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Abstract - In this paper we present a novel class of nonlinear problems arising in low Reynolds number 

hydrodynamics, in which the analytical solution of the linearized equation yields an approximation to the 

numerical solution of the full nonlinear equation, when it is scaled and reduced suitably using the standard 

deviation and the mean of the numerical solution. The main interest in discussing these problems is that the 

analytical solution itself is sufficient to generate the numerical solution, when suitably scaled and reduced. 

Hence this system may be used as a test for software developed to solve complex integro – differential 

equations. 
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I. INTRODUCTION 

The problem of determining the steady flow past fixed bodies in a slow uniform stream of a viscous 

incompressible fluid was originally considered by Stokes [1]. Stokes obtained his solution by neglecting the 

effect of inertia. His solution was at zero Reynolds numbers. Later, Whitehead [2] attempted to improve upon 

this solution by obtaining higher order approximations to the flow when the Reynolds number is not negligibly 

small. In his method he proposed a technique which is equivalent to expanding the solutions in terms of powers 

of Re, Reynolds numbers. However in this iterative solution, the boundary conditions had to be considered at 

every iteration and hence this led to a situation in which it is impossible to satisfy the boundary conditions of the 

problem in all terms except the leading one. This mathematical phenomenon appears to be common to all 

problems of uniform streaming past bodies of finite length – scale and is called „Whitehead‟s paradox‟. The 

paradox was resolved by Oseen [3], [4]. Oseen computed the first correction to the Stokes drag for small but 
finite values of the Reynolds numbers for a sphere held fixed in a steady uniform flow U. Goldstein [5] obtained 

a basic solution using Oseen‟s technique. Later, Lagerstrom and Cole [6] solved Oseen‟s equations to obtain 

higher approximations of the flow in two and three dimensional cases. Proudman and Pearson [7] described in 

detail an alternative procedure involving simultaneous consideration of locally valid expansions close to and far 

from the singularity of the perturbation. These expansions were called the „Oseen‟ and the „Stokes‟ expansions, 

respectively, since their leading orders are closely related to the original approximations of these authors. 

However the numerical „convergence‟ of the expansion of Proudman and Pearson was so poor that its utility 

was limited to Re < ½. Hence Chester and Breach [8] obtained an alterative expression for drag of order Re in 

the expansion of the drag coefficient for a sphere at small values of Re. Bentwich and Miloh [9] considered the 

problem of unsteady viscous incompressible flow past a solid sphere when a finite rectilinear velocity U is 

suddenly imparted to the sphere. They obtained an asymptotic solution for small Reynolds numbers by using the 

method of matched asymptotic expansions. Their work generalized the work of Proudman and Pearson [7].  
There exist only a few solutions for the force acting on accelerating bodies. The best known is the Basset [10] 

solution for the sphere. Arminski and Weinbaum [11] considered the motion of a sphere, which started to move 

from rest under the action of an external force which ceases to act after some time. They showed that the Basset 

term does not contribute to the total displacement and the form of velocity may be very different from the quasi 

static velocity. Basset‟s result was extended to conditions where the flow far from the particle was other than 

uniform (Maxey and Riley, [12]) and to particles of non – spherical shape (Lawrence and Weinbaum [13], [14]; 

Gavze [15]). Sano [16]) extended the Proudman and Pearson [7] results to the unsteady flow case where 

U(t)=UH(t) and the fluid is stationary everywhere for t<0. (H(t) is the Heaviside function). Lovalenti and Brady 

[17] extended his result to conditions where the particle and the far field flow can have general time dependence 

and to particles of arbitrary shape. It is this expression for the hydrodynamic force given by Lovalenti and Brady 

[17] for spherical particle in which we are interested. In the next section we describe the problem and solution 
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methodology. In section three we present the comparison between the solutions of the linear part and the full 

numerical solutions for various problems considered. In the last section we present the conclusions.  

II. THE PROBLEM 

The Lovalenti and Brady [17] formalism for the hydrodynamic force on a rigid sphere undergoing arbitrary time 
dependent motion in an arbitrary time dependent uniform flow field at small Reynolds numbers is given by the 

following expression. 
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This expression is obtained by using the reciprocal theorem. The details of the    derivation can be found in 

Lovalenti and Brady [17]. Here,  UUU ps is the slip velocity of the fluid. pU  is the velocity of the particle. 

Us has been non-dimensionalized by Uc. The acceleration terms 


UU s
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where c is the characteristic timescale defined as c = a/Uc. 
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is the integrated displacement of the particle relative to the fluid from time s to the current time 

t. Sl is the Strouhal number defined as Sl = (a/Uc)/c, is the measure of the time scale of variation or unsteadiness, 
relative to the convective time a/Uc.  
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We use equation (1) to obtain the equation governing the motion of a sphere in a fluid, starting with zero 

velocity at time t = 0, with Us = Up - U
 where Up is the velocity of the particle, scaled with respect to the size 

of the particle and the frequency of the external periodic force, 1, i.e., we take Uc=a1. 

Under these conditions, equation (1) reduces to 
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We can generate a new class of problems to solve for the velocity of the particle by using Newton‟s laws as 

follows 
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Here Re* = 4/3Re+2/3ReSl. 
We note that there is a singularity at s = t and this can be removed by splitting the nonlinear integral into two 

intervals [0, t-] and [t-, t]. The integral in the interval [t-, t] can be then transformed with respect to “A” and 

this integral goes to zero. Thus we are left with the integral in the interval [0, t-]. For details of derivation one 
can refer Ramamohan et al [18], [19]. 

We solved the above system of equations numerically using an adaptive step size Runge Kutta Method (Press et 

al, 1992, [20]) and the nonlinear integral was calculated using the Romberg integration (Press et al, 1992, [20]) 

for the following test cases: 

1. Periodically forced spherical particle in a quiescent Newtonian fluid at low Reynolds numbers. 

2. Periodically forced spherical particle with a constant bias force applied externally in an undisturbed uniform 

flow 
3. Periodically forced spherical particle in an oscillating Newtonian fluid. 

 

The details of the methodology can be found in Ramamohan et al [18], [19]. 

The interesting feature of this class of problems is that in all the three problems considered at low values of 

external periodic force the solution of the linear part is a good approximation of the full numerical solution and 

in other regions a suitable scaling and reduction given by the expression below resulted in an excellent match 

between the numerical and the scaled and reduced analytical solution. 
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We observe that in the solutions generated for this class of problems the effect of the nonlinearity is to reduce 

the magnitude of the solution. However, the trend of the analytical solution and the numerical solutions remains 

the same. At low values of „A‟ the nonlinear term is cancelled by one of the linear terms. At high values of „A‟ 

the nonlinearity goes to zero. Hence it is only at the intermediate values of „A‟ that the nonlinearity plays a role 

and we observe that this yields in a reduction of the amplitude of the oscillation but not in its general form. 

Hence multiplying the analytical solution of the linearized equation by the standard deviation of the numerical 

solution of the full nonlinear equation and dividing the same by the standard deviation of the analytical solution 

removes the scaling deviations of the analytical solution. In the nonlinear problem we also observe a drift of the 
solution in the direction of the first motion. This drift can be removed by adding a drift term as shown in 

equation (6). Further, the reason why the numerical solutions and the analytical solutions have same trend is due 

to the fact that the nonlinear integral term at large times fades away and tends to zero. 
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III THE LINEAR PART 

The linear part of equation (4) is given by the following expression: 
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Where, c is a constant of integration. 

We note that Fext and U are different for the different problems considered, which we shall now illustrate. 
 

 

IIIa.  Periodically forced spherical particle in a quiescent Newtonian fluid at low Reynolds numbers. 

 

In this problem, we assume U

  = 0, F

ext
 = F0sin(t) along the x – direction. 

Hence the full nonlinear equation is of the form 
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Its linear part neglecting the first linear integral term and the nonlinear integral term is given by: 
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This analytical solution when plotted in the phase plane yields a limit cycle whereas the numerical solution of 

the full nonlinear problem yields an overlapping and weakly drifting circular trajectory as can be seen from 

figure(1).  
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Fig 1: The numerical solution of the above problem in III(a). 

 

However the velocity time series of the analytical solution and the numerical solution can be matched at low ReF 

and at high ReF using the scaling and reduction formula given in equation (6). This is shown in figure (2). At 

low ReF and at large t, the integral terms cancel and hence the nonlinearity is removed and at large „A‟ in 

equation (9) the nonlinear integral becomes negligible. 
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Fig 2: The match between the numerical solution of the velocity time series and the solution due to scaling 

and reduction of analytical solution via equation 6. 

 

IIIb. Periodically forced spherical particle with a constant bias force applied externally in an undisturbed 

uniform flow 

  

In this problem we apply an additional external force on the spherical particle, namely the constant bias force Fb, 

along with the external periodic force. Also, here U = (ux, uy, uz) constant velocity at infinity. 
 

Hence, Fext = Fb+F0 sin(t),  
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(13c)                                                               U
dt

dY

(13b)                                                               U
dt

dY

(13a)                                                                U
dt

dY

z

z

y

y

x

x

p
p

p

p

p
p







 

    



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 5 December 2017 

 

ISSN: 2231-5373                          http://www.ijmttjournal.org                                  Page 351 

   

   

    (14c)                                                                 IJ
SlRe

uU
Redt

dU

(14b)                                                            IJ
SlRe

uUF
Redt

dU

(14a)                                          IJ
SlRe

uUF)tsin(Re
Redt

dU

zp*

p

ypy*

p

xpxF*

p

z

z

y

y

x

x









































































33

2
1

22

2
1

11

2
1

8

3
6

1

8

3
6

1

8

3
6

1










 

Where, 

 

 
                (14e)     ds

s)(t

u)s(U12π
)A(exp)A(erf

A2A
  I

(14d)                                                 
t

u)t(U  J

εt

0 2
3

xp

xp

x

x













































2

21

1

1

11
16






 

Similarly, 
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external periodic force,   is the viscosity of the fluid. 
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The analytical solution of these equations is given by: 
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We observe that for moderate to high values of the constant velocity at infinity and the constant bias force, the 

above analytical solution is a good approximation of the numerical solution as nonlinear effects are not 

significant in these regimes. However, at low values of the constant velocity at infinity and the constant bias 

force and high values of the periodic force, the effect of the periodic forcing is significant and nonlinear effects 

come into play. In these regions we have observed that we can match the analytical solution and the numerical 

solution by scaling and reducing the analytical solution appropriately. This can be done using the standard 

deviations and the mean of the numerical and analytical solutions as in equation (6). The reason for this has 

been discussed earlier. Figures (3) and (4) show the match between analytical solution and the numerical 

solution with and without scaling respectively. 
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Fig 3: The match between the numerical method and the scaling and reduction through equation 6 for very 

low values of constant bias force and low values of the uniform undisturbed force and high values of ReF, the 

amplitude of the external periodic force. 
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Fig 4: The match between the numerical method and the scaling and reduction through equation 6 for high 

values of constant bias force and uniform undisturbed force and low values of ReF, the amplitude of the 

external periodic force. 

 

IIIc. Periodically forced spherical particle in an oscillating Newtonian fluid. 

For this problem we consider U
 = (uxsint, uysint). Upon making these substitutions in equation (6), we 

obtain the component wise equations for Up and Yp as follows:  
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Similarly, 
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And SlRe/Re/  Re* 3234   , 1
2

0 a/F  ReF   where, a is the particle size 1 is the frequency of the 

applied external periodic force,   is the viscosity of the fluid. 

We linearized the equations (16) and (17) by neglecting the nonlinear and irreducible terms, in order to compute 
an analytical solution to compare with the numerical solutions. Thus we considered the following equation: 
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The solutions of equation (18) are given by: 
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Here also a good match at low ReF was obtained and at high ReF equation (6) yields a good approximation for 

the full numerical solution. Figure (5) show the match between the numerical solution and the analytical 

solution without scaling and reduction. Figure (6) shows the match with scaling and reduction. 

 

 
 

Fig 5: The match between the numerical method and analytical solution without scaling and reduction 

through equation 6. 
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Fig 6: The match between the numerical method and analytical solution with scaling and reduction through 

equation 6. 

 

IV. CONCLUSION 

 

The specialty of this nonlinear problem is that the nonlinear integral term is weak at large times and it is only at 

large ReF that the nonlinearity is significant. The scaling and reduction formula in these regimes yield the 

numerical solution of the full nonlinear equation. Hence this system is an ideal system where the analytical 

solution is sufficient for most regions in the parametric regimes considered in this work. Hence this system can 

be an ideal system to check software for solving complex integro – differential equation. 
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