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Abstract: Recent advances in optical quantum
computing created an interest in Hankel block
Weighing matrices. This paper forwards a par-
tial answer to a open problem posed by Arasu
and his coworkers by constructing some infinite
families of anticirculant block weighing matrices
with additional structures.
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1 INTRODUCTION

Hankel block weighing matrices have gained im-
portance due to their applications in optical
quantum computing [2,5,8,9]. Recently Arasu
et.al. [1] suggested a problem i.e., to construct
a family of Hankel block weighing matrices by
a method different from theirs. In this paper
we construct a family of anticirculant structured
block weighing matrices. This family has addi-
tional properties: (a) each block is a weighing
matrix (b) The whole matrix is a weighing ma-
trix. In a special case we have obtained three
infinite classes of anticirculant block matrices,
with the additional properties (a) and (b).

2 PRELIMINARY

Following definitions are keys for the main con-
struction presented in the next sections:

2.1 Basic symmetric circulant matrix: Let
α=circ(0 1 0 ...0) be a circulant matrix of or-
der n whose first row is (0 1 0 ...0) and other
rows are obtained by right cyclic shift. Γi =
αi+αn−i, i = 1, 2, ...r = n−1

2 will be called ba-
sic symmetric circulant matrices, as symmetric
circulant matrix of order n is a linear combina-
tion of Γ

′s
i . Γ

′s
i have following properties [3,6,7]:

Γi = Γn−i,Γi
2 = 2In + Γ2i,ΓiΓj = Γi+j

+Γi−j , fori 6= j, Γ−i = Γi.Γi ∗ Γj = 0
, for i 6= j

(* denote the Hadamard product)

2.2 Orthogonal designs: An orthogonal de-
sign of order m and type (t1, t2,....tk) where ti
are positive integers is an m×m matrix a with
entries from commutative indeterminates 0,

±x1, ±x2,....,±xk such that XXT=(
k∑
i=1

t2ix
2
i )In.

Each row (or column) of X has ti entries of type
±xi and the two rows (or columns) are orthogo-
nal. In this paper our construction depends on
OD of order 4t and type (t,t,t,t) which is called a
Baumert-Hall array. Such arrays exist for many
even values of t and all odd values of t≤73. It
is conjectured that it exists for every positive
integer t. (Vide Craigen and Kharaghani [4])

2.3 Williamson matrices: Four symmetric,
circulant, commuting (1,-1)-matrices A, B, C,
D of order n are said to be Williamson matrices
if A2+B2+C2+D2=4nIn. [3]
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3 MAIN CONSTRUCTION

Our construction depends upon the following
theorems and their corollaries:

3.1 Theorem

Existence of symmetric circulant (0, 1, -1)
matrices A1, A2, ....Ak of order n satisfying
k∑
i=1

A2
i = rtIn, k≤n (1) and orthogonal design

OD(rt;t, t,...,t) implies the existence of an an-
ticirculant structured block weighing (ASBW)
matrix.

Proof: If Γi (i=1,2,..., m=n−1
2 ) be basic sym-

metric and circulant matrices, then Ai’c can be
expressed as [A1 A2 ... Ak]=ā0×I+ā1×Γ1+ā2×
Γ2+...+ām×Γm (2) where āi=[a1i a2i ... aki] is
a vector with entries 1, -1, 0, for i=1, 2,....k.

In view of (1)
∑
A2
i=(ā0

2+2
m∑
i=1

a2
i )I

and
m∑
i=1

ā2
iΓ2i+

m∑
i=1

ā0.ākΓk

+
∑

i,j:ai=ρaj ,i,j 6=0,ρ∈{−1,1}
ρā2

i (Γi+j + Γi−j)

+
∑

i,j:a1 6=ρaj ,i,j 6=0,ρ∈{−1,1}
āi.āj(Γi+j + Γi−j)=0.

(3)

(āi.āj ,ā
2
i=āi.āi are Euclidean inner product of

vectors in Rk.)

Define a linear mapping Rk → Rrt= vec-
tor space of real rt×rt matrices by f(ā) =
f([a1 a2...ak]) = M(a1 a2...ak) where M is an
OD(rt;t, t,...,t). Then f(ā) can be expressed as
f(ā)=

∑k
i=1 aiWi where Wi are weighing matri-

ces satisfying
WiW

T
i =tIrt,WiW

T
j +WjW

T
i =0 (4)

(Vide Geramita and Seberry [6].)

Now for 0≤i,j≤m we have

f(āi)f(āj)
T=(

k∑
p=1

akiWp)(
k∑
q=1

aqiW
T
q ).

Hence, using (4),
f(āi)f(āj)

T+f(āj)f(āj)
T=2t(

∑
apiapj)Irt

=2t(āi.āj)Irt (5).

Since f is linear, equation (2) turns to W= f([A1

A2 ... Ak])=f(ā0)× I+f(ā1)×Γ1+f(ā2)×Γ2+...
+f(ām)× Γm (6) and

WWT=f(ā0)f(ā0)T+2
m∑
i=1

f(āi)f(āi)
T × In

+[
m∑
i=1

f(āi)f(āi)
T × Γ2i

+
m∑
k=1

{f(ā0)f(āk)
T+f(āk)f(ā0)T } × Γk

+
∑

i,j:ai=ρaj ,i,j 6=0,ρ∈{−1,1}
ρf(āi).f(āj)

T × (Γi+j +

Γi−j)

+
∑

i,j:a1 6=ρaj ,i,j 6=0,ρ∈{−1,1}
{f(āi).f(āj)

T f(āj)f(āi)
T }×

(Γi+j + Γi−j)].

But the expression in the large bracket vanishes
in view of (3) and (5), implying that W is a
weighing matrix.

At last the matrix W̄=f̄([A1A2...Ak])=I ×
f(ā0) + Γ1 × f(ā1) + ... + Γm × f(ām) (7) is
clearly a weighing matrix. Also since Γi are cir-
culant and Γi ∗ Γj=0 it is also block circutant
weighing matrix whose blocks f(ā) are weighing
matrices. Finally W̄R where R= 0 Irt

...

Irt 0


is an anticirculant block weighing matrix which
will be abbreviated as ASBW matrix. We in-
troduce following definition which renders∑
i,j satisfying a1 6=ρaj ,i,j 6=0,ρ∈{−1,1}

āi.āj(Γi+j +

Γi−j)=0 in equation (3).

Basic set of vectors: If the vectors āi
(i=1,2,...,m) defined in (2) belong to the set
B={0, ±i, i=1, 2, ...l} l≤k then the set of blocks
in B will be called the basic set of vectors, if
i.j=0 for i6=j. 1,2,...,l can be taken as the rows
of a weighing matrix. The size of the basic set
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counts the number of blocks in W̄R given in the-
orem I. Two basic sets B and B′ will be called
proportional if (i)there is a bijection B 7→ B′ by

i 7→ i′(ii)0.i
i2

=0′.i′

i′2 (8)

We note that when k=4, (2) gives
Williamson matrices if the basic set is B ⊂
{0, i, i = 1, 2, 3, 4} where i is a 4-vector in which
ith entry is -1 and the remaining entries are +1,

and if the condition
m∑
i=1

ā2
iΓ2i+

m∑
i=1

ā0.ākΓk

+
∑

i,j:ai=ρaj ,i,j 6=0,ρ∈{−1,1}
ρā2

i (Γi+j + Γi−j)=0 (9)

is satisfied. B must contain at least two i
′s,i ∈

1, 2, 3, 4

The Williamson matrices Ai (i=1, 2, 3, 4)
will be called

of type I if B = {0, 1, 2}
of type II if B = {0, 1, 2, 3}
of type III, if B = {0, i, i = 1, 2, 3, 4}.

3.1.1 Construction of block Hadamard
matrix:

As soon as Williamson matrices in (2) satisfy-
ing (9) is obtained, W̄ given in (7) becomes an
anticirculant block Hadamard matrix and W̄R
is an ASBW of order 4nt, block weight n, block
size 4t and weight 4nt. A similar result has been
obtained in [10] when t=1. When n= q+1

2 where
q is an odd prime power Turyn has obtained an
infinite family of Williamson matrices [11] when
the basic set is B = {0, 1, 2}. Hence we can
obtain infinite family of ASBW matrices with
H-blocks of order 2(q+1)t for every t for which
OD (4t; t, t, t, t) exists. In the next theorem
we construct ASBW matrices whose blocks are
weighing matrices which are not Hadamard.

3.2 Theorem

Let the Williamson matrices A, B, C, D be ex-
pressed as [A B C D]=

∑m
i=0 āi×Γi,where Γ0=I

and Γi are basic symmetric and circulant (0,1)
matrices,āi are 4-vectors, with co-ordinates +1,-
1, belonging to a basic set B of vectors. If ā′i
are vectors with co-ordinates 0, +1, -1 belong-
ing to a basic set B’ proportional to B then

[A1A2A3A4]=∑m
i=0 āi × Γi satisfy

4∑
i=1

A2
i=4kI, k≤n.

Proof: Since the vector in basic sets are pro-

portional, (8) holds. Hence ā0.āi
ā′0.ā

′
i
=
ā2i
ā′2i

. Thus if

ā0, āi (i=1,2,...,m) satisfy (9) , ā′0, ā′i also satisfy

(9). Hence
4∑
i=1

A2
i=4kI, k≤n.

3.2.1 Corollary

For Williamson matrices basic set
B′ = {0′, 1′, 2′, 3′, 4′} is proportional to
B = {0, 1, 2, 3, 4} in the following cases:

Case I:
(a)0′=[0 0 - 0],1′=[0 0 + -], 2′=[0 0 + +]
(b)0′=[0 + - 0],1′=[0 0 + -], 2′=[0 0 + +]
(c)0′=[+ + - 0], 1′=[0 0 + -], 2′=[0 0 + +]

Case II:
(a)0′=[- - 0 0], 1′=[+ 0 0 -], 2′=[0 + + 0], 3′=[0
+ - 0]
(b)0′=[0 - 0 +], 1′=[+ 0 0 -],2′=[0 + + 0], 3′=[0
+ - 0]

Case III:
0′=[- - 0 0], 1′=[+ 0 0 -], 2′=[+ 0 0 +], 3′=[0 +
+ 0], 4′=[0 + - 0]

(+ denotes +1 and - denotes -1 )

By theorem I we have an infinite family of
ASBW’s in each subcase (a), (b) and (c) of case
I.

In Case I blocks of ASBW belong to the set
{f(0′),±f(1′),±f(2′)} . These Are essentially
3 blocks.

In case II blocks of ASBW belong to the set
{f(0′),±f(1′),±f(2′),±f(3′)}. These are es-
sentially 4 blocks.

In case III blocks of ASBW belong to the set
{f(0′),±f(i′), i = 1, 2, 3, 4}. These are essen-
tially 5 blocks.
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4 EXAMPLES

1(a).Using 0′, 1′, 2′ in case I (a)and
OD(4;1,1,1,1)

W̄ (12,5)=circ(f(0′) f(1′) f(1′))R=



−+ 00 −+ 00 0− 00
+ + 00 + + 00 −000
00−− 00−− 000+
00−+ 00−+ 00 + 0

−+ 00 0− 00 −+ 00
+ + 00 −000 + + 00
00−− 000+ 00−−
00−+ 00 + 0 00−+

0− 00 −+ 00 −+ 00
−000 + + 00 + + 00
000+ 00−− 00−−
00 + 0 00−+ 00−+



1(b).Using 0′, 1′, 2′ in case I (b)and
OD(4;1,1,1,1)

W̄ (12,6)=circ(f(0′) f(1′) f(1′))R=



−+ 00 −+ 00 0−+0
−− 00 −− 00 +00−
00 +− 00 +− +00+
00 + + 00 + + 0−−0

−+ 00 0−+0 −+ 00
−− 00 +00− −− 00
00 +− +00+ 00 +−
00 + + 0−−0 00 + +

0−+0 −+ 00 −+ 00
+00− −− 00 −− 00
+00+ 00 +− 00 +−
0−−0 00 + + 00 + +



1(c).Using 0′, 1′, 2′ in case I (c)and
OD(4;1,1,1,1)

W̄ (12,7)=circ(f(0′) f(1′) f(1′))R=

−+ 00 −+ 00 0−++
−− 00 −− 00 +0 +−
00 +− 00 +− + + 0+
00 + + 00 + + +−−0

−+ 00 0−++ −+ 00
−− 00 +0 +− −− 00
00 +− + + 0+ 00 +−
00 + + +−−0 00 + +

0−++ −+ 00 −+ 00
+0 +− −− 00 −− 00
+ + 0+ 00 +− 00 +−
+−−0 00 + + 00 + +


2(a).Using 0′, 1′, 2′ in case I (a) and
OD(4;1,1,1,1) W̄ (20,9)=circ(f(0′)f(1′)f(2′)f(2′)f(1′))R=

−+ 00 + + 00 + + 00 −+ 00 0− 00
+ + 00 +− 00 +− 00 + + 00 −000
00−− 00 +− 00 +− 00−− 000+
00−+ 00−− 00−− 00−+ 00 + 0

+ + 00 + + 00 −+ 00 0− 00 −+ 00
+− 00 +− 00 + + 00 −000 + + 00
00 +− 00 +− 00−− 000+ 00−−
00−− 00−− 00−+ 00 + 0 00−+

+ + 00 −+ 00 0− 00 −+ 00 + + 00
+− 00 + + 00 −000 + + 00 +− 00
00 +− 00−− 000+ 00−− 00 +−
00−− 00−+ 00 + 0 00−+ 00−−

−+ 00 0− 00 −+ 00 + + 00 + + 00
+ + 00 −000 + + 00 +− 00 +− 00
00−− 000+ 00−− 00 +− 00 +−
00−+ 00 + 0 00−+ 00−− 00−−

0− 00 −+ 00 + + 00 + + 00 −+ 00
−000 + + 00 +− 00 +− 00 + + 00
000+ 00−− 00 +− 00 +− 00−−
00 + 0 00−+ 00−− 00−− 00−+


(+ denotes +1 and - denotes -1 )

Likewise 3.Using 0′, 1′, 2′, 3′, 4 in case II(a) and
OD(4;1,1,1,1)
W̄ (28,14)=circ(f(0′)f(1′)f(2′)f(3′)f(3′)f(2′)f(1′))
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and 4.Using 0′, 1′, 2′, 3′, 4 in case III and
OD(12;3,3,3,3)
W̄ (36,18)=circ(f(0̄′) f(1̄′) f(1̄′))

5 CONCLUSION

Our method clearly differs from that of Arasu
et al. The anticirculant block weighing ma-
trix depends upon Williamson matrices and
OD(4t;t,t,t,t) both of which are available abun-
dantly. We have obtained three infinite series of
such weighing matrices. However more such se-
ries can be obtained from (1) new infinite series
of Williamson matrices (2) new infinite series
of certain symmetric circulant (0,1,-1)-matrices
A1, A2,...,Ak of order n satisfying

∑k
i=1Ai=rtIn,

k≤n. Also resulting matrices are structured in
the sense that the whole matrix is a weighing
matrix as well as the blocks. There is an open
problem: Can the method be modified to in-
clude Hankel block weighing matrices which are
not anticirculant block weighing matrices?
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