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ABSTRACT: 

We study, the effect of thermal radiation and viscous dissipation on steady MHD free convection and 

mass transfer flow of a micropolar fluid with constant heat and mass fluxes. The diffusion thermo, thermal 
diffusion, viscous dissipation and Joule heating have been considered for high speed fluid. The governing 

equations of the problem contain the partial differential equations which are transformed by similarity technique 

into dimensionless ordinary coupled non-linear differential equations. The dimensionless governing equations 

are solved numerically by using fourth order Runge–Kutta shooting iteration technique. We investigate in detail 

the distributions of velocity, microrotation, temperature and concentration across the boundary layer and also 

evaluated the skin friction, couple stress, the rate of heat and mass transfer at the plate.  
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1. INTRODUCTION 

Because of the increasing importance of materials flow in industrial processing and elsewhere and the 

fact shear behavior cannot be characterized by Newtonian relationships, a new stage in the evaluation of 
fluid dynamic theory is in the progress. Eringen [10] proposed a theory of micropolar fluids taking into 

account the inertial characteristics of the substructure particles, which are allowed to undergo rotation. 

Physically, the micropolar fluid can consist of a suspension of small, rigid, cylindrical elements such as 

large dumbell shaped molecules.   The   theory   of   micropolar   fluids   is generating a very much increased 

interest and many classical flows are being re-examined to determine the effects of the fluid microstructure. 

The concept of micropolar fluid deals with a class of fluids that exhibit certain microscopic effects 

arising from the micro motions of the fluid elements. These fluids contain dilute suspension of rigid micro 

molecules with individual motions that support stress and body moments and are influenced by spin inertia. 

Micropolar fluids are those which contain micro constituents that can undergo rotation, the presence of which 

can affect the hydrodynamics of the flow so that it can be distinctly non-Newtonian. It has many practical 

applications, for example, analyzing the behavior of exotic lubricants Khonsari[23]. Lee and Eringen [25] 
additive suspensions, human and animal blood Ariman et al. [2], turbulent shear flow and so fourth. Earlier 

Sakiadis [33] introduced the concept of continuous surfaces such as polymer sheets of filaments continuously 

drawn from die. He studied the boundary layer behavior on continuum solid and flat surfaces. The boundary 

layer flow on continuous surfaces is an important type of flow occurring in a number of technical processes, for 

example, continuous casting, glass fiber production, metal extrusion, hot rolling, cooling and/or dying of paper 

and textiles, wire drawing, etc Tadmor and Klein [35] , Fisher, [12], Altan et al. [1]. Eringen [11] developed the 

theory of thermo micro polar fluids by extending the theory of micropolar fluids.  Yucel [38] studied the mixed 

convection flow of micropolar fluid over a horizontal plate. Mohammed Ibrahim et al. [27] studied Radiation 

Effects on Unsteady MHD Free Convective Heat and Mass Transfer Flow of Past a Vertical Porous Plate 

Embedded in a Porous Medium with Viscous Dissipation. Ziaul Haque et al. [39] have studied Micropolar 

fluid behaviors on steady MHD free convection and mass transfer flow with constant heat and Mass fluxes, 

joule heating and viscous dissipation. Venkateswarlu et al. [37] have studied Effects of Thermal Radiation on 
Unsteady MHD Micropolar Fluid past a Vertical Porous Plate in the Presence of Radiation Absorption. 

Olajuwon and Oahimire [29] studied unsteady free convection heat and mass transfer in an mhd micropolar 

fluid in the presence of thermo diffusion and thermal radiation. Chandrakala et al. [4] has studied Radiation 

effects on MHD flow past an impulsively started infinite vertical plate with mass diffusion. GnaneswaraReddy 
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http://ijesc.org/upload/c07be3d8242adbd6cdb142fbee1a0586.Effects%20of%20Thermal%20Radiation%20on%20Unsteady%20MHD%20Micropolar%20Fluid%20past%20a%20Vertical%20Porous%20Plate%20in%20the%20Presence%20of%20Radiation%20Absorption.pdf
http://ijesc.org/upload/c07be3d8242adbd6cdb142fbee1a0586.Effects%20of%20Thermal%20Radiation%20on%20Unsteady%20MHD%20Micropolar%20Fluid%20past%20a%20Vertical%20Porous%20Plate%20in%20the%20Presence%20of%20Radiation%20Absorption.pdf
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Fig.1: Physical configuration and co-ordinate system 

and Machireddy [14] have investigated Thermal Radiation and Chemical Reaction Effects on Steady Convective 

Slip Flow with Uniform Heat and Mass Flux in the Presence of Ohmic heating and a Heat Source. Harish Babu 

et al. [16] studied Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with 

power law heat flux. Hitesh Kumar [17] studied Mixed convective magneto hydrodynamic flow of a micropolar 

fluid with ohmic heating, radiation and viscous dissipation over a chemically reacting porous plate subjected to 

a constant heat flux and concentration gradient. Kesavaiah et al. [21] studied Radiation absorption, chemical 

reaction and magnetic filed effects on the free convection and mass transfer flow through porous medium with 
constant suction and constant heat flux. Usha et al. [36] studied Thermal diffusion and radiation effects on mhd 

mixed convection flow in a channel with porous medium.   

El-Haikem et al. [9] have studied the Joule heating effects on magneto hydrodynamic free convection 

flow of a micropolar fluid. El-Amin [7]  has studied the magneto hydrodynamic free convection and mass 

transfer flow in micropolar fluid with constant suction. Very recently Rahman and Sattar [31] have studied the 

magneto hydrodynamic convective flow of a micropolar fluid past a continuously moving vertical porous plate 

in the presence of heat generation/absorption. In the above mentioned work they have extended the work of El-

Arabawy [8] to a MHD flow taking into account the effect of free convection and micro rotation. Kim [24] 

studied the unsteady MHD free convection flow of micropolar fluid past a vertical moving porous plate in a 

porous medium. 

 

2. FORMULATION OF THE PROBLEM 
We consider the steady two dimensional MHD free convective and mass transfer micropolar fluid flow 

past a semi-infinite vertical porous plate y=0.  The x-axis is taken 

along the heated plate in the upward direction and the y-axis 

normal to it. The constant heat flux )(
y

T
k



 =Q and constant mass 

flux )(
y

C
Dm




 =m are considered.  The plate is immersed in a 

micropolar fluid of temperature T, a magnetic field B  of uniform 

strength is applied transversely to the direction of the flow. The 
magnetic Reynolds number of the flow is taken to be sufficiently 

small enough so that the induced magnetic field can be neglected in 

comparison with the applied magnetic field so that )0,,0( oBB   

where B0 is the uniform magnetic field acting normal to the plate. The equation of conservation of charge 

0.  J gives yj =constant where ),,( zyx jjjJ   is the current density. The direction of propagation is 

considered only along the y-axis and does not have any variation along the y-axis the derivative of yJ with 

respect to y namely 0




y

j y
. Since the plate is electrically non-conducting this constant is zero and hence yJ

=0 at the plate and hence zero elsewhere .The flow configuration and the co-ordinate system are shown in fig.1.  

 

Since the occupying the plate y=0 is of semi-infinite extent and the micropolar fluid motion is steady, 

all physical quantities will depend only upon x and y. Within the framework of the above noted assumptions, the 

flow of a steady viscous incompressible micropolar fluid flow subject to the Boussinesq’s approximation can be 

written in the following form 
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The Angular momentum equation 
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The Energy equation 
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The Concentration equation  
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 The boundary conditions for the problem are 
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When s=0, we obtain 0  which represents no-spin condition , the micro elements in a concentrated particle 

flow close to the wall are not able to rotate. The case s=1/2 represents vanishing of the anti-symmetric part of 

the stress tensor and stress tensor and represents weak concentration. In a fine particle suspension of the particle 
spin is equal to the fluid velocity at the wall. The case s=1, represents turbulent boundary layer flow.  

Invoking Rosseland approximation the radiative flux 
rq  is 

rq  =
y

T

Ke
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41T into Taylor series about 
1

T  which after neglecting 

higher order terms and takes the form
434 1111 34   TTTT . With this the energy equation reduces to 
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We introduce the usual similarity variables 
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Introducing the relations Eq.( 2.2.7) and Eq.(2.2.2) into the Eqs.(2.2.1) - (2.2.5),we obtain the following 

similarity equation

0)()())()(()()()()()1( 12    fDMNGgfff r                           

[9] 

0)()(2)()()()()(   fggfgfg                     [10]                       

2

2

2

4
(1 ) ( ) ( ) ( ) ( ) ( )) (1 ) ( )

3

( ) ( ) 0

r r

r

Rd
P f f P Ecf

MP Ecf P Df

        

  

       

   
 

        [11] 

                                                                               

( ) ( ( ) ( ) ( ) ( ) ( ) 0c rS f f S                                                            [12] 

The corresponding boundary conditions are 
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3. SOLUTION OF THE PROBLEM 
 

 The coupled ordinary differential equations (9)-(12) are of third order in f, and second order in g, θ and 

 which have been reduced to a system of nine simultaneous equations of first-order for nine unknowns. In 
order to solve this system of equations numerically we require nine initial conditions but two initial conditions 

on f and one initial condition each on g, θ and  are known. However the values of f, g, θ and  are known at

 . These four end conditions are utilized to produce four unknown initial conditions at η=0 by using 

shooting technique. The most crucial factor of this scheme is to choose the appropriate finite value of . In 

order to estimate the value of  , we start with some initial guess value and solve the boundary value problem 

consisting of equations (9)-(12) to obtain f (0), g(0) θ (0) and  (0). The solution process is repeated with 

another large value of 
 until two successive values of f’(0), g(0), θ(0) and (0) differ only after desired 

significant digit. The last value of 
 is taken as the final value of 

 for a particular set of physical parameters 

for determining velocity components f(η), g(), temperature θ(η) and concentration (η) in the boundary layer. 
After knowing all the nine initial conditions, we solve this system of simultaneous equations using fourth-order 

Runge-Kutta shooting iteration technique. The value of 
  greatly depends also on the set of the physical  

parameters such as Magnetic parameter, buoyancy ratio, Microrotation parameter , Prandtl number, Inverse 

Darcy parameter, Schmidt number, Soret number and dimensionless  vertex viscosity parameter so that no 

numerical oscillations would occur. During the computation, the shooting error was controlled by keeping it to 

be less than 10-6. Thus, the coupled non-linear boundary value problem of third order in f, second order in g, θ 

and  has been reduced to a system of nine simultaneous equations of first-order for nine unknowns as follows : 

f= f1 , f=f2,  f = f3, g=f4, g=f5, =f6, =f7, =f8, =f9 

f3 =[f1 f3 - f4, g8 (f6 + N f8) – (M + D-1 ) f2] / (1+) 
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and a prime denotes differentiation with respect to η. The boundary conditions now become 
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Since f3(0), f5(0), f7(0) and f9(0) are not prescribed so we have to start with the initial approximations as 

f3(0)=s10, f5(0)=s20, f7(0)=s30 and f9(0)=s40. Let γ1, γ2, γ3 and γ4 be the correct values of f3(0), f5(0) and f7(0) 

respectively. The resultant system of nine ordinary differential equations is integrated using fourth order Runge-

Kutta shooting  iteration technique method  and denote the values of f3, f5 ,f7 and f9 at
 by f3 (s10, s20, s30, 

s40, ) ,  f5(s10, s20, s30, s40,  ),  f7(s10, s20, s30, s40,  ) and f9(s10, s20, s30, s40,  ) respectively. Since f3, f5, f7 

and f9 at 
  are clearly function of γ1, γ2, γ3 and γ4, they are expanded in Taylor series around γ1 – s10, γ2 – 

s20  ,  γ3 – s30 and γ4 – s40 respectively by retaining only the linear terms. The use of difference quotients is made 

for the derivatives appeared in these Taylor series expansions.  
Thus, after solving the system of Taylor series expansions for δγ1= γ1 – s10,  δγ2  = γ2 – s20  , δγ3=  γ3 – 

s30, and δγ4=  γ4 – s40 we obtain the new estimates s11=s10+δs10, s21= s20+δs20 , s31=s30+δs30  and s41=s40+δs40. Next 

the entire process is repeated starting with f1(0), f2(0), s11, f4(0), s21 , s31 and s41 as initial conditions. Iteration of 

the whole outlined process is repeated with the latest estimates of γ1, γ2, γ3 and γ4 until prescribed boundary 

conditions are satisfied.  

Finally, s1n=s1(n-1)+ δ s1(n-1),  s2n=s2(n-1)+ δ s2(n-1) ,s3n=s3(n-1)+δ s3(n-1) and s4n=s4(n-1)+δ s4(n-1) for n=1,2,3,... 

are obtained which seemed to be the most desired approximate initial values of f3(0), f5(0), f7(0) and f9(0).  In 

this way all the six initial conditions are determined. Now it is possible to solve the resultant system of seven 

simultaneous equations by fourth-order Runge-Kutta shooting iteration technique so that velocity, micro 

rotation, temperature and concentration fields for a particular set of physical parameters can easily be obtained. 

The results are provided in several tables and graphs. 

 

4. RESULTS AND DISCUSSION 

In this analysis, we investigate the combined influence of thermal radiation, Soret and Dufour effects on 

steady MHD free convective heat and mass transfer flow of a micro polar fluid past a vertical plate with constant 

heat and mass fluxes. The non linear governing equations have been solved by employing fourth order Runge-Kutta 

shooting iteration technique to study the physical significance of this problem. We have collected the numerical 

values of velocity, micro rotation, temperature and concentration within the boundary layer and also evaluated the 

skin friction, couple stress, the rate of heat and mass transfer at the plate. It can be seen that the solution effected by 

the parameters namely suction parameter (fw), grashof number (G), buoyancy ratio (N), magnetic parameter (M), 

micro rotation parameter (Δ), dimension less spin gradient viscosity parameter (ᴧ), dimension less vertex viscosity 

parameter (λ), prandtl number (Pr),   Eckert number (Ec), Schmidt number (Sc), Soret parameter (Sr), Dufour 

parameter (Du), radiation parameter (Rd) . The values of M, G are taken to be large for cooling Newtonian fluid, 

since these large values correspond to a strong magnetic problem and cooling problem. That is generally occurs 

nuclear engineering in connection with cooling of reactions. The values of 0.2, 0.5, 0.71, 1, 2, 5 are considered  for 

Pr ( 0.2, 0.5, 0.71 for air  and 1, 2, 3 for water). The values 0.1, 0.5, 0.6, 0.95, 5, 10 are also considered for Sc, which 

represents a specific condition of the flow, (0.95 for C02 0.6,5,10 for water). The values of other parameters choose 

arbitrarily. 

Figs (2-5) shows the velocity, micro rotation, temperature and concentration profiles for different values of 

grashof number (G). It is found that an increase in G, enhances the velocity and micro rotation and reduces the 

temperature and concentration. 

 Figs (6-9) represent the effect of magnetic parameter (M) on velocity, micro rotation, temperature and 

concentration. Fig.6 shows that the velocity fields decreases with increase of magnetic parameter (M) these effects 

are more stronger near the surface of the plate. Fig.7 shows that the micro rotation field increasing negatively and 

decreases with increase of M. Figs (8 & 9) respectively shows that the variation of temperature and concentration 

with M. It can be seen from profile that the temperature and concentration gradually enhance with increase in M 

within boundary layer. 

Figs (10-13) represent the variation of inverse Darcy parameter (D-1) on velocity, micro rotation, 

temperature and concentration. It is found that the velocity reduces with increase in D-1. From Fig 11 the micro 

rotation field remains negative and increases with increase of permeability parameter  D-1 with in the domain. 

From Figs (12 and13) the temperature and concentration enhances with increase in D-1. 

           Figs (14-17) represent the effect of thermal radiation (Rd) on velocity, micro rotation, temperature and 

concentration. It is found that the higher the radiative heat flux larger the velocity and smaller the micro 

rotation. The temperature enhances and concentration reduces with increase in the radiation parameter Rd  Figs 

(15 and 17). 
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The variation of velocity, micro rotation, temperature and concentration with Eckert number (Ec) are 

represented in Figs (18-21). Fig 18 shows that higher the dissipation larger the velocity in the boundary layer. 

From Fig 19 the micro rotation remains negative and reduces with increase in Ec. From figs (20 & 21), we find 

that the higher the dissipation larger the temperature and smaller the concentration within the domain. 

Figs (22-25) represent the velocity, micro rotation, temperature and concentration for different values 

of suction parameter fw. Here fw>0 correspond to suction fw<0 correspond to injection or cooling at the plate. 

From figs 22 and 26 it can be seen that the velocity field decreases with increase in suction parameter fw , for  

fw>0 and for fw<0 the velocity decreases for fw< -1.0,enhances with higher fw=-1.5 and again reduces with still 

higher fw=-2.5 indicate the usual fact that suction  stabilizer the boundary layer growth. Figs. (23 and 27) 

represent the micro rotation field with fw. It can be seen from profile that the micro rotation field or angular 

velocity (g) remains negative and decreases with fw>0 and for fw<0.It enhances fw<-1.0 reduces with higher 

fw=-1.5 and again enhances with higher fw=-2.5. Figs 24, 25, 28 and 29 represents the temperature and 

concentration with suction parameter fw an increase in( fw>0) reduces  the temperature and concentration in the 

boundary layer while for fw<0 the temperature reduces for fw<-1.0  enhances for fw=-1.5 and again reduces 

with still higher fw=-2.5 also the concentration increases for lower and higher values of  fw<0 and reduces for 

intermediate value fw=-1.5. 

Figs (30-33) represent the effect of dimension less vertex viscosity parameter (λ), Fig. 30 shows that 

the velocity field increases with increasing values of vertex viscosity parameter λ. Fig. 31 shows that micro 

rotation remains negative and increases with increasing of λ<0.6 and for higher λ=0.8 it reduces in the boundary 

layer. Fig. 32 shows that the temperature reduces with increase in vertex viscosity parameter λ. Fig. 33 shows 

that the concentration reduces with increasing of  λ < 0.6 and enhance with higher λ=0.8.  

Figs (34-37) represent the velocity and micro rotation with spin gradient viscosity parameter (ᴧ).  Fig. 

34 shows that the velocity reduces with increase in viscosity parameter (ᴧ). Fig 35 shows that the micro rotation 

remains negative and increases with increase in ᴧ . From Figs (36 & 37) we observe that an increase in ᴧ 

reduces temperature and concentration within the boundary layer. 

               Figs (38–41) represent Soret and Dufour parameter on velocity, micro rotation, temperature and 

concentration. It is found that increase Sr (or decrease in Du), enhances the velocity. Fig. 39 shows that micro 

rotation remains negative and decreases with increase in Sr (or decrease in Du). The temperature decreases 

while concentration enhances with increase in Sr (or decrease in Du) (Figs 40 & 41). 
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Fig.4: Variation of  θ with G 
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Fig.5: Variation of φ with G 
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Fig.6: Variation of f
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with M 
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Fig.7: Variation of g with M 
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Fig.8: Variation of θ with M 
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        Fig.9: Variation of φ with M 
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Fig.10: Variation of  f
 I 

with D
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Fig.11: Variation of g with D
-1
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 Fig.12: Variation of θ with D
-1
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        Fig.13: Variation of φ with D
- 1

 

M=0.5, G=2, N=1, Sc=1.3, Ec=0.01, 

        Sr=1.0, Du=0.03, =0.5, =0.5 

1 2 3 4


0.5

1.0

1.5

2.0



D-1=0.5,1,1.5,2.5 

η 

φ 

 

 

 
        

    Fig.14: Variation of f
 I 

with Rd 
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                              Fig.15: Variation of g with Rd 
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                            Fig.16: Variation of θ with Rd 

                                    G=2, M=0.5, D
-1

=0.5, N=1, Sc=1.3, Ec=0.01, 

            Sr=1.0, Du=0.03, =0.5, =0.5, fw=0.5 

1 2 3 4


0.5

1.0

1.5

2.0

2.5



Rd=.5,1.5,3.5,5.0 

η 

θ 

 

     

 
        Fig.17: Variation φ with Rd 
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        Fig.18: Variation of f

 I 
with Ec 
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           Fig.19: Variation of g with Ec 
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               Fig.20: Variation of θ
 
with Ec  
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   Fig.21: Variation of φ with Ec 
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                                   Fig.23: Variation of  g with fw<0 

                                M=0.5, D
-1

=0.5, N=1, Sc=1.3, Ec=0.01, 

          Sr=1.0, Du=0.03, =0.5, =0.5, G=2 

1 2 3 4


2.0

1.5

1.0

0.5

 fw=-0.4,-0.2 

fw=-0.6 

fw=-0.8 

η 

g 

 

 

 
                                                 

                                

           Fig.24: Variation of θ with fw<0 
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                                   Fig.25: Variation of φ with fw<0 

                               M=0.5, D
-1

=0.5, N=1, Sc=1.3, Ec=0.01, 

          Sr=1.0, Du=0.03, =0.5, G=2, G=2 

1 2 3 4


2

4

6

8

10

12



fw= -0.4 

fw= -0.2 

fw=-0.6 

fw= -0.8 

η 

φ 

 

 

 
                                       

                                        Fig.26: Variation of  f
1
 with fw>0 
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                                       Fig.27: Variation of  g  with fw>0 
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     Fig.28: Variation of  θ with fw>0 
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                                    Fig.29: Variation of  φ with fw>0 
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                                        Fig.30: Variation of f
 I
 with λ 
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                                                Fig.31: Variation of g  with λ 
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                                               Fig.32: Variation of θ with λ 
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                                              Fig.33: Variation of φ with λ 
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          Fig.34: Variation of f

 I
 with ᴧ 
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                                                    Fig.35: Variation of g  with ᴧ 
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                                                  Fig.36: Variation of θ with ᴧ 
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           Fig.37: Variation of  φ with ᴧ 
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                                            Fig.38: Variation of f
 I 

with Sr & Du 
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           Fig.39: Variation of g with Sr&Du 
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The effect various parameters on skin friction (Cf), couple stress (Cw). Nusslet number (Nu) and 

Sherwood number (Sh) are tabulated in table1.from the tabler values we find that the skin friction coefficient 

increases with increasing in G and decreases with increase in M and D−1.When the molecular buoyancy force 

dominates over the thermal buoyancy force. We find that lesser molecular diffusivity/ thermal diffusivity 

smaller the skin friction coefficient. Increase in the Soret parameter (Sr) or decrease in dufour parameter Du. 

Increases the cf on the wall. W.r.t to Eeckert number Ec or thermal radiation parameter Rd, we find that higher 

the dissipative effect / radiation heat flux, larger the skin friction coefficient on the wall. 

 

Table 1 : The local Skin-friction (Cf), couple stress (Cw), Nusselt number (Nu), Sherwood number (Sh) for 

different values of important parameters 

G M D
-1 

Sc fw Pr Cf Cw Nu Sh 

2 0.2 0.2 0.24 0.2 0.71 0.825991 0.349755 0.794002 0.43834 

4 0.2 0.2 0.24 0.2 0.71 1.34155 0.535858 0.857889 0.51438 

6 0.2 0.2 0.24 0.2 0.71 1.75863 0.673888 0.891086 0.579101 

10 0.2 0.2 0.24 0.2 0.71 2.16559 0.799068 0.912806 0.613696 

2 0.4 0.2 0.24 0.2 0.71 0.785394 0.334469 0.782008 0.426076 

2 0.6 0.2 0.24 0.2 0.71 0.72489 0.310866 0.764338 0.417915 

2 0.8 0.2 0.24 0.2 0.71 0.67784 0.291945 0.749327 0.392602 

2 0.2 0.4 0.24 0.2 0.71 0.811639 0.344404 0.790112 0.43402 

2 0.2 0.6 0.24 0.2 0.71 0.792061 0.336977 0.785096 0.43841 

2 0.2 0.8 0.24 0.2 0.71 0.773012 0.329715 0.779284 0.42224 

2 0.2 0.2 0.24 0.4 0.71 0.631531 0.311916 1.17834 0.477983 

2 0.2 0.2 0.24 0.6 0.71 0.479999 0.274005 1.62328 0.555336 

2 0.2 0.2 0.24 0.8 0.71 0.277224 0.207416 2.60084 0.784205 

                    
An increase in spin gradient parameter (ᴧ) enhances Cf on the wall. A growth in viscosity vertex 

parameter (λ), reduces the skin friction coefficient (Cf), fixing the other parameters. The tabular values of couple 

stress shows that an increase in G, N, Sr, Ec, Rd leads to an enhancement  in the couple stress on the wall. While 

it decreases with increase in M, D-1.  

              From the tabular values of rate of heat transfer (Nusselt number) we find that an increase in G or ᴧ, 

enhances the rate of heat transfer on the wall, while it reduces with increase in M or D-1. 

                 The variation of rate of Mass transfer (Sherwood number) with various parameters shows that the rate 

of mass transfer experiences an enhancement on the wall with increase in G, Ec, ᴧ. It decreases with M or D-1. 

Increase in Soret parameter Sr (or decrease in Du) reduces the Sherwood number on the wall. An increase in 

radiation parameter Rd and vortex viscosity parameter λ, leads to an enhancement in the Sherwood number.  

 
 

 

 

 

 

 

 
        Fig.40: Variation of θ with Sr&Du 
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      Fig.41: Variation of  with Sr&Du 
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Table 2 : The local Skin-friction (Cf) ,couple stress (Cw), Nusselt number(Nu), Sherwood number(Sh) for 

different values of important parameters 

 Sr/Du Ec ᴧ Rd Cf Cw Nu Sh 

1.0/0.03 0.01 0.5 0.5 0.825991 0.349755 0.794002 0.43834 

0.6/0.05 0.01 0.5 0.5 0.77177 0.329091 0.77322 0.50465 

0.5/0.06 0.01 0.5 0.5 0.75980 0.324477 0.76579 0.52571 

0.3/0.1 0.01 0.5 0.5 0.74016 0.316866 0.74202 0.57558 

1.0/0.03 0.5 0.5 0.5 0.845645 0.357184 0.750185 0.448257 

1.0/0.03 0.07 0.5 0.5 0.867977 0.365566 0.707394 0.459757 

1.0/0.03 0.09 0.5 0.5 0.904884 0.379304 0.644788 0.479947 

1.0/0.03 0.01 1.0 0.5 0.830194 0.299887 0.793884 0.438349 

1.0/0.03 0.01 1.5 0.5 0.834079 0.320941 0.794119 0.438548 

1.0/0.03 0.01 2.0 0.5 0.840611 0.349984 0.794169 0.438525 

1.0/0.03 0.01 0.5 1.5 1.16421 0.468944 0.457931 0.585042 

1.0/0.03 0.01 0.5 3.5 1.46243 0.559144 0.350278 0.715524 

1.0/0.03 0.01 0.5 5.0 1.57584 0.589853 0.323264 0.764877 

 

5. CONCLUSIONS 
To analyze the combined influence of thermal radiation, dissipation, Soret effect (Sr), Dufour 

effect (Du) on convective heat and mass transfer flow of a micropolar fluid past vertical plate. The 

governing equations have been solved by employing fourth order Runge-kutta shooting iteration technique. 

The conclusions of the analysis are a components velocity (fI), microrotation (g), temperature (θ), 
concentration(C). 

 An increasing grashof number (G) enhances the velocity (f I) microrotation(g),  and reduces the 

temperature and concentration while Cf, Cw. The rate of heat and mass transfer enhances with G. 

 Higher the Lorenz force smaller the velocity larger microrotation (g), temperature and 

concentration while Cf, Cw, Nu, Sh  reduces with M. 

 With respect to D-I we find that the velocity reduces microrotation (g), temperature and 

concentration enhances with D-1 also Cf, Cw, Nu, Sh  reduces with D- I. 

 Higher the radiative heat flux larger the velocity (fI), temperature (θ) and smaller microrotation (g) 

and concentration increasing Rd  enhances Cf, Cw, Sh and reduces Nu. 

 Higher the dissipation larger the velocity and concentration, microrotation (g) larger the 

temperature flow field an increasing Ec enhances Cf, Cw, Nu and Sh. 
 Increasing Soret parameter (Sr) (or decreasing Dufour parameter (Du)) enhances velocity and 

concentration and reduces microrotation (g) and temperature increase Sr  (or decrease in Du) 

reduces to enhancement Cf, Cw ,Nu , and depreciation Sh . 

 An increase the suction parameter fw reduces velocity, microrotation and concentration. An 

increasing Cf, Cw, reduces Nu , Sh increases on the plate η=0 with increase in fw. 

 An increasing vertex viscosity parameter (λ) enhances velocity, microrotation and reduces 

temperature while the concentration reduces with λ˂0.6 and enhance with higher λ=0.8, Cf , Cw 

reduces on the wall while Nu and Sh enhances in the wall with increase in λ.  
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