Analysing and Comparing the Final Grade in Mathematics by Linear Regression Using Excel and SPSS

Elena Karamazova \#1, Teuta Jusufi Zenku ${ }^{* 2}$, Zoran Trifunov \#3
${ }^{1}$ Faculty of Computer Sciences Department of Mathematics and Statistics University "Goce Delcev" - Stip Republic of Macedonia
${ }^{2}$ Faculty of Technical Sciences University "Mother Teresa" - Skopje 1000 Skopje, Republic of Macedonia
${ }^{3}$ Faculty of Technical Sciences University "Mother Teresa" - Skopje 1000 Skopje, Republic of Macedonia

Abstract

In this paper simple and multiple linear regression model is developed to analyze and compare the final grades of students from two Universities, University "Goce Delcev" - Stip, more specifically a group of students who studied in Kavadarci and students from "Mother Teresa" University in Skopje, for the subject of Mathematics. The models were based on the data of students' scores in three tests, 1st periodical exam, 2nd periodical exam and final examination. Statistical significance of the relationship between the variables has been provided. For obtaining our results some solvers like Excel and SPSS were used.

Keywords: simple linear regression, multiple linear regression, 1 st periodical exam, 2nd periodical exam, final examination.

I. Introduction

Simple linear regression is a statistical method that allows us to summarize and study relationships between two continuous variables: one variable, denoted x , is regarded as the predictor, explanatory, or independent variable. The other variable, denoted y, is regarded as the response, outcome, or dependent variable.

Multiple linear regression can be used to analyze data from causal-comparative, correlational, or experimental research. In addition, it provides estimates both of the magnitude and statistical significance of relationships between variables.

Multiple linear regression is one of the most widely used statistical techniques in educational research.
Multiple linear regression is defined as a multivariate technique for determining the correlation between a response variable y and some combination of two or more predictor variables, X.

In [11], such a model is developed to predict anomalies of westward-moving intraseasonal precipitable water by utilizing the first through fourth powers of a time series of outgoing longwave radiation that is filtered for eastward propagation and for the temporal and spatial scales of the tropical intraseasonal oscillations. An independent and simpler compositing method is applied to show that the results of this multiple linear regression model provide better description of the actual relationships between eastward and westward moving intraseasonal modes than a regression model that includes only the linear predictor .

In [2] the application of regression models in macroeconomic analyses is emphasized. The particular situation approached is the influence of final consumption and gross investments on the evolution of Romania's Gross Domestic Product.

II. Simple and Multiple linear Regression Model

A simple linear regression is carried out to estimate the relationship between a dependent variable, y, and a single explanatory variable, x, given a set of data that includes observations for both of these variables for a particular population.

Model form is:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\varepsilon \tag{1}
\end{equation*}
$$

where β 's denote the population regression coefficients, and ε is a random error.
A multiple linear regression analysis is carried out to predict the values of a dependent variable, y, given a set of k explanatory variables ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$).

Model form is:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+\varepsilon \tag{2}
\end{equation*}
$$

where β 's denote the population regression coefficients, and ε is a random error.
Excel and SPSS regression computer programs were used to determine the regression coefficients and analyse the data.

III. Problem and ObJect of Study

The purpose of this study was to contribute to knowledge relating to the use of simple and multiple linear regression in educational research by establishing an appropriate linear regression model to analyze the relationship between variables as a final grade in the student exam in Mathematics (considered as a dependent or variable Y) depending on the 1st periodical exam and 2nd periodical exam (considered as independent or predictive X variables).

The data was collected by a sample of 40 students, 20 of University "Goce Delcev"- Stip (UGD) and 20 from students of "Mother Teresa" University - Skopje (MTU). In order to determine the regression coefficients and to analyze the data, math applicative software was used.

IV. Excel Analysis of Data from MTU

The equation of the multiple regression model is:
$Y=2.284+3.230 X_{1}-0.436 X_{2}$.
Regression Statistics for the multiple regression model is given in figure1.
The equation of the simple regression model for the X_{1} variable is:

$$
Y=1.538+2.863 X_{1}
$$

Regression Statistics for the simple regression model for the X_{1} variable is given in figure 2 .
The equation of the simple regression model for X_{2} variable is:

$$
Y=-1.375+3.131 X_{2}
$$

Regression Statistics for the simple regression model for the X_{2} variable is given in figure3.

V. SPSS AnALYSIS OF DATA FROM MTU

In figure 4, 5 and 6 are given model summary for the simple regression model for the X_{1} variable, for simple regression model for the X_{2} variable and for multiple regression model respectively with SPSS for MTU.

VI.Interpreting the Results from MTU

From the analysis made using two application softwares we see the same results in the tables obtained. Some individual parameters are interpreted as follows:

The multiple correlation coefficient (R) represents the extent of the relation between the dependent variables and two or more independent variables. The closer to one is, the greater is the connectivity.

In our results we see that $\mathrm{R}>0.93$ in all cases, which means that the correlation between the Y variable and the X_{1} and X_{2} variables is relatively strong.

The coefficient of determination $\left(R^{2}\right)$ represents the variance of the variables interpreted by the model.
The coefficient of determination serves as a measure of representation of the model. Value $R^{2}>0.87$, therefore it can be said that found linear regression models are representative. Where, as we can see from tables the most representative is the multiple linear regression model.

The statistical significance of the regression model is determined based on the value of the empirical ratio F , i.e. of the corresponding value p (so-called group test of the importance of the regression model). Where for our case of multiple model is 0.000000000003 , i.e. with the level of risk $\mathrm{p}<0.01$, we claim that at least one of the regression variables has a statistically significant impact on the final grade in Mathematics, respectively, the multiple linear regression model is statistically significant.

In the previous case, the statistical significance of the overall regression model was assessed. The data found in the regression output tables provide information on the statistical significance of the respective regression coefficients (so-called relevant regression model significance test). The statistical significance of the regression coefficients is determined on the basis of t-test i.e., of the corresponding values P. For our cases this value is less than 0.05 so we conclude that in the linear regression models both two variables have an impact of statistical significance on the "final grade in Mathematics" variable.

SUMMARY
OUTPUT

Regression Statistics	
Multiple R	0,9777
R Square	0,9559
Adjusted R	
Square	0,9507
Standard	
Error	3,7763
Observations	20,0000

ANOVA

	Df		SS	MS	F
Significance F					
Regression	2	5256,37	2628,19	184,30	0,000000000003
Residual	17	242,43	14,26		
Total	19	5498,80			

		Standard					Upper	Lower
	Coefficients	Error	t Stat	P-value	Lower 95\%	95%	$95,0 \%$	$95,0 \%$
Intercept	2,2837	2,1351	1,0696	0,2998	$-2,2210$	6,7884	$-2,2210$	6,7884
X Variable 1	3,2300	0,5650	5,7170	0,0000	2,0380	4,4220	2,0380	4,4220
X Variable 2	$-0,4359$	0,6469	$-0,6738$	0,5095	$-1,8007$	0,9290	$-1,8007$	0,9290

Fig. 1 Regression Statistic for the multiple regression model

SUMMARY					
OUTPUT					
Regression Statistics					
Multiple R	0,9771				
R Square	0,9547				
Adjusted R					
Square	0,9522				
Standard					
Error	3,7186				
Observations	20,0000				
ANOVA					
	Df	SS	MS	F	Significance F
Regression	1	5249,8984	5249,8984	379,6608	0,0000000000002
Residual	18	248,9016	13,8279		
Total	19	5498,8000			

					Lower	Upper	Lower	Upper	
	Coefficients	Error	t Stat	P-value	95\%	95%	$95,0 \%$	$95,0 \%$	
									-
Intercept	1,5381	1,7980	0,8554	0,4036		$-2,2394$	5,3155	2,2394	5,3155
X Variable 1	2,8629	0,1469	19,4849	0,0000	2,5542	3,1715	2,5542	3,1715	

Fig. 2 Regression Statistic for the simple regression model for the X_{1} variable

SUMMARY
OUTPUT

Regression Statistics	
Multiple R	0,9334
R Square	0,8711
Adjusted R	0,8640
Square Standard Error 6,2740 Observations 20,0000	

ANOVA

	$d f$	SS	$M S$	F	Significance F
Regression	1	4790,2733	4790,2733	121,6961	0,000000001931
Residual	18	708,5267	39,3626		
Total	19	5498,8000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	$\begin{gathered} \text { Upper } \\ 95 \% \end{gathered}$	Lower 95,0\%	$\begin{aligned} & \text { Upper } \\ & 95,0 \% \end{aligned}$
							-	
Intercept	-1,3747	3,3842	-0,4062	0,6894	-8,4847	5,7353	8,4847	5,7353
X Variable 2	3,1313	0,2838	11,0316	0,0000	2,5350	3,7277	2,5350	3,7277

Fig. 3 Regression Statistic for the simple regression model for the X_{2} variable
Model Summary

Model	R	R Square	Adjusted R		
Square					Std. Error of the
:---:					
Estimate					

a. Predictors: (Constant), x1
ANOVA ${ }^{a}$

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	5249,898	1	5249,898	379,661	$.000^{\circ}$
	Residual	248,902	18	13,828		
	Total	5498,800	19			

a. Dependent Variable: y
b. Predictors: (Constant), x1

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized CoefficientsBeta	t	Sig.
		B	Std. Error			
1	(Constant)	1,538	1,798		,855	,404
	x1	2,863	,147	,977	19,485	,000

a. Dependent Variable: y

Fig. 4 Model Summary with SPSS for the simple regression model for the X_{1} variable for MTU

Model Summary					
Model	R	R Square	Adjusted R	Square	

Estimate\end{array}\right]\)
a. Predictors: (Constant), x2

ANOVA $^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4790,273	1	4790,273	121,696	$.000^{\circ}$
	Residual	708,527	18	39,363		
	Total	5498,800	19			

a. Dependent Variable: y
b. Predictors: (Constant), x2

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized CoefficientsBeta	t	Sig.
		B	Std. Error			
1	(Constant)	-1,375	3,384		-,406	,689
	x2	3,131	,284	,933	11,032	,000

a. Dependent Variable: y

Fig. 5 Model Summary with SPSS for the simple regression model for the X_{2} variable for MTU

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.978^{\mathrm{a}}$, 956	, 951	3,77630

a. Predictors: (Constant), x2, x1

ANOVA ${ }^{a}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5256,372	2	2628,186	184,299	$.000^{0}$
	Residual	242,428	17	14,260		
	Total	5498,800	19			

a. Dependent Variable: y
b. Predictors: (Constant), x2, x1

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	2,284	2,135		1,070	,300
	x1	3,230	,565	1,102	5,717	,000
	x2	-,436	,647	-,130	-,674	,510

a. Dependent Variable: y

Fig. 6 Model Summary for the multiple regression model with SPSS for MTU

VII. Excel Analysis of Data from UGD

The equation of the multiple regression model is
$Y=2.961+1.754 X_{1}+1.243 X_{2}$.
Regression Statistics for the multiple regression model is given in figure 7.

The equation of the simple regression model for the X_{1} variable is

$$
Y=6.547+2.673 X_{1}
$$

Regression Statistics for the simple regression model for the X_{1} variable is given in figure 8 .
The equation of the simple regression model for the X_{2} variable is
$Y=0.947+3.167 X_{2}$.
Regression Statistics for the simple regression model for the X_{2} variable is given in figure 9 .

VIII. SPSS ANALYSIS OF DATA FROM UGD

In figure 10, 11 and 12 are given model summary for the simple regression model for the X_{1} variable, for simple regression model for the X_{2} variable and for the multiple regression model respectively with SPSS for U .

IX. Interpreting the Results from UGD

From the analysis made using two application softwares we see the same results in the tables obtained. Individual parameters are interpreted as follows:

The multiple correlation coefficient (R) represents the extent of the relation between the dependent variables and two or more independent variables. The closer to one is, the greater is the connectivity.

In our results we see that $\mathrm{R}>0.94$ in all cases, which means that the correlation between the Y variable and the X_{1} and X_{2} variables is relatively strong. The coefficient of determination $\left(R^{2}\right)$ represents the variance of the variables interpreted by the model. The coefficient of determination serves as a measure of representation of the model. Value $R^{2}>0.87$, therefore it can be said that found linear regression models are representative. Where, as we can see from tables the most representative is the multiple linear regression model.

The statistical significance of the regression model is determined based on the value of the empirical ratio F , i.e. of the corresponding value p (so-called group test of the importance of the regression model). Where for our case of multiple model is 0.0000000000051 , i.e. with the level of risk $\mathrm{p}<0.01$, we claim that at least one of the regression variables has a statistically significant impact on the final grade in Mathematics, respectively, the multiple linear regression model is statistically significant.

In the previous case, the statistical significance of the overall regression model was assessed. The data found in the regression output tables gives us information on the statistical significance of the respective regression coefficients (so-called relevant regression model significance test). The statistical significance of the regression coefficients is determined on the basis of t-test i.e., of the corresponding values P. For our cases this value is less than 0.05 so we conclude that in the linear regression models both two variables have an impact of statistical significance on the "final grade in Mathematics" variable.

X. Conclusions

From the analysis above, our multiple regression model as well as simple linear regression models for predicting and analyzing the final grade in Mathematics, Y, from both Universities are useful and adequate.

For further work, we can consider developing and studying similar models in the field of education, social sciences, economics, etc., adding different variables.

SUMMARY
OUTPUT

Regression Statistics	
Multiple R	0,9762
R Square	0,9530
Adjusted R	0,9475
Square Standard Error 3,7652 Observations 20,0000	

ANOVA

	$D f$	SS	MS	F	Significance F
Regression	2	4891,5431	2445,7715	172,5183	0,0000000000051
Residual	17	241,0069	14,1769		
Total	19	5132,5500			

	Standard			P-value	Lower 95\%	$\begin{gathered} \hline \text { Upper } \\ 95 \% \\ \hline \end{gathered}$	Lower 95,0\%	$\begin{aligned} & \hline \text { Upper } \\ & 95,0 \% \end{aligned}$
Intercept	2,9606	2,1305	1,3897	0,1826	-1,5343	7,4555	1,5343	7,4555
X Variable 1	1,7538	0,3360	5,2195	0,0001	1,0449	2,4627	1,0449	2,4627
X Variable 2	1,2429	0,4092	3,0375	0,0074	0,3796	2,1063	0,3796	2,1063

Fig. 7 Regression Statistics for the multiple regression model

SUMMARY

OUTPUT

Regression Statistics	
Multiple R	0,9631
R Square	0,9276
Adjusted R	
Square	0,9235
Standard	
Error	4,5449
Observations	20,0000

ANOVA

	$D f$	SS	MS	F	Significance F
Regression	1	4760,7397	4760,7397	230,4759	0,000000000011
Residual	18	371,8103	20,6561		
Total	19	5132,5500			

	Coefficients	Standard Error	t Stat	P-value	$\begin{gathered} \hline \text { Lower } \\ 95 \% \end{gathered}$	Upper 95\%	Lower 95,0\%	$\begin{aligned} & \text { Upper } \\ & 95,0 \% \end{aligned}$
Intercept	6,5465	2,1407	3,0581	0,0068	2,0491	11,0440	2,0491	11,0440
X Variable 1	2,6732	0,1761	15,1814	0,0000	2,3033	3,0432	2,3033	3,0432

Fig. 8 Regression Statistics for the simple regression model for the X_{1} variable

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0,9369							
R Square	0,8778							
Adjusted R								
Square	0,8710							
Standard								
Error	5,9030							
Observations	20,0000							
ANOVA								
	Df	SS	MS	F	Significance F			
Regression	1	4505,3223	4505,3223	129,2924	0,000000001195			
Residual	18	627,2277	34,8460					
Total	19	5132,5500						
	Coefficients	Standard Error	t Stat	P-value	$\begin{gathered} \text { Lower } \\ 95 \% \end{gathered}$	Upper 95\%	$\begin{aligned} & \text { Lower } \\ & 95,0 \% \end{aligned}$	$\begin{aligned} & \hline \text { Upper } \\ & 950 \% \end{aligned}$
							-	
Intercept	0,9468	3,2849	0,2882	0,7765	-5,9545	7,8481	5,9545	7,8481
X Variable 2	3,1670	0,2785	11,3707	0,0000	2,5818	3,7521	2,5818	3,7521

Fig. 9 Regression Statistics for the simple regression model for the X_{2} variable

Model Summary				
Model	R		R Square	Adjusted R Square
Std. Error of the Estimate				
1	$.963^{\mathrm{a}}$, 928	, 924	4,54490

[^0]ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4760,740	1	4760,740	230,476	$.000^{\text {b }}$
	Residual	371,810	18	20,656		
	Total	5132,550	19			

a. Dependent Variable: y
b. Predictors: (Constant), x1

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients			Standardized Coefficients Beta	t	Sig.
		B		Std. Error			
1	(Constant)		6,547	2,141		3,058	,007
	x1		2,673	,176	,963	15,181	,000

a. Dependent Variable: y

Fig. 10 Model Summary with SPSS for the simple regression model for the X_{1} variable

Model Summary						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	. $937^{\text {a }}$,878	,871	5,90305		
a. Predictors: (Constant), x2						
ANOVA $^{\text {a }}$						
Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	4505,322	1	4505,322	129,292	. $000{ }^{\text {b }}$
	Residual	627,228	18	34,846		
	Total	5132,550	19			

a. Dependent Variable: y
b. Predictors: (Constant), x2

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized CoefficientsBeta	t	Sig.
		B	Std. Error			
1	(Constant)	,947	3,285		,288	,776
	x2	3,167	,279	,937	11,371	,000

a. Dependent Variable: y

Fig. 11 Model Summary with SPSS for the simple regression model for the X_{2} variable for UGD

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	. $976{ }^{\text {a }}$,953	,948	3,76522

ANOVA ${ }^{a}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4891,543	2	2445,772	172,518	$.000^{b}$
	Residual	241,007	17	14,177		
	Total	5132,550	19			

a. Dependent Variable: y
b. Predictors: (Constant), x2, x1

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	2,961	2,130		1,390	,183
	x1	1,754	,336	,632	5,219	,000
	x2	1,243	,409	,368	3,038	,007

a. Dependent Variable: y

Fig. 12 Model Summary with SPSS for for the multiple regression model for UGD

References

[1] C. Anghelache, M.G. Anghel, L. Prodan, C. Sacală and M. Popovici, Multiple Linear Regression Model Used in Economic Analyses, Romanian Statistical Review Supplement, Vol. 62. Issue 10, pp. 120-127, (October), 2014
[2] C. Anghelache, A. Manole and M. G. Anghel, Analysis of final consumption and gross investment influence on GDP - multiple linear regression model, Theoretical and Applied Economics, Volume XXII No. 3(604), pp. 137-142, 2015
[3] A.C Cameron, and P.K Trivedi, Regression Analysis of Cout Data, Cambridge, 1998.
[4] F. Hoxha, Metoda të analizës numerike, Tiranë, 2008.
[5] D. Jaksimovic, Zbirka Zadataka iz poslovne statistike, Beograd, 2004.
[6] Sh. Leka, Teoria e probabiliteteve dhe statistika matematike, Tiranë, 2004.
[7] J. T. McClove, P. George Benson, Terry Sincich, Statistics for Business and Economics, USA, 1998.
[8] M. Papiq, Statistika e aplikuar në MS EXEL, Prishtinë, 2007.
[9] L. Puka, Probabliliteti dhe Statistika e zbatuar, Tiranë, 2010.
[10] J. M. Rojo, Regresion lineal multiple, Madrid, 2007.
[11] P. E. Roundy and W. M. Frank, Applications of a Multiple Linear Regression Model to the Analysis of Relationships between Eastward and Westward Moving Intraseasonal Modes, Journal of the atmospheric sciences, pp. 3041-3048, 2004
[12] M. Shakil, A multiple Linear regression Model to Predict the Student's Final Grade in a Mathematics Class,
[13] A. F. Siegel, Pratical Statistics, USA, 1996.
[14] D. S. Wilks, Statistical Methods in the Atmospheric Sciences: An Introduction, International Geophysical Series, Vol. 59, Academic Press, pp. 467, 1995

Appendix

Scores of final exam (60) MTU	Scores of Ist periodical exam (20) MTU	Scores of $2^{n d}$ periodical exam (20) MTU
Y	X_{1}	X2
60	20	19
45	15	13
55	18	15
30	9	10
14	5	6
33	10	11
44	15	13
10	3	4
25	8	10
57	20	19
42	16	14
27	8	7
15	9	12
50	16	17
17	4	6
22	7	8
48	16	15
39	12	13
7	2	2
12	4	3

Fig. 13 Appendix with Data for MTU

Scors of fral exam (60) UGD	Sores of Is peridical exam (20) UGD	Soure of $2^{\text {d }}$ prindical exam (20) UGD
Y	X!	X
58	19	19
55	17	18
49	15	11
40	10	12
29	7	7
37	10	11
39	9	13
21	6	8
16	5	7
56	20	17
20	5	9
29	12	8
18	6	5
15	4	5
10	2	4
25	7	10
54	16	15
49	18	13
24	6	5
59	20	19

Fig. 14 Appendix with Data for UGD

[^0]: a. Predictors: (Constant), x1

