraic system with two binary operations. Now we shall consider another important algebraic system known 

as linear vector space or simply vector space upon which the whole of linear algebra is based. 

1.1. Vector Space :- 

If (F,+,ˑ) is a field and V is a non-empty set of vectors, then an algebraic structure V(F) is called a vector space if it 

satisfy the following conditions : 

1.1.1.V is an abelian additive group of vectors. 

1.1.2.∀ a ε F and α ɛ V(F) => aα ɛ V(F) i.e. V is closed for the scalar multiplication. 

1.1.3.∀ a ε F and α, β ɛ V(F), the following four laws of scalar multiplication are satisfied : 

1.1.3.1  aˑ(α+β) = aˑα + aˑβ 

 1.1.3.2. (a+b)ˑα = aˑα + bˑα 

 1.1.3.3. aˑ(bˑα) = (aˑb)ˑα 

 1.1.3.4. 1ˑα = α, 1 is the unit element of F. 

1.2. Vector-Subspace :- 

    Let V(F) be a vector space and W is a non-empty subset of V(F), then W is called a sub-space of V(F) if w is 

itself a vector  space  under  the same operations that defined for V(F). 

1.3. Necessary and Sufficient Condition of  Vector Subspace  to be a subspace :- 

1.3.1.W   is closed under vector addition in V(F). 

1.3.2. W   is closed under scalar  multiplication in V(F). 
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1.4.Linear Sum of  Two Subspace of a Vector space :- 

Let V(F) is a vector space and W1 ,W2 are two sub-space of V(F), then the linear sum of  W1 and W2 is      

denoted by W1 +W2 and defined as : 

   W1 +W2 = { (w1 +w2) : w1ɛ W1 and w2ɛ W2}. 

2. ALTERNATIVE METHODS  

2.1 METHOD 1 

Let W1 and W2 be two subspaces of a vector space V(F), then we have to show that W1 ∩ W2 is also a subspace 

of V(F). 

Since 0ɛ W1 and 0ɛ W2 => 0ɛ W1 ∩ W2 

Therefore, W1 ∩ W2 is not an empty i.e. W1 ∩ W2 ≠ Ф. 

Let a, b ε F and α, β ɛ W1 ∩ W2. 

Now, α ɛ W1 ∩ W2 => α ɛ W1 and α ɛ W2 

β ɛ W1 ∩ W2 => β ɛ W1 and β ɛ W2. 

Again , α, β ɛ W1 and a, b ɛ F => aα+bβ  ε W1 ,( W1 is a subspace ) 

Also, α, β ɛ W2 and  a, b ɛ F => aα+bβ  ε W2.  ( W2 is a subspace ) 

Hence, we see that aα+bβ  is common element of  W1 and  W2. 

Therefore,  aα+bβ  ε W1 ∩ W2. 

Thus,  α, β ɛ W1 ∩ W2 and  a, b ε F => aα+bβ  ε W1 ∩ W2. 

By using theorem,  

The  non-empty subset W of vector space V(F) is a subspace of V(F) iff 

I. 0ɛ W ( V ≠ Ф) 

II. a, b ɛ F and α, β ɛ W => aα+bβ  ε W. 

Thus,  W1 ∩ W2 is a subspace of a vector space V(F). 

1.2. METHOD 2 

Let α, β ɛ W1 ∩ W2 => α, β ɛ W1 and  α, β ɛ W2. 

 α+(-β) ɛ W1 and  α+(-β) ɛ W2, ( if β ɛ W1 and W2 => - β ɛ W1 and W2) 

 α+(-β) or α-β ɛ W1 ∩ W2. 

Again , let a ε F and α ɛ W1 ∩ W2 => a ε F, α ɛ W1 and  α ɛ W2. 

 aα ɛ W1 and aα ɛ W2, ( W1 and W2 are  subspaces of a vector space V(F) ) 

 aα ɛ W1 ∩ W2.. 

 

Thus, W1 ∩ W2 is closed under scalar  multiplication. 
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By using theorem ,  

A non – empty subset W of a vector space V(F) is a subspace of V(F) iff 

I. α, β ɛ W => α-β ɛ W. 

II. a ε F, α ɛ W => aα ɛ W. 

Hence, W1 ∩ W2 is a subspace of a vector space V(F). 

1.3. METHOD 3 

Firstly, let α, β ɛ W1 ∩ W2 => α, β ɛ W1 and  α, β ɛ W2. 

 α+β ɛ W1 and  α+β ɛ W2 

  α+β ɛ W1 ∩ W2. 

Since, we know that W1 and W2 are  subspaces of a vector space V(F) then their linear sum be also a subspace 

of V(F)  

i.e. W1 +W2 is also a subspace. 

 α+β ɛ W1 +W2. 

Thus, W1 ∩ W2 is closed under vector addition. 

Secondly, let a ε F and α ɛ W1 ∩ W2 => a ε F, α ɛ W1 and  α ɛ W2. 

 aα ɛ W1 and aα ɛ W2,  

 aα ɛ W1 ∩ W2.. 

Since, we know that W1 and W2 are  subspaces of a vector space V(F) then their linear sum be also a subspace 

of V(F). 

i.e. W1 +W2 is also a subspace. 

 aα ɛ W1 +W2. 

Thus, W1 ∩ W2 is closed under scalar  multiplication. 

By using theorem, 

A non – empty subset W of a vector space V(F) is a subspace of V(F) iff 

I. W is non- empty 

II. W  is closed under  vector addition  i.e. α, β ɛ W => α+β ɛ W. 

III. W  is closed under scalar  multiplication i.e. aα ɛ W ∀ a ε F and α ɛ W. 

Thus,  W1 ∩ W2 is a subspace of a vector space V(F) 
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