On $S_{2\frac{1}{2}} \mod I$ spaces and θ^I closed sets

Navpreet Singh Noorie¹*, Nitakshi Goyal² ^{1,2} Department of Mathematics, Punjabi University, Patiala, 147002, INDIA

December 18, 2017

Abstract

In this paper we will introduce $S_{2\frac{1}{2}}$ mod I spaces and discuss their properties. We also introduce θ^{I} closed sets using the local closure function and obtain the sufficient conditions for a set to be θ^{I} closed.

2010 Mathematics Subject Classification:54A05, 54A20, 54D10, 54D30. Keywords. $S_{2\frac{1}{2}} \mod I$, *I*-QHC, θ^I closed, ideal.

1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski[3] and Vaidyanathaswamy[5]. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies that (i) $A \in I$ and $B \in I$ implies $A \cup B \in I$ and (ii) $A \in I$ and $B \subset A$ implies $B \in I$. Given a topological space (X, τ) with an ideal I on X known as ideal topological space and (.)* : $\wp(X) \rightarrow \wp(X)$, called a local function[3] of A with respect to I and τ , is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every open nhd. } U \text{ of } x \text{ in } X\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $cl^*(A) = A \cup A^*(I, \tau)[4]$. A topological (X, τ) is said to be $S_{2\frac{1}{2}}$ if for any two distinct points x, y of X, whenever one of them has open set not containing the other then there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$. When there is no chance of confusion, we will simply write A^* for $A^*(I, \tau)$ and $\tau^*(I)$ for $\tau^*(I, \tau)$.

Throughout this paper (X, τ) will denote topological space on which no separation axioms are assumed. If I is an ideal on X, then (X, τ, I) is called an ideal space. For a subset A of X, cl(A) and int(A) will denote the closure of A, interior of A in (X, τ) , respectively, $cl^*(A)$ and $int^*(A)$ will denote the closure of A, interior of A in (X, τ) , respectively, $cl^*(A)$ and $int^*(A)$ will denote the closure of A, interior of A in (X, τ) , respectively, and A^C will denote the complement of A in X.

Lemma 1.1. [1] Let (X, τ, I) be an ideal space. Then for any subset A of X the following holds:

- (a) $A^* \subset \Gamma(A)(\mathcal{I}, \tau) \subset cl_{\theta}(A).$
- $(b) \ \Gamma(A)(I,\tau) = cl(\Gamma(A)(I,\tau)).$

2 Results

We begin by defining $S_{2\frac{1}{2}} \mod I$ spaces.

Definition 2.1. An ideal space (X, τ, I) is said to be $S_{2\frac{1}{2}} \mod I$ if for any two distinct points x, y of X, whenever one of them has open set not containing the other then there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} \in I$.

^{*}Corresponding author and Supervisior

ISSN: 2231-5373

Since $\emptyset \in I$. Therefore, $S_{2\frac{1}{2}}$ space is $S_{2\frac{1}{2}} \mod I$, but the following Example 2.1 shows that the converse need not be true.

Example 2.1. Let $X = \{x, y, z\}, \tau = \{\emptyset, \{x\}, \{z\}, \{x, z\}, \{y, z\}, X\}, I = \{\emptyset, \{y\}, \{z\}, \{y, z\}\}$. Then X is $S_{2\frac{1}{2}} \mod I$ but not $S_{2\frac{1}{2}}$.

Theorem 2.1. If an ideal space (X, τ, I) is $S_{2\frac{1}{2}} \mod I$ and $I \subset \mathcal{J}$ then (X, τ, \mathcal{J}) is $S_{2\frac{1}{2}} \mod \mathcal{J}$.

Proof. Proof is obvious and hence is omitted.

The following Example 2.2 shows that if (X, τ^*) is $S_{2\frac{1}{2}}$, then X need not be $S_{2\frac{1}{2}} \mod I$.

Example 2.2. Let $X = \{x, y, z\}, \tau = \{\emptyset, \{y\}, \{z\}, \{y, z\}, X\}, I = \{\emptyset, \{y\}, \{z\}, \{y, z\}\}$. So $\underline{\tau}^* = \wp(X)$ and hence (X, τ^*) is obviously $S_{2\frac{1}{2}}$, but X is not $S_{2\frac{1}{2}}$ mod I. Since $\{y\}$ has a open set not containing $\{z\}$, but $\{y\} \cap \{z\} = \{x, y\} \cap \{x, z\} = \{x\} \notin I$.

Even though we have seen that if (X, τ^*) is $S_{2\frac{1}{2}}$, then X need not be $S_{2\frac{1}{2}} \mod I$. but the following Theorem 2.2 shows that for codense ideals (X, τ^*) is $S_{2\frac{1}{2}}$ implies X is $S_{2\frac{1}{2}} \mod I$.

Theorem 2.2. Let (X, τ, I) be an ideal space where I is codense and (X, τ^*) is $S_{2\frac{1}{2}}$ then X is $S_{2\frac{1}{2}} \mod I$.

Proof. Let $x, y \in X$ be any two distinct points such that one of them has τ -open and hence τ^* -open subset not containing the other. Then (X, τ^*) is $S_{2\frac{1}{2}}$ implies there exist basic open set G - I, H - J where G, H are open in x and $I, J \in I$ such that $x \in G - I, y \in H - J$ and $cl^*(G - I) \cap cl^*(H - J) = \emptyset$ and so by $[cl^*(G) - I] \cap [cl^*(H) - J] = \emptyset$. This implies that $(cl^*(G) \cap cl^*(H)) - (I \cup J) = \emptyset$. Therefore, $(cl^*(G) \cap cl^*(H)) \subset (I \cup J) \in I$. Now I is codense implies that $cl^*(G) = cl(G)$ for every open subset G of X. Hence $cl(G) \cap cl(H) \in I$ implies that X is $S_{2\frac{1}{2}} \mod I$.

Definition 2.2. An ideal space (X, τ, I) is said to be ${}^*S_{2\frac{1}{2}} \mod I$ if for any two distinct points x, y of X, whenever one of them has τ^* -open set not containing the other then there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} \in I$.

It can be seen easily that (X, τ, I) is ${}^*S_{2\frac{1}{2}} \mod I$ implies $S_{2\frac{1}{2}} \mod I$ but the following Example 2.3 shows that the converse is not true.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X\}, I = \{\emptyset, \{a\}\}$. So $\tau^* = \{\emptyset, \{b, c\}, X\}$ and hence (X, τ, I) is obviously $S_{2\frac{1}{2}} \mod I$, but $\{c\}$ has a τ^* -open set not containing $\{a\}$ and X is the only open subset containing $\{a\}$ and $\{c\}$ implies that (X, τ, I) is not $*S_{2\frac{1}{2}} \mod I$.

In [2], Gupta and Noiri introduced QHC spaces with respect to an ideal written \mathcal{I} -QHC(where An ideal space (X, τ, I) is said to be \mathcal{I} -QHC if for every open cover $\{G_{\alpha} : \alpha \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $X - \bigcup \{cl(G_{\alpha}) : \alpha \in \Delta_0\} \in I$). We now discussed some properties of \mathcal{I} -QHC spaces.

Theorem 2.3. Let (X, τ, I) be $S_{2\frac{1}{2}}$ mod I space and F be I-QHC subset of X such that $x \notin \overline{F}$ then there exist open subsets U and V such that $x \in U$ and $F - \overline{V} \in I$ and $\overline{U} \cap \overline{V} \in I$

Proof. Let *F* be any *I*-QHC subset of *X* and $x \in X$ be any element such that $x \notin \overline{F}$ then $x \in X - \overline{F}$. Therefore, for all $y \in F$, *x* has a open set $X - \overline{F}$ not containing the elements of *F* and so *X* is $S_{2\frac{1}{2}} \mod I$ implies that there exist open subsets U_y, V_y containing *x*, *y* respectively such that $\overline{U_y} \cap \overline{V_y} \in I$ and $F \subseteq \bigcup_{y \in F} V_y$. Further, *F* is *I*-QHC subset of *X* implies that there exist finite subset F_0 of *F* such that $F - \bigcup_{y \in F_0} \overline{V_y} \in I$ and so $F - \overline{\bigcup_{y \in F_0} V_y} \in I$. Consider $U = \bigcap_{v \in F_0} U_y$ and $V = \bigcup_{v \in F_0} V_y$ then *U* is the open subset containing *x* and $F - \overline{V} \in I$ and $\overline{U} \cap \overline{V} \in I$.

Theorem 2.4. Let (X, τ, I) be an ideal space and K be I-QHC subset of X then $cl^*(K)$ is also I-QHC.

Proof. Let $G_{\alpha\alpha}$ be open open cover of $cl^*(K)$ so that $cl^*(K) \subseteq \bigcup_{\alpha} G_{\alpha}$ and so $K \subseteq cl^*(K) \subseteq \bigcup_{\alpha} G_{\alpha}$. But *K* is *I*-QHC subset of *X* implies that $K - \bigcup_{i=1}^{n} \overline{G_{\alpha_i}} \in I$. Let $G = \bigcup_{i=1}^{n} G_{\alpha_i}$ so that $K - \overline{G} \in I$. Now we will prove that $cl^*(K) - \overline{G} \in I$. For this we will prove that $cl^*(K) - \overline{G} \subseteq K - \overline{G}$.

Let $x \notin K - \overline{G}$. Then there can be two possibilities: case(i) $x \notin K$ case(ii) $x \in \overline{G}$. Now if $x \in \overline{G}$ then obviously $x \notin cl^*(K) - \overline{G}$ and if $x \notin K$ but $x \notin \overline{G}$. Then $x \in (\overline{G})^C$. This implies that $(\overline{G})^C$ is open set containing x and $(\overline{G})^C \cap K \in I$ implies that $x \notin K^*$ and so $x \notin K \cup K^*$ and so $x \notin cl^*(K)$. Thus, $x \notin cl^*(K) - \overline{G}$. Therefore, $cl^*(K) - \overline{G} \subseteq K - \overline{G}$. Hence $cl^*(K) - \overline{G} \subseteq K - \overline{G} \in I$ and so $cl^*(K) - \overline{G} \in I$ implies that $cl^*(K)$ is I-QHC.

ISSN: 2231-5373

http://www.ijmttjournal.org

In [1], Al-Omari and Noiri defined the local closure function in ideal topological spaces (where in an ideal topological space (X, τ, I) for a subset *A* of *X*, the local closure function of *A* denoted by $\Gamma(A)(I, \tau)$ is defined as $\Gamma(A)(I, \tau) = \{x \in X : \overline{U} \cap A \notin I \text{ for every } \tau\text{-nhd. } U \text{ of } x \text{ in } X \}$). Before our further results firstly, we will define θ^I closed sets using the local closure function.

Definition 2.3. Let (X, τ, I) be an ideal space and A be any subset of X. Then A is said to be θ^I closed if $\Gamma(A)(I, \tau) \subseteq A$.

Theorem 2.5. Let (X, τ, I) be ${}^*S_{2\frac{1}{2}} \mod I$ space and K be any I-QHC subset of X. Then K is θ^I closed if and only if K or K^C is union of τ^* -closed subsets of X.

Proof. Firstly, let *K* is θ^{I} closed and so τ^{*} -closed. This implies that *K* is union of τ^{*} -closed sets. Conversely, let $K = \bigcup_{\alpha} F_{\alpha}$, where F_{α} are τ^{*} -closed subsets of *X*. Then we will prove that $\Gamma(K)(I, \tau) \subset K$. Let $x \in \Gamma(K)(I, \tau)$ be any element then for every open subset *G* containing $x, \overline{G} \cap K \notin I$. Consider the filter \mathcal{F} generated by the filterbase $\mathcal{F}(\mathcal{B}) = \{\overline{G} \cap A : G \text{ is open subset of } X \text{ containing } x\}$. Then it can be easily seen that \mathcal{F} is the filter containing the closure of every open set containing x and $\mathcal{F} \cap I = \emptyset$. Further, *K* is *I*-QHC subset of *X* implies that there exists $y \in K$ such that $y \in \bigcap_{F \in \mathcal{F}} \Gamma(F)(I, \tau)$. Therefore, there exists α such that $y \in F_{\alpha}$. Now, let $x \notin K$, then $x \notin F_{\alpha}$. So $x \in F_{\alpha}^{C}$. This implies that F_{α}^{C} is τ^{*} -open nhd. of *X* containing *x* but not *y*. Therefore, *X* is ${}^{*}S_{2\frac{1}{2}} \mod I$ implies that there exist open sets *U* and *V* of *X* containing *x* and *y* respectively such that $\overline{U} \cap \overline{V} \in I$ and so $y \notin \Gamma(\overline{U})(I, \tau)$. Also *U* is open subset of *X* containing *x* implies that $\overline{U} \in \mathcal{F}$. Therefore, $y \in \Gamma(\overline{U})(I, \tau)$ which means that $\overline{U} \cap \overline{V} \notin I$, which is a contradiction. Therefore, $x \in K$ and so $\Gamma(K)(I, \tau) \subseteq K$. Hence *K* is θ^{I} closed.

The following Examples show that we can not replace ${}^*S_{2\frac{1}{2}} \mod \mathcal{I}$ space by $S_{2\frac{1}{2}} \mod \mathcal{I}$ space or by (X, τ^*) is $S_{2\frac{1}{2}}$.

Example 2.4. Let *X* be any infinite set with indiscrete topology and $\mathcal{I} = \mathcal{I}_f$ = ideal of finite subsets of *X*. Then $\tau^* = \{G \subseteq X | X - G \text{ is finite} \}$ i.e. τ^* is cofinite topology. Now, it can be easily seen that *X* is $S_{2\frac{1}{2}} \mod \mathcal{I}$ space since no point of *X* has a neighbourhood not containing the other. Further, *X* is the only open subset of *X* so every subset of *X* is \mathcal{I} -QHC. Let K = any infinite subset of *X* so $K = \bigcup_{x \in K} \{x\}$ where each $x \in K$ is τ^* -closed i.e. *K* is union of τ^* -closed subsets of *X*. But *K* is not θ^I closed. Since *X* is the only open subset of *X* and $\overline{X} \cap K = X \cap K = K \notin \mathcal{I}$. Therefore, $\Gamma(K)(\mathcal{I}, \tau) = X$ and so $\Gamma(K)(\mathcal{I}, \tau) \notin K$. Hence *K* is not θ^I closed.

Example 2.5. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. So $\tau^* = \wp(X)$. So it can be easily seen that (X, τ^*) is $S_{2\frac{1}{2}}$ but X is not ${}^*S_{2\frac{1}{2}} \mod I$. Since a has τ^* -open subset $\{a\}$ not containing b but $\overline{a} \cap \overline{b} = \{a, c\} \cap \{b, c\} = \{c\} \notin I$. Now, $\{c\}$ is τ^* -closed but $\Gamma(\{c\})(I, \tau) = \{a, b, c\}$ and so $\Gamma(\{c\})(I, \tau) \nsubseteq \{c\}$. Hence $\{c\}$ is not θ^I closed.

Even though we cannot replace ${}^*S_{2\frac{1}{2}} \mod \mathcal{I}$ space by $S_{2\frac{1}{2}} \mod \mathcal{I}$ space. But the following Theorem 2.6 holds.

Theorem 2.6. Let (X, τ, I) be $S_{2\frac{1}{2}}$ mod I space and K be any I-QHC subset of X. Then K or K^C is union of closed subsets of X implies that K is θ^I closed.

Proof. Proof is similar to Theorem 2.5 and hence is omitted.

References

- [1] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, *Novi Sad J. Math.*, **43**, 139-149(2013).
- [2] M.K. Gupta and T. Noiri, C-compactness modulo an ideal, Int. J. of Math. and Mathematical Science, 1-12(2006).
- [3] K.Kuratowski, *Topology*, volume I, Academic Press, New York, 1966.
- [4] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [5] _____, Set Topology, Chelsea Publishing Company, New York, 1946.

ISSN: 2231-5373

http://www.ijmttjournal.org