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ABSTRACT: We investigate the generalized 

partial difference equation operator and propose a 

model of it in discrete heat equation in this paper. 

The diffusion of heat is studied by the application 

of newton’s law of cooling in dimension up to five 

and several solutions are postulated for the same. 

Through numerical simulations solutions are 

validated and applications are derived. 

KEYWORD: Generalized partial difference 

equation partial difference, operator and discrete 

heat. 

                    I. INTRODUCTION 

            In 1984 Jerzy popenda introduced the 

difference operator Δdefined on u(k) as 


                  In 1989, Miller and 

Rose introduced the discrete analogue of the 

Rieman-Liouville fractional derivative and proved 

some properties of the inverse fractional difference 

operator 1

l



   several formula on higher order 

partial sums on arithmetic geometric progressions 

and products of n-consecutive terms of arithmetic 

progression have been derived. 

       In the extended the definition of 

 to

 l


defined as
 

( ) ( )
l

v k l v k


    for the real 

valued function v(k)   ,  In have applied q-

difference operator different as

    ( )
q
v k v qk v k   and obtained finite 

series formula for logarithmic function. The 

difference operator   
( )k l
 with variable co-efficient 

defined equation 
 

( ) ( ) ( )
k l

v k v k l kv k  

equation is established. Here we extend the 

operator
l
  to a partial difference operator  

      Partial difference and differential equation play 

a vital role in heat equations. The generalized 

difference operator with n-variables. 

1 2 3
( , , ,..... ) 0

n
l l l l l   on a real valued 

function ( ) : nv k   is defined as  

 l
             ,                   

           .......................(1) 

      The operator
 l
  becomes generalized partial 

difference operator if some        . The equation 

involving 
 l
with at least one     is called 

generalized partial difference equation. 

        A liner generalized partial difference is of the 

form 
 l
           . Then the inverse of 

generalized partial difference equation is 

 

1

( ) ( )
l

v k u k


                .............................. (2) 

Where
 l
   is as given in (1)      and some i 

and  ( ) : nu k      is given function. 

           A function ( ) : nu k  satisfying (2) is 

called a solution of equation (2) equation (2) has a 

numerical solution of the form 
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    ................... (3) 

Where                     

                               

m is any positive integer relation (3) is the basic 

inverse principle with respect to  
 l
   [6]. Here, we 

form partial difference equation for the heat flow 

transmission in rod, plate and system and obtain its 

solution. 

II. FORMATION OF 5 VARIABLE               

HEAT EQUATION OF ROD 

       Consider temperature distribution of a very 

long rod. Assume that the rod is so long that it can 

be laid on the top of the set R of real number. Let 

                 be the temperature at 

position          . Real time      and density (or 

pressure)   . Assume that the diffusion rate    is 

constant throughout the rod Five variable    

By the fouier law of cooling, the discrete heat 

equation of the rod is  

       1 24 5 3
,0 ,0, ,0

( ) ( ) ( ) ( )v k v k v k v k

l ll l l


  

 
   
 
 

   

............................. (4) 

Here we derive the temperature formula for 

                  at the general position 

                 

Theorem:2.1 

     Assume that there exists a positive integer m 

and a real number               suchthat 

                          and 

 1 2 3
, .l l l  



                  =

 1 2 3
, .l l l
u

  

                 

                                    .............................. (5) 

Proof: 

 1 2 3
, .l l l  

                    

 1 2 3
, .l l l
u

  

                 

                   
 4 5

1

,l l




 1 2 3

, .l l l
u

  

                     ----------------- (6) 

The proof of (5) follows by applying the inverse 

principle (3) in (6) 

Example:2.2 

From (2) we get, 

Taking                       =                  in 

(6), (5) 

 
     

     
 

             

     
   

  

  
 

      

  
  

 
  

  
 

      

  
   

   

      
       

        
      

      
 

              

        
                        

                 -------------------- (7) 

The Numerical verification of              

                             

                        

Theorem: 2.3 

Consider (4) and denote                ,  -

                                     

    

Here *=   ,  -         

V(  ,     ,      

               )+V(  ,     ,    ) 

V(  ,  ,          =V(  ,  ,         

 +V(  ,  ,          ……………..(8) 

Then the following four type’s solutions of the 

equation (4) are equivalent. 

a)                  =
 

         
            

                  

 
 

         
 
   [v(k1  1,        k2  2,  

    k1,k2,k3  3   ]-
 

      
[v(k1  1,   

     k2  2,       k1,k2,k3  3   ]                                                            

………………….(9) 

b)                   
 

      
(v(k1 ,k2 , k3+ 3, 

k4  4,k5  5)-
 

              

          k4   4, k5   5) 
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- 
  

       
 
     [v(k1  1, k2, k3  3*)+v(k1–21, 

k2  2, sk3,*)-
 

      
v(k1+l1, k2,k3,*)+v(k1 , 

k2  2 , k3,*)+(v(k1 , k2 , k3+ 3,*)].                                            

………………(10) 

c)                   
 

      
[v(k1 , k2 , k3+ 3, 

k4  4, k5  5)-                       

- 
 

                       k4   4,k5   5)-

 
  

       
 
   [v          *)(k1+l1, k2,k3,*)+v(k1 , 

k2  2 , k3,*)+(v(k1 , k2 , k3+ 3,*)]-
 

      
v(k1 , k2  2 , 

k3,*)+(v(k1,k2,k3+ 3,*)]                                                                                         

……………(11) 

d)                 =
 

      
[v          k4  4, 

k5  5)-v(k1+l1, k2,k3,*)-v(k1 , k2  2 , k3,*)+v(k1 , k2 , 

k3+ 3,*)]-
 

         (k1 , k2 –l2, k3, k4+  4, k5+  5)-

 
  

       
 
   [v(k1  1, k2  2, k3,* )+v(k1, k2   2, 

k3,*)+v(k1,k2,k3,*)+v(k1,k2-l2,k3+ 3,*)].   

………..(12) 

e)                  =
 

      
[v          k4  4, 

k5  5 )-v(k1+l1, k2,k3,*)+v(k1 , k2  2 , k3,*)+(v(k1 , 

k2,k3+ 3,*)-

 
  

       
 
   [v(k1  1,k2  2,k3,*)+v             v

(k1,k2  2,k3,*)+v(k1,k2,k3+ 3,*)].                                                                        

……………(13) 

f)                  = 
 

      
[v          k4  4, 

k5  5 )- v(k1+l1, k2,k3,*)-  v(k1 , k2  2 , k3,*)+v(k1 , 

k2 , k3+ 3,*)]- 
  

       
 
   [v(k1, k2 , k3- 3,k4   4, 

k5   5)- 
  

       
 
   [v(k1  1, k2, k3-l3,* )+v(k1, 

k2  2, k3  3,*)]           ……………..(14) 

  g).v(k1,k2,k3,k4,k5) 
 

      
[u(k1,k2, k3,k4+l4,k5+l5)- 

v(k1  1, k2 , k3)-v(k1 , k2  2 , k3)- v(k1 , k2 , k3  3]-
 

         [u(k1 , k2 , k3+ 3, k4   4, k5   5)-

 
  

       
 
   [v(k1  1, k2  2, k3  3)+v(k1, k2  2, 

k3  3)+v(k1 , k2 k3+   3,)+v(k1 , k2 , k3)] 

   .......................... (15) 

Proof 

a) From (4) we arrive the relation v(k1 , k2 , 

k3, k 4,k5)=
 

      
 v (k1 , k2 , k3, k4  4, k5 

+ 5)-
 

      
 v (k1 , k2 , k3, )-(v  k1 , k2  2, 

k3, )-v(k1 , k2 , 

k3+ 3, )]……………….(16) 

By replacing k 4 by k4  4 and k5 by k5+l5 

in (16) gives expressions for v(k1  1, k2 , 

k3,  k4 + 4, k5+ 5) and k1 , k2 , k3+ 3, k4+2 4, 

k5+2 5),v( k1 , k2 , k3  3, k4  4, k5  5), v( 

k1 , k2 , k3  3, k4+l4,k5+l5). 

Now proof of (a) follows by applying all 

these values in(16). 

b) The heat equation (4) directly derives the 

relation. 

In equation (16) Replacing k1 by k1-l1 in 

(16) and substituting corresponding values 

in (16)yields (b). 

c) The proof of (c) follows by replacing k1 

by k1+ 1 in (16)and substitution 

corresponing values in (16) v(k1 , k2 , k3, k 

4,k5)=
 

      
[u(k1 , k2 , k3,k4+l4,k5+l5)-

 

      
                        

[v (k1-l1 , k2 , k3, )+ v(k1 , k2  2 , k3, )]-

 

       
 v(k1 , k2 , k3,k4+l4,k5+l5)+

  

       
 

V[(k1+ 1, k2  2, k3, )+( k1+ 1, k2, 

k3  3, )]. 

d)  The proof of (d) follows by replacing k2 

by k2-l2 in (16) and we get the proof (12). 

e) The proof of (e) follows by replacing k2  

by k2+l2 in (16) and we get the proof (13). 

f) The proof of (f) follows by replacing k3 by 

k3-l3 in (16).and we get the proof (14). 

g) The proof of (g) follows by replacing k3 

by k3+l3 in (16).and we get the proof (15). 

         Example:2.4 

  The following example shows that the 

diffusion rate of rod can be identified if the 

solution  

v(k1 , k2 , k3, k 4,k5) of (4) is known and vice 

versa. 

Suppose that v(k1 , k2 , k3, k 

4,k5)= 
                  is a closed from 

solution of (4) then we have the relation . 

                      -                 

                      

                   +                    

                +                    

                   -6                ] 

Cancelling                 on both sides derives. 
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=        +                    

Taking k1=2, k2=3, k3=1,               

      in (a),(b),(c),(d),(e),(f),we get the 

solution 65536=65536. 

 

                III.CONCLUSION 

The study of partial difference operator has wide 

applications in discrete fields and heat equation is 

one such theorem 2.1 & 2.3 provide the possibility 

of predicating the temperature either for the past of 

the future getting the know the temperature at few 

finite points at present terms. It is also show the 

nature of transmission of heat for the material 

study. Thus in conclusion, we can say that the 

above research help us in reducing any wastage of 

heat and also enables us in material of optimal 

choice of material (α). 
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