I- sets and C- sets

R.E.H. CHRISTINA ^{#1} AND M. MURUGALINGAM ^{*2}

#1 Lecturer, M.S. University college,	*2. Associate professor,
Govindaperi, Trinelveli –627414	Sri Sarada college,
Tamilnadu, India.	Tirunelveli, Tamilnadu, India.

Abstract: In this paper we observe the relationship between interiors and closures of an intuitionistic fuzzy set in an intuitionistic fuzzy topological space and its co-ordinate fuzzy sets in its corresponding fuzzy topological spaces and in this context we define I- sets and C- sets.

Key words: Fuzzy closure, fuzzy interior, intuitionistic fuzzy closure, intuitionistic fuzzy interior, I- sets, C- sets.

1. Introduction.

We have that an intuitionistic fuzzy topological space can be associated with two fuzzy topological spaces and vice versa [1]. If (X, τ) is an IFTS and $\tau_1 = \{ \mu_a / \exists \gamma_a \in I^x \text{ such that } (\mu_a, \gamma_a) \in \tau \}$, $\tau_2 = \{ 1 - \gamma_a / \exists \mu_a \in I^x \text{ such that } (\mu_a, \gamma_a) \in \tau \}$, then (X, τ_1) and (X, τ_2) are fuzzy topological spaces. Similarly if (X, τ_1) and (X, τ_2) are two fuzzy topological space, $\tau = \{ (u, 1 - v) / u \in \tau_1, v \in \tau_2 \text{ and } u \subseteq v \}$ is an intuitionistic fuzzy topology and (X, τ) is an intuitionistic fuzzy topological spaces. We study some relationships connecting the closures and interiors of an intuitionistic fuzzy set in an intuitionistic fuzzy topological spaces.

2. Preliminaries.

Now we introduce some basic definitions needed.

<u>Definition 2.1</u>[3] Let I^x denote the set of all fuzzy sets defined on X. A family $T \subseteq I^x$ of fuzzy sets is called a *fuzzy topology* for X if it satisfies.

- (i) $0, 1 \in T$
- (ii) $\forall A, B \in T \Rightarrow A \cap B \in T$
- (iii) $\forall \{A_i\}_{i \in I} \in T \Longrightarrow \bigcup_{i \in I} A_i \in T$

The pair (X, T) is called a *fuzzy topological space*. The elements of T are called *fuzzy open sets*. A fuzzy set K is called *fuzzy closed* set if $K^c \in T$.

Definition 2.2: [2]

Let an ordinary non fuzzy set X be given. An *intuitionistic fuzzy set* (IFS in short) A in X has the form $A = \{<x, \mu_A(x), \gamma_A(x) > : x \in X\}$, where $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ are functions defining membership and non membership, respectively of each element in the set X. Moreover for each $x \in X$, the inequality $\mu_A(x) + \gamma_A(x) \le 1$ is fulfilled.

Definition 2.3: [2]

Let Y be a nonempty set. Let A and B be intuitionistic fuzzy sets. Let $\{A_{\alpha} : \alpha \in \land\}$ be an arbitrary family of intuitionistic fuzzy sets in Y. Then

(i) $A \subseteq B$ if $\forall y \in Y [\mu_A (y) \le \mu_B (y) \text{ and } \gamma_A (y) \ge \gamma_B(y)].$ (ii) A = B if $A \subseteq B$ and $B \subseteq A$. (*iii*) $A^C = \{ < y, \gamma_A (y), \mu_A (y) > : y \in Y \}.$ (*iv*) $0 = \{ < y, 0, 1 > : y \in Y \}.$ (v) $1 = \{ < y, 1, 0 > : y \in Y \}.$ (vi) $\cap A_\alpha = \{ < y, \cap \mu_A (y), \cup \gamma_A (y) > : y \in Y \}.$ (*vii*) $\cup A_\alpha = \{ < y, \cup \mu_A (y), \cap \gamma_A (y) > : y \in Y \}.$

Definition 2.4:[4] An *intuitionistic fuzzy topology* (IFT in short) on a nonempty set X is a family T of intuitionistic fuzzy sets (IFS in short) in X which satisfy the following axioms.

(i) 0, 1∈T

(ii) $A_1 \cap A_2 \in T$ for any $A_1, A_2 \in T$.

(iii) $\bigcup A_{\alpha}$ for any arbitrary family { $A_{\alpha}: \alpha \in \land$ } \in T.

In this case the pair (X, T) is called an *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in T is known as *intuitionistic fuzzy open set* in X. An IFS K is called IF closed if $K^c \in T$

Definition2.5: [4]

Let (X, T) be an IFTS and A be an IFS in X. Then the *intuitionistic fuzzy interior* and *intuitionistic fuzzy closure* of A are defined by

 $Cl(A) = \cap \{K: K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$

Int (A) = \cup {G: G is an IFOS in X and G \subseteq A}.

Definition 2.6 : [5]

Let A be a fuzzy set in FTS (X, T). The *closure* \overline{A} and *interior* A° of A are defined respectively by

 $\bar{A} = \cap \{ \mathbf{B} : \mathbf{B} \supseteq \mathbf{A} , \mathbf{B}^{c} \in \mathbf{T} \}.$

 $A^{\circ} = \bigcup \{B: B \subseteq A, B \in T\}.$

<u>Result 2.1</u> : [4]

Let A and B be any two intuitionistic fuzzy sets of an intuitionistic fuzzy

topological space (X, T). Then

(i) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl (A) = A$.

(ii) A is an intuitionistic fuzzy open set in $X \Leftrightarrow int (A) = A$.

(iii) $cl(A^c) = (int(A))^c$.

(iv) int $(A^{c}) = (cl(A))^{c}$.

(v) $A \subseteq B \Longrightarrow int(A) \subseteq int(B)$.

(vi) $A \subseteq B \Longrightarrow cl(A) \subseteq cl(B)$.

(vii) $cl(A \cup B) = cl(A) \cup cl(B)$. (viii) $int (A \cap B) = int(A) \cap int(B)$.

3. In this section we study study some relationships connecting the closures and interiors of an intuitionistic fuzzy set in an intuitionistic fuzzy topological space and the closures and interiors of its co-ordinate fuzzy sets in its corresponding fuzzy topological spaces.

Notations: $C_T(U)$ denote the collection of closed sets containing the set U under the topology T. $I_T(U)$ denote the collection of open sets contained in U under the topology T.

 $\begin{array}{ll} \hline \textbf{Theorem 3.1:} & \text{If Int}_{T} (U_1,U_2) = (\mu_k,\gamma_k), \text{ then } \mu_k \leq \text{Int}_{T1} U_1 \text{ and } \gamma_k \geq \text{Cl}_{T2} U_2. \\ \hline \textbf{Proof:} & \text{Int}_{T} (U_1,U_2) = \max \left\{ (\mu_i,\gamma_i) / (\mu_i,\gamma_i) \leq (U_1, U_2) \right\} \\ = & \text{max} \left\{ (\mu_i,\gamma_i) / \mu_i \leq U_1 \text{ and } \gamma_i \geq U_2 \right\} & = \max I_T (U_1,U_2).= (\mu_k,\gamma_k). \\ \hline \text{Int}_{T1} U_1 = \max \left\{ \mu_i / \mu_i \leq U_1 \right\} = \max I_{T1}(U_1). \\ \hline \text{Hence} (\mu_k,\gamma_k) \in I_T (U_1,U_2) \implies \mu_k \in I_{T1} U_1. \\ \hline \text{Also Cl}_{T2} U_2 = \min \left\{ \gamma_i / U_2 \leq \gamma_i \right\} = \min C_{T2} (U_2). \\ \hline \text{Therefore} (\mu_k,\gamma_k) \in I_T (U_1,U_2) \implies \gamma_k \in C_T (U_2). \\ \hline \text{Hence} \gamma_k \geq \text{Cl}_{T2} (U_2). \end{array}$

Theorem 3.2: If $Cl_T (U_1, U_2) = (\gamma_k, \mu_k)$. Then $\mu_k \leq (Cl_{T1} U_1)^C$ and $\gamma_k \leq (Int_{T2} U_2)^C$. **Proof:** $Cl_T(U_1, U_2) = min\{(\gamma_i, \mu_i) / (U_1, U_2) \le (\gamma_i, \mu_i)\}.$ =min {(γ_i , μ_i) / U₁ $\leq \gamma_i$ and U₂ $\geq \mu_i$ } $= \min C_T(U_1, U_2) = (\gamma_k, \mu_k).$ $Cl_{T1}(U_1) = \min\{1 - \mu_i / U_1 \le 1 - \mu_i\}.$ $= \min C_{T1}(U_1) . Now (\gamma_i, \mu_i) \in C_T(U_1, U_2) \Longrightarrow U_2 \ge \mu_i \qquad \Longrightarrow 1 - U_2 \le 1 - \mu_i . \Longrightarrow U_1 \le 1 - \mu_i.$ (Since (U_1, U_2) is an IFS $U_1 \le 1 - U_2$). Hence $(\gamma_i, \mu_i) \in C_T (U_1, U_2) \implies 1 - \mu_i \in C_{T1} (U_1).$ $\mu_k = \max \{ \mu_i / (\gamma_i, \mu_i) \in C_T(U_1, U_2) \}.Cl_{T1}(U_1)$ $= \min\{1 - \mu_i / 1 - \mu_i \in C_T(U_1)\}.$ max $\mu_i = 1$ -min $(1 - \mu_i)$. Hence $\mu_k \leq (Cl_{T1} U_1)^C$. $Int_{T2}(U_2) = max \{1 - \gamma_i / 1 - \gamma_i \le U_2\} = max I_{T2}(U_2).$ $1-\gamma_i \in I_{T2}(U_2) \Longrightarrow U_2 \ge 1-\gamma_i \ge \mu_i$. Also $U_2 \ge 1 - \gamma_i \Longrightarrow 1 - U_2 \le \gamma_i \Longrightarrow U_1 \le \gamma_i$. (Since (U_1, U_2) is an IFS $U_1 \le 1 - U_2$) Hence 1- $\gamma_i \in I_{T2}(U_2) \Longrightarrow (\gamma_i, \mu_i) \in C_T(U_1, U_2)$ Int $_{T2}(U_2) = \max \{1 - \gamma_i / 1 - \gamma_i \in I_{T2}(U_2)\}.$ Min $\gamma_i = 1$ -max $(1 - \gamma_i)$. Therefore $\gamma_k \leq [\text{Int }_{T2}(U_2)]^C$.

<u>Theroem 3.3:</u> If $Cl_T (U_1, U_2) = (\gamma_k, \mu_k)$ then $\gamma_k \ge Cl_{T2} U_1$ and $\mu_k \le Int_{T1}U_2$. **<u>Proof:</u>** $Cl_T(U_1, U_2) = (Int_T(U_2, U_1))^C$. (By result 1.1, iii) $\Rightarrow (Int_T (U_2, U_1))^C = (\gamma_k, \mu_k)$. $\Rightarrow Int_T (U_2, U_1) = (\mu_k \gamma_k)$. Hence by theorem 3.1, $\mu_k \le Int_{T1} (U_2)$ and $\gamma_k \ge Cl_{T2}U_1$. **Definition 3.1:** Let (X, T) be an intuitionistic fuzzy topological space. Let (X, T₁) and (X, T₂) be the first and second coordinate fuzzy topological spaces. An IF set (A₁, A₂) is said to be an *I-set* if $Int_T(A_1, A_2) = (Int_{T1} A_1, Cl_{T2}A_2)$.

Theorem 3.4: Intersection of two I- sets is an I- set.

Proof: Let (X, T) be an IFTS. Let (A₁, A₂), (B₁, B₂) be two I-sets defined on X. Then Int_T(A₁, A₂) = (Int_{T1}A₁, Cl_{T2}A₂) and Int_T(B₁, B₂) = (Int_{T1}B₁, Cl_{T2}B₂) Let (D₁, D₂) = (A₁, A₂) ∩ (B₁, B₂) = (A₁∩ B₁, A₂∪B₂). Hence D₁₌ A₁∩B₁ and D₂ = A₂∪B₂ Now Int_T(D₁, D₂) = Int [(A₁,A₂) ∩ (B₁,B₂)] = Int (A₁, A₂) ∩ Int_T(B₁,B₂) = (Int_{T1}A₁, Cl_{T2} A₂) ∩ (Int_{T1}B₁, Cl_{T2}B₂) = (Int_{T1}A₁ ∩ Int_{T1}B₁, Cl_{T2}A₂ ∪ Cl_{T2}B₂) = (Int_{T1}(A₁∩B₁), Cl_{T2} (A₂∪B₂)) (By result 1.1, (vii) and (viii)) = (Int_{T1} D₁, Cl_{T2} D₂).

<u>Remark3.1</u>: However, union of two I-sets need not be an I-set.

Consider the following example.

Example:

Let X= {a, b, c}.Let T = {0, (μ_i, γ_i) ; i=1 to 5, 1, where (μ_i, γ_i) s are given below.

Let (A_1, A_2) , (B_1, B_2) be two IF-sets and $(C_1, C_2) = (A_1, A_2) \cup (B_1, B_2)$ as given below.

$$\begin{split} & \text{Int}_{T} (A_{1}, A_{2}) = (\mu_{1}, \gamma_{1}), \text{Int}_{T1} (A_{1}) = \mu_{1}, \text{Cl}_{T2} (A_{2}) = \gamma_{1} \,. \\ & \text{Int}_{T} (B_{1}, B_{2}) = (\mu_{2}, \gamma_{2}), \text{Int}_{T1} (B_{1}) = \mu_{2}, \text{Cl}_{T2} (B_{2}) = \\ & \gamma_{2}.\text{Therefore} (A_{1}, A_{2}) \text{ and} (B_{1}, B_{2}) \text{ are I-sets.} \\ & \text{But Int}_{T} (C_{1}, C_{2}) = (\mu_{3}, \gamma_{3}) \text{ and Int}_{T1} (C_{1}) = \mu_{5} \neq \end{split}$$

	(μ_1, γ_1)	(μ_2, γ_2)	(μ_3, γ_3)	(μ_4, γ_4)	(μ_{5}, γ_{5})
а	(.3,.4)	(.5,.2)	(.5,.2)	(.3,.4)	(.6,.05)
b	(.6,.2)	(.7,.1)	(.7,.1)	(.6,.2)	(.8,.01)
с	(.5,.4)	(.3,.3)	(.5,.3)	(.3,.4)	(.6,.02)

	(A ₁ ,A ₂)	(B ₁ ,B ₂)	(C ₁ ,C ₂)
a	(.4,.3)	(.6,.1)	(.6,.1)
b	(.8,.1)	(.75,.05)	(.8,.05)
с	(.6,.2)	(.4,.2)	(.6,.2)

Theorem 3.5: Every open set is an I-set.

 μ_3 .Hence (C₁, C₂) is not an I- set.

Proof: Let (X, T) be an IFTS. Let (A₁, A₂) be an IF open set under T. Then A₁ is open under T₁ and A₂ is closed under T₂ which implies $Int_{T1}A_1 = A_1and Cl_{T2}A_2 = A_2$.

Т

Hence (A_1, A_2) is open \Rightarrow Int_T $(A_1, A_2)=(A_1, A_2)=(Int_{T1}A_1, Cl_{T2}A_2) \Rightarrow (A_1, A_2)$ is an I-set.

Definition 3.2: Let (X, T) be an intuitionistic fuzzy topological space. Let (X, T₁) and (X, T₂) be the first and second coordinate fuzzy topological spaces. An IF Set (A₁, A₂) is said to be a *C*- *set* if $Cl_{T}(A_1,A_2) = (Cl_{T2}A_1,Int_{T1}A_2).$

 $\begin{array}{l} \hline \textbf{Theorem 3.6:} \\ \hline \textbf{Proof:} \ \text{Let} \ (X, \ T) \ \text{be an IFTS. Let} \ (A_1, \ A_2), \ (B_1, \ B_2) \ \text{be two C-sets.} \\ \hline \textbf{Hence} \ \ Cl_T(A_1, \ A_2) = (Cl_{\ T2} \ A_1 \ , Int_{\ T1} \ A_2) \ \text{and} \qquad Cl_T(B_1, \ B_2) = (Cl_{\ T2} \ B_1 \ , Int_{\ T1} B_2). \\ \hline \textbf{Let} \ (C_1, \ C_2) = (A_1, \ A_2) \cup (B_1, \ B_2) = (A_1 \cup B_1, \ A_2 \cap B_2). \end{array}$

Hence $C_1 = A_1 \cup B_1$, $C_2 = A_2 \cap B_2$. $Cl_T(C_1, C_2) = Cl_T(A_1, A_2) \cup Cl_T (B_1, B_2) = (Cl_{T2}A_1, Int_{T1}A_2) \cup (Cl_{T2}B_1, Int_{T1}B_2).$ $= (Cl_{T2}A_1 \cup Cl_{T2}B_1, Int_{T1}A_2 \cap Int_{T1}B_2). = (Cl_{T2}A_1 \cup B_1, Int_{T1}A_2 \cap B_2))$ (By result 1.1, (vii) and (viii)) = (Cl_{T2}C_1, Int_{T1}C_2).

Theorem 3.7: (A₁, A₂) is an I- set iff it complement is a C- set.

<u>Proof</u>: Let (X, T) be an IFTS.

 (A_1, A_2) is an I-set in X \iff Int_T $(A_1, A_2) = (Int_{T1} A_1, Cl_{T2} A_2)$

 $\Leftrightarrow [\operatorname{Cl}_{\mathrm{T2}}(\mathrm{A}_2, \mathrm{A}_1)]^{\mathrm{C}} = (\operatorname{Int}_{\mathrm{T1}} \mathrm{A}_1, \operatorname{Cl}_{\mathrm{T2}} \mathrm{A}_2) \text{ (By result 1.1, iv)}$

 \Leftrightarrow C_{1 T}(A₂, A₁) =(Cl_{T2}A₂, Int_{T1} A₁) \Leftrightarrow (A₁, A₂) is a C-set.

<u>Remark 3.2</u>: Intersection of two C-sets need not be a C-set. For, as in the example in the remark 3.1, (A_1, A_2) and (B_1, B_2) are I-sets and $(A_1, A_2) \cup (B_1, B_2) = (C_1, C_2)$

 $\Rightarrow [(A_1, A_2) \cup (B_1, B_2)]^C = (C_2, C_1) \Rightarrow (A_2, A_1) \cap (B_2, B_1) = (C_2, C_1).$

 (A_1, A_2) and (B_1, B_2) are I-sets \Rightarrow (A_2, A_1) and (B_2, B_1) are C-Sets. Hence (C_2, C_1) is an intersection of two C-sets. (C_1, C_2) is not an I-Set \Rightarrow (C_2, C_1) is not a C-set.

Therefore intersection of two C-sets need not be a C-set.

<u>Theorem 3.8</u>: Every closed set is a C-set.

Proof: Let (X, T) be an IFTS. An IFS (A₁, A₂) is closed in (X, T) \Rightarrow (A₁, A₂)^C is open. \Rightarrow (A₁, A₂)^C is an I-set (by theorem 3.5) \Rightarrow ((A₁, A₂)^C)^C is a C-set (by theorem 3.7) \Rightarrow (A₁, A₂) is a C-set.

Theorem 3.9: Let (X, T) be an IFTS. Let T₁, T₂ be the co-ordinate fuzzy topologies of T. (i). An IFS (A₁, A₂) is an I-set iff (Int_{T1} A₁, Cl_{T2} A₂) is open under T. (ii). An IFS (A₁, A₂) is a C-set iff (Cl_{T2} A₁, Int_{T1} A₂) is a closed under T. **Proof:** (i) (A₁, A₂) is an I-set \Rightarrow Int_T(A₁, A₂) = (Int_{T1} A₁, Cl_{T2} A₂). Hence (Int_{T1} A₁, Cl_{T2} A₂) is open under T. Conversely assume (Int_{T1} A₁, Cl_{T2} A₂) is open under T. By theorem 3.1, Int_T (A₁, A₂) \leq (Int_{T1} A₁, Cl_{T2} A₂). Hence Int_T(A₁, A₂) \geq (Int_{T1} A₁, Cl_{T2} A₂). Hence Int_T(A₁, A₂) \geq (Int_{T1} A₁, Cl_{T2} A₂). Hence Int_T(A₁, A₂) \geq (Int_{T1} A₁, Cl_{T2} A₂). (ii). (A₁, A₂) is a C-set \Leftrightarrow (A₂, A₁) is an I-set (by theorem 3.7) \Leftrightarrow (Int_{T1} A₂, Cl_{T2} A₁) is open (by (i)) \Leftrightarrow (Cl_{T2}A₁, Int_{T1} A₂) is closed. **<u>Theorem 3.10</u>**: Let (X, T) be an IFTS where T = { $(\mu_i, \gamma_i) / i \in I$ }.Let (A₁, A₂) be IFS such that $\mu_i \leq A_1 \Leftrightarrow \gamma_i \geq A_2$, $\forall i \in I$, then Int T (A₁, A₂) = (Int_{T1} A₁, Cl_{T2} A₂).

<u>Proof:</u> $\mu_i \in I_{T1} A_1 \Leftrightarrow \gamma_i \in C_{T2} A_2 \Leftrightarrow (\mu_i, \gamma_i) \in I_T(A_1, A_2).$

Therefore $Int_T(A_1, A_2) = (Int_{T1} A_1, Cl_{T2} A_2).$

<u>Remark 3.3:</u> The converse of the above theorem is not true.

Let X = {a, b, c}. Let (X, T) be an IFTS, where T = { $0 \sim$, τ_1 , τ_2 , τ_3 , τ_4 , τ_5 , τ_6 , τ_7 , τ_8 , τ_9 , τ_{10} , τ_{11} , $1 \sim$ } and $\tau_i = (\mu_i, \gamma_i)$ are given below (μ_i , γ_i) are given below.

	(μ_1, γ_1)	(μ ₂ , γ ₂)	(μ ₃ , γ ₃)	(μ ₄ , γ ₄)
а	(0.15,0.5)	(0.1,0.3)	(0.3,0.6)	(0.1,0.5)
b	(0.3,0.3)	(0.2,0.4)	(0.2,0.5)	(0.2,0.4)
с	(0.2,0.35)	(0.1,0.2)	(0.4,0.4)	(0.1,0.35)

	(μ ₅ , γ ₅)	(μ ₆ , γ ₆)	(μ ₇ , γ ₇)	(μ ₈ , γ ₈)
a	(0.1,0.6)	(0.15,0.6)	(0.1,0.6)	(0.15,0.3)
b	(0.2,0.5)	(0.2,0.5)	(0.2,0.5)	(0.3,0.3)
с	(0.1,0.4)	(0.2,0.4)	(0.1,0.4)	(0.2,0.2)

	(μ9, γ9)	(μ ₁₀ , γ ₁₀)	(μ_{11}, γ_{11})
а	(0.3,0.3)	(0.3,0.5)	(0.3,0.3)
b	(0.2,0.4)	(0.3,0.3)	(0.3,0.3)
с	(0.4,0.2)	(0.4,0.35)	(0.4,0.2)

Let (A1,A2) be IFS define by

	(A_1, A_2)
a	(0.2,0.4)
b	(0.4,0.2)
с	(0.3,0.3)

Int $_{T}(A_1, A_2) = \tau_1$, Int $_{T1}A_1 = \mu_1(=\mu_8)$, Cl $_{T2}A_2 = \gamma_1(=\gamma_{10})$.

Hence $Int_T(A_1, A_2) = (Int_{T1} A_1, Cl_{T2} A_2).$

 $\text{However}, \ \mu_2 \, \leq \, A_1 \ \text{ and } \gamma_2 \not \geq A_2 \, . \ \ \mu_8 \leq \, A_1 \ \text{ and } \gamma_8 \not \geq \, A_2 . \ \gamma_3 \geq A_2 \text{ and } \mu_3 \not \leq A_1.$

 $\gamma_{10} \ge A_2$ and $\mu_{10} \le A_{10}$.

<u>Theorem 3.11</u>: Let (X, T) be an IFTS. Let T_1 and T_2 be the co- ordinate fuzzy topologies of T. Let (A_1, A_2) be IFS. Let Int $_{T1}A_1 = \mu_k$ and $Cl_{T2}A_2 = \gamma_s$. Then Int $_T(A_1, A_2) = (Int_{T1}A_1, Cl_{T2}A_2)$ iff $\gamma_k \ge A_2$ and $\mu_s \le A_1$

<u>Proof</u>: Assume that Int _T (A₁, A₂) = (Int_{T1} A₁, Cl_{T2} A₂) then $\gamma_k = \gamma_s$ and $\mu_s = \mu_k$. $\gamma_s \ge A_2$ and $\mu_k \le A_1 \implies \gamma_k \ge A_2$ and $\mu_s \le A_1$. Conversely, assume $\gamma_k \ge A_2$ and $\mu_s \le A_1$.Now $\mu_k \le A_1$ and $\gamma_k \ge A_2$ $\implies (\mu_k, \gamma_k) \le (A_1, A_2)$. $\mu_s \le A_1$ and $\gamma_s \ge A_2 \implies (\mu_s, \gamma_s) \le (A_1, A_2)$. Hence $(\mu_k \cup \mu_s, \gamma_k \cap \gamma_s)$ is open and $\le (A_1, A_2)$.

 $\mu_k = Int_{T1} A_1 \text{ and } \mu_s \leq A_1 \implies \mu_s \leq \mu_k. \gamma_s = Cl_{T2} A_2 \text{ and } \gamma_k \geq A_2 \implies \gamma_k \geq \gamma_s.$

Hence $\mu_k \cup \mu_s = \mu_k$ and $\gamma_k \cap \gamma_s = \gamma_s$. Hence (μ_k, γ_s) is open and $\leq (A_1, A_2)$

If (μ_i, γ_i) is any open set such that $(\mu_i, \gamma_i) \leq (A_1, A_2)$, $\mu_k = Int_{T1} A_1 \Longrightarrow \mu_i \leq \mu_k$

 $\gamma_s = Cl_{T2} (A_2) \Longrightarrow \gamma_i \ge \gamma_s$. Hence $(\mu_i, \gamma_i) \le (\mu_k, \gamma_s)$.

Therefore Int $_{T}(A_{1}, A_{2}) = (\mu_{k}, \gamma_{s}) = (Int_{T1} A_{1}, Cl_{T2} A_{2}).$

References

1. Amit Kumar singh and Rekha Srivastava, (2012), Separation axioms in intuitionistic fuzzy topological space, Advances in fuzzy system volume 2012 (2012), Article Id 604396.

2. Atanassov, K., (1986), Intuitionistic fuzzy sets, fuzzy sets and system, 20, 87.

3. Chang, C.L.,(1968) Fuzzy topological spaces, J. Math. Appl., 24, 182.

4. Coker, D. , (1997), An introduction to intuitionistic fuzzy topological spaces, fuzzy sets and system, 88, 81-89.

5. Hu Chang- ming, (1985), Fuzzy topological space, Journal of mathematical analysis nd application110-141-178.