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Abstract— Present article reports steady two dimensional effects of heat and mass transfer flow of MHD third 

grade fluid over a stretching cylinder with nanoparticles embedded in a porous medium.  Formulation of the 

problem and relevant numerical analysis are given with thermal radiation and uniform heat source/sink with 

prescribed heat and mass flux conditions.  The non linear partial differential equations are transformed into a 

system of ordinary differential equations by using Runge-Kutta-Fehlberg method.  The impact of emerging 

parameters viz, the Hartmann number ,M  the permeability parameter k,  the curvature parameter ,  the 

material parameters 
* *

1 2and ,   the fluid parameter ,  the Reynolds number Re,  the Prandtl number Pr,  

the Brownian motion parameter ,Nb  the thermophoresis parameter ,Nt  the thermal radiation parameter 

,Nr  the heat source/sink parameter   and the Lewis number Le  on velocity, temperature ad nanoparticle 

volume fraction are examined.  Interesting results are delineated through graphs.   
Keywords — MHD, heat source/sin, third grade nanofluid, thermal radiation, stretching cylinder. 

 

NOMENCLATURE 

,u v  : Velocity components in            

                 andx y directions  

x  : Direction along the surface 

r  : Direction normal to the surface 

R  : Radius of the cylinder        

wu         :  Linear stretching velocity 

l             :  Reference length 

0u          : Reference velocity 

1 2 3, and  
:  Material parameters 

K             : Permeability parameter of the  
                  porous medium 

0B          : Dimensional magnetic field parameter 

Tk           : Thermal conductivity 

T            : Temperature of the fluid 

wT           : Wall temperature 

T           : Temperature of the fluid in free stream 

BD          : Brownian diffusion coefficient 

TD          : Thermophoresis diffusion coefficient 

0Q            : Heat generation/absorption coefficient 

C             : Concentration of the fluid 

fC           : Skin friction coefficient 

pC            : Specific heat capacity at constant pressure 

wC           : Reference concentration  
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C  : Concentration of the fluid in free stream 

f  : Dimensionless velocity 

M  : Hartmann number 
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Nr : Thermal radiation parameter 
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Re x  : Local Reynolds number 

fC  : Shear stress coefficient 

xNu  : Local Nusselt number 

xSh  : Local Sherwood number 

Greek Symbols 

  : Similarity variable 

  : Dimensionless concentration 

  : Electrical conductivity of the fluid 

  :  Ratio of specific heats 

  : Curvature parameter
2

0

l

a U


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  : Dimensionless temperature 

  : Density of the fluid 

  : Dynamic viscosity 

  : Kinematic viscosity 

 : Heat source/sink parameter
0

0p

Q l

c u








  
 
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I. INTRODUCTION  

In our day to day life, some fluids reveal the mechanical attributes of both viscosity and elasticity.  These 

fluids are called as non-Newtonian fluids. These fluids cannot be expounded by the theoretical concepts of 

viscosity or elasticity but can be explained by an amalgamation of both.  Due to rheological nature of non-

Newtonian fluids several constitutive equations are propounded [1].  In most of the fluid food materials, the 

stress is dependent on the shear rate.  Non-Newtonian fluids include in performance of lubricants, wire and fiber 

coating, food processing, movement of biological fluids, transpiration cooling, gaseous diffusion, drilling mud, 

heat pipes etc. Third grade fluid is a subclass of non-Newtonian fluids and its equation is based on non linear 

relation between stress and strain is.  Hayat et al. [2] studied a steady, incompressible third grade fluid flow 

through a rotating frame in the presence of magnetohydrodynamics. The incompressible third-grade fluid due to 

a helical screw rheometer is investigated by Zed et al. [3] by unwrapping the channel, lands and the outsider 

rotating barrel.  They considered that the shallow infinite channel as a geometry of the flow and its width is 
more than depth of the shallow.   Majhi and Nair [4] explored results on stenotic geometry of non-Newtonian 

third grade fluid over stenosed tubes on the resistive impedance and wall shear stress.  Taza Gul et al. [5] 

perused a steady, two dimensional laminar thin film flow of MHD third grade fluid over a vertical belt subject to 

temperature dependent viscosity.  Rehman et al. [6] investigated mixed convection stagnated boundary layer 

flow and heat transfer characteristics of third grade fluid past an exponentially stretching sheet. 

The phenomena of transport in porous media are encountered in many engineering disciplines. For example 

Civil engineering deals, with the flow of water in aquifers, the movement of moisture through  

and under engineering structures, transport of pollutants in aquifers and the propagation of stresses under 

foundations of structures.  Nagendramma et al. [7] analysed triple diffusive MHD laminar boundary layer flow 

over a nonlinear stretching sheet embedded in a porous medium in the presence of velocity slip with 

nanoparticles.   Manoj Kumar Nayak et al. [8] perused results on steady MHD viscoelastic fluid flow, heat and 
mass transfer characteristics past a stretching sheet embedded in a porous medium subject to chemical reaction.  

An analysis on unsteady magnetohydrodynamic boundary layer flow of nanofluid due to a channel with moving 

porous walls and medium is probed by Muhammad Zubair Akbar et al [9].  Ali Montakhab [10] explored results 

on convective heating or cooling characteristics of porous media which has applications in the design of thermal 

energy storage systems.  Alibakhsh Karsein et al [11] reviewed results on non-Newtonian nanofluid flow subject 

to magnetohydrodynamic effect through porous media.  

 It is deeply-ingrained that the convective heat and mass transfer confined in the form of thermal and 

solutal boundary conditions is defined with prescribed temperature and concentration fluxes on the surface of 

the boundary, this occurs in many situations, especially in cooling of electrical and nuclear components, with the 

prescribed heat flux.  Prescribed heat flux plays pivotal role when overheating, burnout and meltdown are major 

issues.  Abbasi et al. [12] reviewed impact of heat and mass flux boundary conditions of Jeffrey fluid hydro 

magnetic flow over a stretching sheet in the presence of thermal radiation with nanoparticles.  Hayat et al. [13] 
investigated impact of viscous dissipation and ohmic effects on a three dimensional laminar flow of nanofluid 

with prescribed temperature and concentration fluxes.  Majeed et al. [14] explored results on steady, heat 

transfer characteristics of non-Newtonian Casson fluid flow through a stretching cylinder with prescribed heat 

flux in the presence of partial slip.   

 The present study addresses the steady MHD radiative two dimensional boundary layer flow of third 

grade nanofluid due to a stretching cylinder with heat source/sink.  Heat and mas transfer effects are analyzed 

through prescribed nanoparticle temperature and prescribed nanoparticle mass flux boundary conditions are 

considered.  Formulation of the problem is made with appropriate boundary layer approximations.  To develop 

energy equation Rosseland approximation is employed for thermal radiation.  Results are investigated through 

Runge-Kutta-Fehlberg method with shooting technique.  Solution expressions are studied through graphs and 

tabular values for disparate controlling quantities.  

II. THIRD GRADE NON-NEWTONIAN FLUID RHEOLOGICAL MODEL: 

  Present investigation describes a sub class of non-Newtonian fluids called Third grade fluid.  The 

constitutive equation of Third grade fluid can be defined as follows       

 2 2

1 1 2 2 1 3 1 1T pI A A A trA A                (1) 

Where T is the Cauchy stress tensor, 
p

is the hydrostatic pressure,   is the dynamic viscosity, I is the 

identity tensor and  1,2i i  and  1,2,3j j  are material constants.  Furthermore, thermodynamics 

imposes the following constraints [15]: 1 1 2 3 1 2 30, 0, 24 , 0, 0                 (2) 
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III.  MATHEMATICAL FORMULATION 

     Consider the 2D laminar flow of magnetohydrodynamic third grade fluid.  The fluid flow is driven 

through a stretching cylinder.  The x  axis is measured along the flow direction and radial axis normal to the 

cylinder.  We assumed that the strength of the magnetic field is applied normal to the direction of the flow and 

an induced magnetic field is negligible, when the magnetic Reynolds number is lckle.  The surface is maintained 

uniform and prescribed temperature and concentration fluxes wq  and wm are considered respectively.  In 

addition, the nanoparticle volume fraction on the ambient is envisaged to obey the passively controlled model 

suggested by Kzunestov and Nield [16].  Under these presumptions the appropriate transport equations are 

stated as follows 
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The boundary conditions are 

 

0 , 0,

( ), ( )

w

T w B w

u x
u u v

l

T C
k q x D m x

r r

  

 
   

 
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IV. SIMILARITY TRANSFORMATION OF MATHEMATICAL MODEL 

To proceed, the following similarity variables are introduced 

2 2
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   (9) 

Eqn. (3) is automatically satisfied and since there is no longitudinal pressure gradient, employing Eqn. (9) we 
have transfigured Eqns. (4) – (6) into a set of ordinary differential equations 
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The boundary conditions (7) and (8) are transmuted as 

' 1, 0, ' 1, ' 1f f              at r R   (13) 

' 0, 0, 0f                    as r     (14) 

The expressions for local shear stress, rate of heat transfer and mass transfer are given by 

 

 

 
2 2

, ,
rxw w wr R

f x x

B

xq xm
C Nu Sh

T D Cu u



 

   
 

   (15) 

where

2 2

1 2

3

2 3

3

2 2 2

,

rx

w T w B

r R r R

u u u u u u v
u v

r r x r r x r r

u v u u u

r r r x r

T C
q k m D

r r

  

 

 

       
      

        

       
    

       

    
      

    

   (16) 

In non dimensional form, the Eqn. (15) can be expressed as 
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where Rex

a
x

l
  

V. RESULTS AND DISCUSSION 

Present discussion concentrates on the controlling parameters on velocity, temperature nanoparticle volume 

fraction.  The behavior of the derived expressions for sundry parameters are elucidated graphically by utilizing a 

numerical technique i.e., Runge-Kutta-Fehlberg method along with appropriate software package Matlab 

R2015b.   

 Impact of third grade fluid parameters 
* *

1 2and   on velocity distribution is illustrated in Figs. 1 and 

2.  There is a hike in velocity when 
* *

1 2and   are enhanced.  This is by the virtue of the fact that material 

parameters are inversely proportional to the viscosity.  As 
* *

1 2and   increase the fluid velocity diminishes 

and hence velocity magnifies.  The temperature and nanoparticle volume fraction distributions are elucidated for 

various values of 
* *

1 2and   in Figs. 3- 6.  From this figures we notice that temperature and nanoparticle 

volume fraction are decreasing fields with increasing values of  
* *

1 2and  . 

 The variation of fluid parameter and Reynolds number on velocity are delineated in Figs. 7 and 8.  This 

is seen that velocity enhances with the hike of fluid parameter and Reynolds number.  Literally, Reynolds 

number is the ratio of inertial force to viscous force and hence inertial forces are more influential than the 

viscous forces when Re increased as a result velocity rises.  The temperature and nanoparticle volume fraction 

are decelerate with higher values of Reand  (Figs. 9-12).  

Figs. 13-15 reveal the influence of Hartmann number  M on velocity, temperature and nanoparticle volume 

fraction.  It is clear that the raise in the strength of the magnetic field is to decrease the velocity, because the 

action of Lorentz force which thwarts the fluid motion.  The impact of magnetic field on temperature is depicted 

in Fig. 14.  It is found that temperature hikes with raising values of Hartmann number, since energy is dispelled 

as heat when the fluid flow is decelerated and thus provides enhancement in thermal boundary layer thickness. 

Impact of Hartmann number on nanoparticle volume fraction is qualitatively similar to that of temperature 

profile.   

Fig. 16 elucidates that the velocity diminishes as the permeability parameter  k  enhances.  This is in 

conformity with the fact the Darcy resistance offered by the porous medium. Larger values of permeability 

parameter correspond to considerable resistance to the fluid flow and therefore velocity diminishes.  Fig.17 

depicts the increasing values of k  elevates the temperature and thermal boundary layer thickness.  The 

nanoparticle volume fraction also allows the same phenomena with k  (Fig. 18). 

 A cross over is seen in the velocity and temperature distribution at 0.4   as portrayed in Figs. 19 

and 20.  For the dynamic boundary, 0.4   the rise of   tends to a reduction in the momentum boundary 

layer faintly, by the virtue of petit increment of the frictional forces by enhancing the surface shear stress 

whereas it shows inimical behavior at far away from the surface, 0.4  .  This is in conformity with the fact 

as   enhances the cylinder shrinks and hence the space provided for fluid is increased at free stream.  The 

nanoparticle volume fraction diminishes as   enhances, due to the elevation of the surface mass flux (Fig. 21). 

 Fig. 22 is elucidated to notice the impact of Prandtl number  Pr on temperature field.  It is clearly 

portrays that temperature diminishes when Pr   is enhanced.  In fact, higher Prandtl number fluid has low 

thermal diffusivity which is responsible for the decrement of temperature.  Fig.23 is the sketch of temperature 

field for a variation in thermal radiation parameter  Nr .  Temperature and thermal boundary layer thickness 

enhance for higher values of Nr .  Greater values of Nr  yield more heat to the fluid which results in rise of 

temperature.  Fig.24 delineates that temperature is enhanced in the presence of heat source.  This is because heat 

source releases energy in the thermal boundary layer. 

 Fig. 25 is the plot for temperature distribution for the impact of Brownian motion parameter.  

Physically, Brownian motion generates micro-mixing, which hikes the thermal conductivity of the fluid as a 

result the temperature increases.  The same behavior is seen on concentration with increasing Brownian motion 

parameter (Fig. 26).  Fig. 27 and 28 elucidate the impact of thermophoretic parameter Nt  on the temperature 

and nanoparticle volume fraction fields.  In fact in the presence of thermophoresis the particles are driven 

towards cold surface from hot surface, hence the temperature and nanoparticle volume fraction enhance with a 
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rise in thermophoretic parameter Nt . The impact of Lewis number on nanoparticle volume fraction is displayed 

in Fig. 29.  Physically, larger Lewis number implies that the molecular diffusivity of the fluid is small and 

therefore the concentration decreases.  

      
Fig.1: Velocity profile for different values of 

*

1   

 

 

     

Fig. 2: Velocity profile for different values of 
*

2
 

          

Fig. 3: Temperature profile for various values of 
*

1   

 

Fig. 4: Temperature profile for various values of 
*

1   

 

 

  

Fig. 5: Nano particle volume fraction profile 

for various values of 
*

1  

   
Fig. 6: Nano particle volume fraction profile    

for different values of 
*

2  
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 Fig. 7: Velocity profile for different values of    

     

Fig. 8: Velocity profile for different values of Re  

 

 
Fig. 9:Temperature profile for various values of    

   

 

Fig.10:Temperature profile for various values of Re   

  

 

 
Fig. 11: Nano particle volume fraction profile     

for different values of   

   

 
Fig. 12: Nano particle volume fraction profile 

for different values of Re    



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 6 December 2017 

 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 367 

   

Fig. 13: Velocity profile for different values of M  
 

 
Fig.14:Temperature profile for various values of M  

                            
 Fig. 15: Nanoparticle volume fraction profile 

for different values of M    

                        
  Fig. 16: Velocity profile for different values of k   

                     
  Fig.17:Temperature profile for various values of k   

                                    
  Fig. 18: Nano particle volume fraction profile 

for different values of k  

                                
Fig. 19: Velocity profile for different values of    

                            
Fig.20:Temperature profile for various values of   
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Fig. 21: Nanoparticle volume fraction profile 

for different values of   

                  
  Fig.22:Temperature profile for various values of 

Pr        

                      
 Fig.23:Temperature profile for various values 

of Nr         

     
 Fig.24:Temperature profile for different values of   

           

                         
 Fig.25:Temperature profile for various values of Nb      

               

                        
 Fig. 26: Nanoparticle volume fraction profile 

for different values of Nb  

 

 
Fig.27:Temperature profile for various values of 

Nt   
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Fig. 28: Nano particle volume fraction profile 

for different values of Nt  

 

     

Fig. 29: Nano particle volume fraction profile 

for different values of Le  

VI.  CONCLUDING REMARKS 

 An investigation is performed to peruse the prescribed heat and mass flux conditions on MHD laminar 

flow of third grade fluid subject to thermal radiation and heat source/sink with nanoparticles.  Influence of 

nanoparticle characteristics viz, thermophoresis and Browning motion are perused.  The salient features of 

present probe are summarized as below 

 Variation of M  and k  on the temperature distribution and nanoparticle concentration are similar. 

 The variation of 
* *

1 2, , Reand    on velocity is field is quite paradoxical to temperature and 

nanoparticle volume fraction. 

 Impact of Nt  and Nb  on temperature distribution are same. 

 The larger values of thermal radiation parameter depict greater temperature and thickness of thermal 

boundary layer. 
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