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G = (V,E) is called a dominating set if for every
vertex v € V — D, there exists a vertex u € D such
that v and v are adjacent. The cardinality of a mini-
mum dominating set is called the domination number
of a graph and is denoted by v(G). A dominating set
D is called a single chromatic transversal dominating
set if D intersects every member (color class) of some
chromatic partition, also called y-partition of G.This
set is called an std-set. The cardinality of a mini-
mum std-set is called the single chromatic transversal
domination number of a graph G and is denoted by
vst(G). The effect of the removal of an edge, a vertex
or an addition of an edge of a graph over the 74 value
is studied.

Keywords - Domination number, single chromatic
transversal domination number.

I. INTRODUCTION

By a graph G = (V, E), we mean a finite, undirected
graph with neither loops nor multiple edges. The or-
der and size of G are denoted by n and m respec-
tively. For graph theoretic terminology we refer to
Gary Chatrand [5].

Coloring and domination are two areas in graph
theory which have been extensively studied. Graph
coloring deals with the fundamental problem of par-
titioning vertex set into classes according to certain
rules. Time tabling, sequencing and scheduling prob-
lems in their many terms are basically of this nature.
The fundamental parameter in graph coloring is the
chromatic number x(G) of a graph G which is defined
to be the minimum number of colors required to color
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vertices of GG receive the same color. A partition of
V(G) into x(G) independent sets is called a chromatic
partition or y-partition of G.

Another fastest growing area in graph theory is
the study of domination and related subset problems
such as independence, covering and matching. A set
D C V(G) is said to be a dominating set of G if
every vertex in V(G) — D is adjacent to a vertex in
D. The minimum cardinality of a dominating set is
called the domination number of G and is denoted by
~v(G). A comprehensive treatment of the fundamen-
tals of domination is given in the book by Haynes et
al[6]. A survey of several advanced topics in domina-
tion can be seen in Haynes et al [7]. Benedict et al.[1]
introduced the concept of chromatic transversal dom-
ination using the concept of graph coloring and dom-
ination. A dominating set D of a graph G is called
a chromatic transversal dominating set (ctd-set) if D
is a transversal of every x-partition of G. That is, D
has non-empty intersection with every color class of
every y-partition of G. The minimum cardinality of
a std-set of GG is called chromatic transversal domina-
tion number of G and is denoted by 7. (G). Obviously
X(G) < 7a(G).

Restricting a dominating set to be a transversal
of at least one y-partition of G, a new domination
parameter namely single chromatic transversal dom-
ination parameter was defined by Lawrence et al.[8].
Accordingly a dominating set D is called a single chro-
matic transversal dominating set if D intersects every
member (color class) of some y-partition of G. This
set is called an std-set. The cardinality of a mini-
mum std-set is called the single chromatic transversal
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domination number of a graph G and it is denoted by
Vst (G).

The following are the exact values of the parameter
vst(G) for some standard graphs found in [1] and [§]

Result 1.1.

1. vse(Pn) = [g}, for all n > 4.

2. y5t(Cy) = (%], for all n > 6.

3 if n is odd,
8- Yst(Wn) = { 4 if n is even.

where W,, is a wheel with (n — 1) spokes.

4. For the Petersen graph P, v5(P) = 4, whereas
’th(P) = 5

Theorem 1.2. [1] Let G be a connected bipartite
graph G with bipartition (X,Y);|X| <|Y| and n > 3.
Then vst(G) = v(G) + 1 if and only if every vertex
i X has at least two neighbours which are pendant
vertices. Here X is the unique v set of G.

For a bipartite graph G, v5:(G) = v(G) or v(G) +1.
All connected bipartite graphs for which v4(G) =
v(G) + 1 are called Type-2 graphs and all other bi-
partite graphs are Type-1 graphs. Note that a discon-
nected bipartite graph is a Type-1 graph. Every path
P, and even cycle (), are Type-1 bipartite graphs.

II. MAIN THEOREMS

In this section now we study the effect of the removal
of an edge, a vertex or an addition of an edge of a
graph over the v value

We use the following terminology C'—Changing,
U—Unchanging, V—Vertex, F—Edge, A—Addition,
R—Removal

Definition 2.1. A graph G is said to be a

i. CVR if y4(G — u) # vst(G) for each vertex u €
V(G)

ii. CER if v4(G — e) # 7vs(G) for each edge e €
E(G)

ili. CEA if v4(G 4+ €) # vst(G) for each edge e €
E(G)
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iv. UVR if v54(G — u) = 7(G) for each vertex u €
V(G)

v. UER if 74(G — e) # vs(G) for each edge e €
E(G)

vi. UEA if v5(G + €) # 7st(G) for each edge e €
E(G)

Theorem 2.2. All the odd cycles are CEA graph

Proof. C3 and C5 are CEA graph. Let n > 7 be
an odd integer. Let C,, = vi,va,...,vn,v1. N can be
expressed in the form 3k or 3k + 2, where k is an odd
integer and 3k + 1 where k is an even integer. By
Result 1.1

if n = 3k;

n k
vst(Cn)—(§1—{ kE+1 ifn=3k+1or 3k + 2.

Consider an edge e € E(C,,). Without loss of gener-
ality let e = v1v;,3 < i < n. In C,, + e, the edge e
divides C), into two cycles. One is odd and the other
is even. Let us assume that the cycle v va,...,v;v1 is
an odd cycle and v1v;v;41, ..., v,v1 is an even cycle in
C, +e.

Obviously x(C,, + e) = 3. Colour C,, + e in such
a way that vi,v9 and v; are assigned three distinct
colours and all other vertices are coloured using the
two colours used for vy and v;. Such a proper colour-
ing is possible for C,, + e. This gives a y—partition
for C), + e. When n = 3k, take S = {vq,vs,...,v3 }
and n = 3k+1, take S = {vy, vs, ..., U3k _1, U311} and
n = 3k + 2 take S = {va,vs5, ..., U3k 11, V3k12}. In the
first case S has k elements and in all other cases S
has k + 1 elements. In each S, the first vertex and
the last two vertices are assigned the three distinct
colours and so S is a transversal of the y— partition
specified earlier. In each case S is a y— set. Hence S
is a g set of Cp, + €. So Yst(G) = Y5t (G + e). O

Remark. When a vertex v is removed from a graph
G, vs¢t(G —v) > v(G) or v5e(G — v) < vst(G) or
YVst(G — v) = v5t(G). For example when the centre
vertex v of a star graph K7 ,,n > 2 is removed 7y (G—
v) = n whereas 75(G) = 2. Similarly when an edge
e is removed from a graph G, v5(G —e) > v(G) or
Vst(G — €) < 7st(G) or 1:(G — €) = 1st(G).

For the graph given in Figure 1, v4(G) = 4, since
{v1,v9,v3,v6} is a vs set of G. Let e = vovy. Then
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Figure 1.

vst(G — e) = 5, since we need an additional vertex
to dominate the pendant vertex vy in G — e. Hence

Vst(G =€) > 7st(G)-

Notation. We can partition of V(G) as V = VO U
VUV~ where

Vo= {v € V/ys:(G —v) = 7t(GQ)}
vVt = {1) € V/y (G —v) > ’Yst(G)}
Vo ={veV/7(G —v) < y(G)}

Similarly we can partition of E(G) as E = ECUETE~
where

E? = {e € E/vs(G — e) = 1(G)}
Et ={e€ E/v4(G —e) > v:(G)}
E™ = {c € E/7u(G — ¢) < 7(G)}

Theorem 2.3. If G is a connected Type-2 bipartite
graph, then ET = ¢. In fact E~ the set of all non
pendant cut edges of G and E° = E(G) — E~.

Proof. By Theorem 1.2 G becomes a connected Type-
IT bipartite graph with the bipartition (X,Y") such
that | X| < |Y| and every vertex in X has at least two
pendant neighbours.

Clearly v5(G) = v(G) + 1. Let e = uv be an edge
of G. If e is a pendant edge such that v € X and
v € Y. Then v is a pendant vertex and G — e is a
disconnected bipartite graph for which X U {v} is a
~v— set of G. Now (G — €) = y(G) + 1 = 74(G).
Therefore e € E°.
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Let e = uv be not a pendant edge of G. Suppose
G — e is not disconnected. Then G — e again becomes
a connected Type-2 bipartite graph such that s (G —
e) = 7st(G). Clearly e € E°. Let e = uv be a cut
edge of G. Clearly G — e is a disconnected graph so
that v, (G —€) = 7(G —¢) = [X]| = 7(G) < 7s(G).
Soeec E™. O

Corollary 2.4. For the star graph Ky, > 2,E0 =
E and E- = ¢. Moreover |E°| =1.

Proof. Ki,; is a Type-2 bipartite graph and all its
edges are pendant edges. By Theorem 2.3 E~ = ¢
and E° = E. O

Corollary 2.5. If T is a Type-2 tree with k pendant
vertices, then E~ and E° are non empty sets. More-
over |[E°| =k and |[E~| =n— (k+1)

Proof. By Theorem 2.3
E° = The collection of pendant edges of T

E~ = The collection of non - pendant edges.

Hence |[E°| = kand |[E-|=(n—1)—k=n— (k +
1). O

Theorem 2.6. If G is a connected Type-1 bipartite
graph then E= = ¢. In fact ET™= The set of all y—
critical edges of G and E° = E(G) — ET

Proof. When G is a connected Type-1 graph, G — e
is also a Type-1 bipartite graph. Hence v(G) =
7vst(G) and y(G — e) = v5t(G — e) for every edge
e € E(G). The removal of an edge from G can not
decrease y value and can increase it by at most one.
Hence v5:(G — €) = 75t(G) or vs(G) + 1. There-
fore E= = ¢. If e € E(G) is a y— critical edge of
G then y4(G —¢e) = V(G —e) > Y(G) = 7(G).
Hence e € ET. If e € E(G) is not a y— critical
edge of G then, v(G — e) = v(G). This implies that
Yst(G — €) = v5t(G). Hence e € E°. O

Corollary 2.7. If G is a hypercube Q,,, then ET =
¢, E° = E(G) and |E°| = 2"~ !n.

Proof. Hyper cube @, is a Type-1 bipartite graph
with 2" 1n edges. All its edges are not v - critical.
By Theorem 2.6 ET = ¢ and E° = E(Q,). Hence
|EY| = 2n~1n. O
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Corollary 2.8. Let G =P,, n=3k+ 1,k >0 Then
ET =¢,E° = E(G) and |E°| =n — 1.

Proof. P, is a Type-1 graph. vs(P,) = [g] =k+1.
Let e be an edge of P,,. P,—e = PUP; wherel+t =mn
and [,t > 1.

'Yst(Pn - 6) = 7(131) + V(Pt)

When

[ =0 (mod 3) we have ¢t =1 (mod 3)
=1 (mod 3) we have ¢t =0 (mod 3)
[ =2 (mod 3) we have ¢t =2 (mod 3)

l t
In all these cases [g] + (51 =k + 1. Hence 4 (P, —
e) = vst(Pyn). So EY = E(G) and ET = ¢. O

Corollary 2.9. Let G = P,,n #3k+1,k>1,E° #

-1
¢ and ET # ¢. Moreover |[ET| = Ln 1 ].

Proof. Clearly n = 3k or 3k + 2. Consider the case
n = 3k.yst(Py) = k.

Let e be an edge in P, such that P, —e = P, U
P, where [ +t = n and [,t > 1. Clearly v (P, —

e) = (é] + [%] When [ = 0 (mod 3) we have t =

n —

1
0 (mod 3). So 7vst(P, —e) = k. There are | 1 |
edges in P, satisfying vst(P, — e) = k. When [ =
1 (mod 3) we have t = 2 (mod 3). So y(P, —e€) =
k+1. When [ = 2 (mod 3), we have t = 1 (mod 3). In
this case also vst(P, —e) = k+ 1. There are (n—1) —

-1
Ln | edges in P, for which vg (P, —e) =k+1. O

Corollary 2.10. If G = C,,n > 6, EY = E(Q)

Proof. When G is Cy,,n > 6,7v5(Cy) = [21 Yst(Cn—

e) = vst(Pn) = (%] for every edge e in C,. Hence
E = E(G) and |E°| = n. O

Theorem 2.11. Let T be a tree with n > 3. Then
there exists a vertex v € V such that vs(T — v) =
vst(T). That is VO # ¢.
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Proof. Let T be a tree with n > 3. Clearly v5(T) or
Y(T) + 1.
Case 1. Let v5(T) =~(T) + 1.

Let (X,Y) be the bipartition of G. Every vertex
in X has atleast two pendent neighbours and (7)) =
|X|. Suppose X has a vertex v such that v has more
than two pendant neighbours. Let w be one such
pendant neighbour of v. T'— w is a Type-2 tree and
Yst(T—w) = v(T)+1. Sow € V°. Assume that every
vertex in X has exactly two pendant neighbours. Let
v be one such vertex in X. T — v is forest with two
isolated vertices and hance v5 (T —v) = (| X|—1)+2 =
(T) + 1. Hence v € VO,

Case 2: Let v5(T) = (7).

Asn >3 and T is not a star there exists a support
vertex v with exactly one non pendant neighbour w.
If v is adjacent to two or more pendant vertices say
uy and wug , then v is in every « set of T and (T —
up) = Y(T) = vst(T). Let S be a g set of T. As
Y(T) = vs(T), S is also a v set of T" that contains v
and therefore uj,us ¢ S. This implies that S is a
set of T'— {u1}. Also S is a transversal of T — {u }.
Hence S is a vg set of T — {u1} and v (T — uy1) =
|S| = vse(T). If v is adjacent to exactly one pendant
vertex u, then deg v = 2. Let T" =T —u —v,yT") <
(T —u) < v(T). However v(T") > ~(T) — 1. If
Y(T") = ~(T) — 1, then v(T) = (T — v). Otherwise
AT) = 4(T) = AT — ),

Subcase 1:

Let vs¢(T) = v(T) = (T —v). T" is a tree (Type-1
or Type-2). If v5(T") = v(T" + 1), then by Theorem
1.2, there exists a x- partition (X',Y”’) with |X’| <
|Y”'|. Here X’ is a unique v set of T77. So X'U{v}isa~y
set for T. If w € X', then X" U{v} is a v4 set for T' —
{u}. So vst(T —u) = y(T) = vst(w). If w ¢ X', then
X'U{w} is a vg set for T —u. So vs(T —u) = vst(T).
If 77 is a Type-1 graph, that is v (T") = v(T"), then
YT —0) = 14+ 7 (T') = 14+5(T"). Since (T —v) =
1+ ’V(T/)v we have ’Vst(T - U) = ’y(T - U) = '}/st(T)'
Subcase 2:

Let y(T) = y(T) = +(T") = v(T — u). Now
73t(T) = ’y(T - u) < 'YSt(T - u) Let S be a vy
set of T'. S is also a =y set of T'. Suppose u € S, then
S — {u} is a dominating set for 7" , contradicting the
fact that v(T) = v(T7). So u ¢ S . Hence S is an
std-set for T — u. y(T — u) < |S| = y(T) = vs(7T).
Hencevs (T — u) = v5(T). So in all the cases we are
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able to obtain a vertex satisfying the required condi-
tion. Hence VO # ¢. O

For any connected unicyclic graph G, v4(G) =
v(G) or y(G)+1 or v(G)+2. A classification theorem
is available in the following form

Definition 2.12. G= The set of graphs obtained by
attaching [ pendant vertices to a vertex of C3, where
[ is a non negative integer.

Definition 2.13. G'= The set of graphs obtained
from C3 by attaching k£ and [ pendant vertices re-
spectively to two distinct vertices of Cs, where k and
[ are any two positive integers

Definition 2.14. G”"= The set of graphs obtained
from Cs by attaching k£ and ! pendant vertices re-
spectively to two non-adjacent vertices of C5, where
k and [ are any two non negative integers.

Definition 2.15. G.= The set of graphs obtained by
joining the centres of K1 ; to a vertex of C3 by a path
of length r, where [ is a positive integer.

Note that if G € G, then 74(G) = v(G) + 2 and if
GeGUG'UG UG, 74(G) =7(G) + 1.

Definition 2.16. A connected unicyclic graph is
classified as a class-1, class-2,class-3 according as its
vst(G) value is v(G) or v(G)+1 or v(G)+2. In fact G
is a class-3 graph if G € G, G is a class-1 graph if G is
either Type-2 bipartite graph or G € G1UG, UG UG”

Theorem 2.17. [3] For a connected unicyclic graph
with the odd cycle

v(G)+2 ifGeg,
Y(G)+1 ifGeGUGUG UG,
v(G) otherwise.

Corollary 2.18. [3] For any connected unicyclic
graph G

Vst (G) =

v(G)+2 ifGeqg,
v(G)+1 if G is a Type-2 connected
vst(G) = bipartite graph
(or) GeGIUG UG UG,
v(G) otherwise.

Theorem 2.19. For any connected unicyclic graph
G, E-=¢ or ET =¢.
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Proof. Let G be a connected unicyclic graph. Let
G be a class-2 or class-3 graph. By the Corollary
218 G € GUGI UG UG UG or G is a Type-2
connected bipartite graph. If G is a connected Type-
2 bipartite graph by Theorem 2.2 E* = ¢. Let G €
GUGIUGUG'UG" v5:(G) = 3. Let e be an edge in G
that does not lie in the odd cycle. This is a cut edge
of G. Hence G —e is disconnected graph containing an
odd cycle. By simple verification 4 (G —e) = 3. If e
is an edge in the odd cycle, then again v, (G —e) = 2
or 3. Hence ET = ¢.

Let G be a class-1 graph. v5(G) = v(G). We know
that v(G—e) = v(G) or v(G)+1. Hence v4(G—e) >
V(G =€) 2 ¥(G) = 75t(G). So 5t(G — €) > 75t(G)
implies that £~ = ¢. U
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