SUPRA α -OPEN SETS AND SUPRA α -SEPARATION AXIOMS IN SUPRA BITOPOLOGICAL SPACES

R. \mathbf{GOWRI}^1 and $\mathbf{A.K.R.}$ $\mathbf{RAJAYAL}^2$

¹ Assistant Professor, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

² Research Scholar, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

Abstract

The aim of this paper is to introduce and study the concept of supra α -open (briefly $S_{\tau_{ij}}$ - α -open) (res.Closed) sets and supra α -separation axioms (briefly $S_{\tau_{ij}}$ - α -separation) in supra bitopological spaces. Also we study some of their basic properties in supra bitopological spaces.

Mathematics Subject Classification: 54D05, 54D10, 54D08, 54D20 Keywords: $S_{\tau_{ij}}$ -pre-open set, $S_{\tau_{ij}}$ -semi-open set, $S_{\tau_{ij}}$ - α -open set, $S_{\tau_{ij}}$ - α - T_0 -space, $S_{\tau_{ij}}$ - α - T_1 -space, $S_{\tau_{ij}}$ - α - T_2 -space.

1 Introduction

In 1988, Aray and Nour[2] was introduced separation axioms in bitopological spaces. The supra topological spaces have been introduced by Mashhour [14] in 1983. In topological space the arbitrary union condition is enough to have a supra topological space. Here every topological space is a supra topological space but the converse is not always true. Sreeja and Janaki [18] has discussed a new type of separation axioms in topological spaces in 2012. In 1992, Kar, Bhattacharyya[11] have been discussed pre open sets in bitopological spaces. In 1981, Bose[3], has introduced semi-open sets, semi-continuity and semi-open mappings in bitopological spaces. In 2008, Devi, Sampathkumar and Caldas[6] introduced the supra- α -open set. Gowri and Rajayal[8] introduced supra bitopological spaces and discussed basic properties of supra pairwise separation axioms in supra bitopological spaces. In this paper we introduce and investigate $S_{\tau_{ij}}$ -pre-open, $S_{\tau_{ij}}$ -semi-open, $S_{\tau_{ij}}$ - α -open (res. closed) sets and $S_{\tau_{ij}}$ - α -separation axioms and $S_{\tau_{ij}}$ - α -separation axioms in supra bitopological spaces.

2 Preliminaries

Definition 2.1 [14] (X, S_{τ}) is said to be a supra topological space if it is satisfying these conditions: (1) $X, \emptyset \in S_{\tau}$

(2) The union of any number of sets in S_{τ} belongs to S_{τ} .

Definition 2.2 [14] Each element $A \in S_{\tau}$ is called a supra open set in (X, S_{τ}) , and its complement is called a supra closed set in (X, S_{τ}) .

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 399

Definition 2.3 [14] If (X, S_{τ}) is a supra topological spaces, $A \subseteq X$, $A \neq \emptyset$, S_{τ_A} is the class of all intersection of A with each element in S_{τ} , then (A, S_{τ_A}) is called a supra subspace of (X, S_{τ}) .

Definition 2.4 [14] The supra closure of the set A is denoted by S_{τ} -cl(A) and is defined as S_{τ} -cl(A)= $\cap \{B : B \text{ is a supra closed and } A \subseteq B\}$.

Definition 2.5 [14] The supra interior of the set A is denoted by S_{τ} -int(A) and is defined as S_{τ} -int(A)= \cup {B : B is a supra open and B \subseteq A}.

Definition 2.6 [6] The set A of X is called a supra α - open set, if $A \subseteq$ supra int(supra cl(supra int(A))). The complement of a supra α - open set is a supra α - closed set.

Definition 2.7 [7] If S_{τ_1} and S_{τ_2} are two supra topologies on a non-empty set X, then the triplet $(X, S_{\tau_1}, S_{\tau_2})$ is said to be a supra bitopological space.

Definition 2.8 [7] Each element of S_{τ_i} is called a supra τ_i -open sets in $(X, S_{\tau_1}, S_{\tau_2})$. Then the complement of S_{τ_i} -open sets are called a supra τ_i -closed sets, for i = 1, 2.

Definition 2.9 [7] If $(X, S_{\tau_1}, S_{\tau_2})$ is a supra bitopological space, $Y \subseteq X$, $Y \neq \emptyset$ then $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is a supra bitopological subspace of $(X, S_{\tau_1}, S_{\tau_2})$ if $S_{\tau_1^*} = \{U \cap Y; U \text{ is a } S_{\tau_1} - \text{ open in } X\}$ and $S_{\tau_2^*} = \{V \cap Y; V \text{ is a } S_{\tau_2} - \text{ open in } X\}.$

Definition 2.10 [7] The supra τ_i -closure of the set A is denoted by S_{τ_i} -cl(A) and is defined as S_{τ_i} -cl(A)= \cap {B : B is a S_{τ_i} -closed and $A \subseteq B$, for i = 1, 2}.

Definition 2.11 [7] The supra τ_i -interior of the set A is denoted by S_{τ_i} -int(A) and is defined as S_{τ_i} -int $(A) = \cup \{B : B \text{ is a } S_{\tau_i} - open \text{ and } B \subseteq A, for i = 1, 2\}.$

Definition 2.12 [7] A supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is called a supra pairwise T_0 if for each pair of distinct points $x, y \in X$, $x \neq y$, there is a S_{τ_1} -open set U and S_{τ_2} -open set V such that $x \in U$, $y \notin U$ or $y \in V$, $x \notin V$.

Definition 2.13 [7] A supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is called a supra pairwise T_1 if for each pair of distinct points $x, y \in X$, $x \neq y$, there is a S_{τ_1} -open set U and S_{τ_2} -open set V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Definition 2.14 [7] A supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is called a supra pairwise T_2 if for each pair of distinct points $x, y \in X$, $x \neq y$, there is a S_{τ_1} -open set U and S_{τ_2} -open set V such that $x \in U$ and $y \in V$, $U \cap V = \emptyset$.

Proposition 2.15 [8] Let $(X, S_{\tau_1}, S_{\tau_2})$ be supra bitopological spaces, if U and V are S_{τ_i} -open sets then $U \cup V$ also S_{τ_i} -open, for i = 1, 2.

Proposition 2.16 [8] Let $(X, S_{\tau_1}, S_{\tau_2})$ be supra bitopological spaces, if U and V are S_{τ_i} -closed sets then $U \cap V$ also S_{τ_i} -closed, for i = 1, 2.

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 400

3 Supra α -open sets in supra bitopological spaces

Definition 3.1 Let $(X, S_{\tau_1}, S_{\tau_2})$ be a supra bitopological space, $A \subseteq X$, A is said to be $S_{\tau_{ij}}$ -pre-open (briefly $S_{\tau_{ij}}$ -p-open), if $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A)), where $i \neq j$, i, j = 1, 2.

Definition 3.2 Let $(X, S_{\tau_1}, S_{\tau_2})$ be a supra bitopological space, $A \subseteq X$, A is said to be $S_{\tau_{ij}}$ -semi-open (briefly $S_{\tau_{ij}}$ -s-open), if $A \subseteq S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(A)), where $i \neq j$, i, j = 1, 2.

Definition 3.3 Let $(X, S_{\tau_1}, S_{\tau_2})$ be a supra bitopological space, $A \subseteq X$, A is said to be $S_{\tau_{ij}}$ - α -open, if $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(A))), where $i \neq j$, i, j = 1, 2.

Remark 3.4 The family of all $S_{\tau_{ij}}$ -p-open (res. $S_{\tau_{ij}}$ -s-open and $S_{\tau_{ij}}$ - α -open) sets of X is denoted by $S_{\tau_{ij}}$ -PO(X) (res. $S_{\tau_{ij}}$ -SO(X) and $S_{\tau_{ij}}$ - α O(X)), where $i \neq j$, i, j = 1, 2.

 $\begin{array}{l} \textbf{Example 3.5 } Let \ X = \{a, b, c\} \\ S_{\tau_1} = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}, \\ S_{\tau_2} = \{\emptyset, X, \{b\}, \{a, c\}, \{b, c\}\}, \\ S_{\tau_{12}}\text{-}PO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}, \\ S_{\tau_{12}}\text{-}SO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}, \\ S_{\tau_{12}}\text{-}\alpha O(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}. \end{array}$

Definition 3.6 The complement of $S_{\tau_{ij}}$ -p-open (res. $S_{\tau_{ij}}$ -s-open and $S_{\tau_{ij}}$ - α -open) set is said to be $S_{\tau_{ij}}$ -p-closed (res. $S_{\tau_{ij}}$ -s-closed and $S_{\tau_{ij}}$ - α -closed). The family of all $S_{\tau_{ij}}$ -p-closed (res. $S_{\tau_{ij}}$ -s-closed and $S_{\tau_{ij}}$ - α -closed) sets of X is denoted by $S_{\tau_{ij}}$ -PC(X) (res. $S_{\tau_{ij}}$ -SC(X) and $S_{\tau_{ij}}$ - α C(X)), where $i \neq j$, i, j = 1, 2.

Definition 3.7 The $S_{\tau_{ij}}$ - α -closure of a set A is denoted by $S_{\tau_{ij}}$ - α -cl(A) and defined as, $S_{\tau_{ij}}$ - α -cl $(A) = \cap \{B : B \text{ is a } S_{\tau_{ij}}$ - α -closed set and $A \subseteq B\}$.

Definition 3.8 The $S_{\tau_{ij}}$ - α -interior of a set A is denoted by $S_{\tau_{ij}}$ - α -int(A) and defined as, $S_{\tau_{ij}}$ - α -int $(A) = \cup \{B : B \text{ is a } S_{\tau_{ij}}$ - α -open set and $A \supseteq B\}$.

Theorem 3.9 Every S_{τ_i} -open set is $S_{\tau_{ij}}$ - α -open set, for i = 1, 2.

Proof: Let A be a S_{τ_i} -open set in $(X, S_{\tau_1}, S_{\tau_2})$. since $A \subseteq S_{\tau_j}$ -cl(A), then S_{τ_i} -int(A). Hence $A \subseteq S_{\tau_i}$ -int $(S_{\tau_i}$ -cl(S_{τ_i} -int(A))). Therefore A is $S_{\tau_{ij}}$ - α -open set. \Box

Theorem 3.10 Every S_{τ_i} -open set is $S_{\tau_{ij}}$ -p-open set, for i = 1, 2.

Proof: Obvious.

Theorem 3.11 Every S_{τ_i} -open set is $S_{\tau_{ij}}$ -s-open set, for i = 1, 2.

Proof: The proof of the theorem is similar to the proof of Theorem, 3.9.

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 401

Theorem 3.12 Every $S_{\tau_{ij}}$ - α -open set is $S_{\tau_{ij}}$ -p-open set.

Proof: Let A be a $S_{\tau_{ij}}$ - α -open set in $(X, S_{\tau_1}, S_{\tau_2})$. Therefore $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ cl $(S_{\tau_i}$ -int(A))). It is obvious that S_{τ_i} -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int $(A))) \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A)). Hence $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A)). Therefore A is $S_{\tau_{ij}}$ -p-open set. \Box

Theorem 3.13 Every $S_{\tau_{ij}}$ - α -open set is $S_{\tau_{ij}}$ -s-open set.

Proof: Obvious.

Theorem 3.14 Finite union of $S_{\tau_{ij}}$ - α -open sets is always a $S_{\tau_{ij}}$ - α -open set.

Proof: Let A and B be two $S_{\tau_{ij}}$ - α -open sets. Then $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(A)))and $B \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(B))). By Proposition 2.15, this implies $A \cup B \subseteq S_{\tau_i}$ -int $(S_{\tau_i}$ -cl $(S_{\tau_i}$ -int $(A \cup B)))$. Therefore $A \cup B$ is a $S_{\tau_{ij}}$ - α -open set. \Box

Remark 3.15 Finite intersection of $S_{\tau_{ij}}$ - α -open sets may fail to be a $S_{\tau_{ij}}$ - α -open set as shown in the following example.

Example 3.16 Let $X = \{a, b, c\}$ $S_{\tau_1} = \{\emptyset, X, \{a, b\}, \{b, c\}\},$ $S_{\tau_2} = \{\emptyset, X, \{a, c\}, \{b, c\}\},$ $S_{\tau_{12}} \cdot \alpha O(X) = \{\emptyset, X, \{a, b\}, \{b, c\}\}.$ Here $\{a, b\}, \{b, c\}$ are $S_{\tau_{12}} \cdot \alpha O(X)$ but their intersection is not a $S_{\tau_{12}} \cdot \alpha$ -open set.

Theorem 3.17 Finite intersection of $S_{\tau_{ij}}$ - α -closed sets is always a $S_{\tau_{ij}}$ - α -closed set.

Proof: Let A and B be two $S_{\tau_{ij}}$ - α -closed sets. Then $A \subseteq S_{\tau_i}$ -cl $(S_{\tau_j}$ -int $(S_{\tau_i}$ -cl(A)))and $B \subseteq S_{\tau_i}$ -cl $(S_{\tau_j}$ -int $(S_{\tau_i}$ -cl(B))). By Proposition 2.16, this implies $A \cap B \subseteq S_{\tau_i}$ -cl $(S_{\tau_i}$ -int $(S_{\tau_i}$ -cl $(A \cap B)))$. Therefore $A \cap B$ is a $S_{\tau_{ij}}$ - α -closed set. \Box

Remark 3.18 Finite union of $S_{\tau_{ij}}$ - α -closed sets may fail to be a $S_{\tau_{ij}}$ - α -closed set as shown in the following example.

Example 3.19 Let $X = \{a, b, c, d\}$ $S_{\tau_1} = \{\emptyset, X, \{a, b\}, \{b, c\}\}.$ $S_{\tau_2} = \{\emptyset, X, \{a, c\}, \{b, c\}\}.$ $S_{\tau_{12}} \cdot \alpha C(X) = \{\emptyset, X, \{c, d\}, \{a, d\}\}.$ Here $\{a, d\}, \{c, d\}$ are $S_{\tau_{12}} \cdot \alpha C(X)$ but their union is not a $S_{\tau_{12}} \cdot \alpha$ -closed set.

Theorem 3.20 A subset A of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α -open set if and only if A is $S_{\tau_{ij}}$ -p-open set.

Proof: Let A be a subset of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$. Let A be a $S_{\tau_{ij}}$ - α -open set. Therefore $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(A)). It is obvious that S_{τ_i} -int $(S_{\tau_j}$ -cl $(S_{\tau_i}$ -int $(A))) \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A). Hence $A \subseteq S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A)). Therefore A is $S_{\tau_{ij}}$ -p-open set.

Theorem 3.21 A subset A of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α -open set if and only if A is $S_{\tau_{ij}}$ -s-open set.

Proof: The proof of the theorem is similar to the proof of Theorem, 3.21.

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 402

4 Supra α - separation axioms in supra bitopological spaces

Definition 4.1 If $(X, S_{\tau_1}, S_{\tau_2})$ is a supra bitopological space, for all $x, y \in X$, $x \neq y$, then there exist a $S_{\tau_{ij}}$ - α -open sets U and V such that $x \in U, y \notin U$ or $y \in V, x \notin V$. Then $(X, S_{\tau_1}, S_{\tau_2})$ is called a $S_{\tau_{ij}}$ - α - T_0 -space.

Theorem 4.2 If $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α - T_0 -space and $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is a supra bitopological subspace of $(X, S_{\tau_1}, S_{\tau_2})$ then $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is also a $S_{\tau_{ij}}$ - α - T_0 -space.

Proof: Suppose x, $y \in X$, $x \neq y$. Since $Y \subseteq X$, x, $y \in X$. Since $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}} - \alpha - T_0$ -space, there exist a $S_{\tau_{ij}} - \alpha$ -open sets U and V such that $x \in U$, $y \notin U$ or $y \in V$, $x \notin V$. Then $U \cap Y$, $V \cap Y$ are $S_{\tau_{ij}} - \alpha$ -open sets in Y repectively. Such that $x \in U \cap Y$, $y \notin U \cap Y$ or $y \in V \cap Y$, $x \notin V \cap Y$. Hence $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is also a $S_{\tau_{ij}} - \alpha - T_0$ -space.

Theorem 4.3 Let $(X, S_{\tau_1}, S_{\tau_2})$, $(X, S_{\tau'_1}, S_{\tau'_2})$ be two supra bitopological spaces. $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}}$ - α - T_0 -space and f is a supra open bijective function then $(X, S_{\tau'_1}, S_{\tau'_2})$ is also a $S_{\tau_{ij}}$ - α - T_0 -space.

Proof: Suppose that $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}} - \alpha - T_0$ -space. Let $x', y' \in X', x' \neq y'$, since f is bijective function then there exist $x, y \in X$ such that x' = f(x), y' = f(y) and $x \neq y$. Since $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}} - \alpha - T_0$ -space, there exist a $S_{\tau_{ij}} - \alpha$ -open sets U and V such that $x \in U, y \notin U$ or $y \in V, x \notin V$. Clearly $f(U) \subseteq X'$ and $f(V) \subseteq X'$, since f is a supra open function, f(U) and f(V) are $S_{\tau_{ij}} - \alpha$ -open sets in X'. Also $f(x) \in f(U)$, $f(y) \notin f(U)$ or $f(y) \in f(V)$, $f(x) \notin f(V)$. Hence $(X, S_{\tau'_1}, S_{\tau'_2})$ is also a $S_{\tau_{ij}} - \alpha - T_0$ -space. \Box

Definition 4.4 If $(X, S_{\tau_1}, S_{\tau_2})$ is a supra bitopological space, for all $x, y \in X$, $x \neq y$, then there exist a $S_{\tau_{ij}}$ - α -open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. Then $(X, S_{\tau_1}, S_{\tau_2})$ is called a $S_{\tau_{ij}}$ - α - T_1 -space.

Theorem 4.5 If $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α - T_0 -space and $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is a supra bitopological subspace of $(X, S_{\tau_1}, S_{\tau_2})$ then $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is also a $S_{\tau_{ij}}$ - α - T_1 -space.

Proof: The theorem will be proved by using the definition of $S_{\tau_{ij}}$ - α - T_1 -space with the idea of the proof of Theorem, 4.2.

Theorem 4.6 If $(X, S_{\tau_1}, S_{\tau_2})$, $(X, S_{\tau'_1}, S_{\tau'_2})$ are two supra bitopological spaces, $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}}$ - α - T_1 -space and f is a supra open bijective function then $(X, S_{\tau'_1}, S_{\tau'_2})$ is also a $S_{\tau_{ij}}$ - α - T_1 -space.

Proof: The proof is similar to the way of Theorem, 4.5.

Definition 4.7 If $(X, S_{\tau_1}, S_{\tau_2})$ is a supra bitopological space, for all $x, y \in X$, $x \neq y$, then there exist a $S_{\tau_{ij}}$ - α -open sets U and V such that $x \in U, y \in V$, $U \cap V = \emptyset$. Then $(X, S_{\tau_1}, S_{\tau_2})$ is called a $S_{\tau_{ij}}$ - α - T_2 -space.

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 403

Example 4.8 Let $X = \{a, b, c\}$ $S_{\tau_1} = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\},$ $S_{\tau_2} = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\},$ $S_{\tau_{12}} \cdot \alpha O(X) = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$ Let $a, b \in X$, then there exist $S_{\tau_{12}} \cdot \alpha$ -open sets of X, $U = \{a\}$ and $V = \{b, c\},$ $U \cap V = \emptyset.$ Let $b, c \in X$, then there exist $S_{\tau_{12}} \cdot \alpha$ -open sets of X, $U = \{a, b\}$ and $V = \{c\},$ $U \cap V = \emptyset.$ Let $a, c \in X$, then there exist $S_{\tau_{12}} \cdot \alpha$ -open sets of X, $U = \{a, b\}$ and $V = \{c\},$ $U \cap V = \emptyset.$

Theorem 4.9 If $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}} - \alpha - T_2$ -space and $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is a supra bitopological subspace of $(X, S_{\tau_1}, S_{\tau_2})$ then $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is also a $S_{\tau_{ij}} - \alpha - T_2$ -space.

Proof: Suppose x, $y \in X$, $x \neq y$. Since $Y \subseteq X$, x, $y \in X$. Since $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α - T_2 -space, then there exist a $S_{\tau_{ij}}$ - α -open sets U and V such that $x \in U$, and $y \in V$, $U \cap V = \emptyset$. Then $U \cap Y$, $V \cap Y$ are $S_{\tau_{ij}}$ - α -open sets in Y respectively, such that $x \in U \cap Y$, $y \in V \cap Y$, $U \cap V = (U \cap Y) \cap (V \cap Y)$ $= (U \cap Y) \cap Y$ $= \emptyset \cap Y$ $= \emptyset.$

Hence $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is also $S_{\tau_{ij}}$ - α - T_2 -space.

Theorem 4.10 If $(X, S_{\tau_1}, S_{\tau_2})$, $(X, S_{\tau'_1}, S_{\tau'_2})$ are two supra bitopological spaces, $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}}$ - α - T_2 -space and f is a supra open bijective function then $(X, S_{\tau'_1}, S_{\tau'_2})$ is also $S_{\tau_{ij}}$ - α - T_2 -space.

Proof: The proof is similarly to the proof of Theorem, 4.3.

5 Some relationships between two Classes supra pairwise separation axioms and $S_{\tau_{ij}}$ - α -separation axioms

Theorem 5.1 Every supra pairwise T_2 -space is $S_{\tau_{ij}}$ - α - T_2 -space.

Proof: Let $(X, S_{\tau_1}, S_{\tau_2})$ be supra pairwise T_2 -space and let $x, y \in X, x \neq y$, then there exist U and V S_{τ_i} -open sets in X such that $x \in U$ and $y \in V, U \cap V = \emptyset$, for i = 1,2. Since every S_{τ_i} -open set is $S_{\tau_{ij}}$ - α -open set. Then U and V are $S_{\tau_{ij}}$ - α -open sets in X such that $x \in U$ and $y \in V, U \cap V = \emptyset$. Hence $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α - T_2 -space.

Theorem 5.2 Every supra pairwise T_1 -space is $S_{\tau_{ij}}$ - α - T_1 -space.

Proof: Let $(X, S_{\tau_1}, S_{\tau_2})$ be supra pairwise T_1 -space, and let $x, y \in X, x \neq y$, then there exist U and V S_{τ_i} -open sets in X such that $x \in U, y \notin U$ and $y \in V, x \notin V$, for i = 1, 2.

Since every S_{τ_i} -open set is a $S_{\tau_{ij}}$ - α -open set. Then U and V are $S_{\tau_{ij}}$ - α -open sets in X such that $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}}$ - α - T_1 -space.

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 404

Theorem 5.3 Every supra pairwise T_0 -space is a $S_{\tau_{ij}}$ - α - T_0 -space.

Proof: The way of the proof is similar to the proof of Theorem, 5.2.

Theorem 5.4 Every $S_{\tau_{ij}}$ - α - T_2 -space is a $S_{\tau_{ij}}$ - α - T_1 -space.

Proof: Let $(X, S_{\tau_1}, S_{\tau_2})$ be $S_{\tau_{ij}} - \alpha - T_2$ -space and let $x, y \in X, x \neq y$, then there exist $S_{\tau_{ij}} - \alpha$ -open sets U and V such that $x \in U$, and $y \in V$, $U \cap V = \emptyset$. Since $U \cap V = \emptyset$, this implies $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence $(X, S_{\tau_1}, S_{\tau_2})$ is $S_{\tau_{ij}} - \alpha - T_1$ -space.

Theorem 5.5 Every $S_{\tau_{ij}}$ - α - T_1 -space is a $S_{\tau_{ij}}$ - α - T_0 -space.

Proof: Let $(X, S_{\tau_1}, S_{\tau_2})$ be $S_{\tau_{ij}} - \alpha - T_1$ -space, and let $x, y \in X, x \neq y$, and there exist $S_{\tau_{ij}} - \alpha$ -open sets U and V in X such that $x \in U, y \notin U$ and $y \in V, x \notin V$. This means that there exist U and V $S_{\tau_{ij}} - \alpha$ -open sets in X such that $x \in U, y \notin U$ or $y \in V, x \notin V$. Hence $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}} - \alpha - T_0$ -space.

Theorem 5.6 Every $S_{\tau_{ii}}$ - α - T_2 -space is a $S_{\tau_{ii}}$ - α - T_0 -space.

Proof: Let $(X, S_{\tau_1}, S_{\tau_2})$ be $S_{\tau_{ij}} - \alpha - T_2$ -space, and let $x, y \in X, x \neq y$, then there exist $S_{\tau_{ij}} - \alpha$ -open sets U and V such that $x \in U$, and $y \in V, U \cap V = \emptyset$. Since $U \cap V = \emptyset$, this implies $x \in U, y \notin U$ or $y \in V, x \notin V$. Hence $(X, S_{\tau_1}, S_{\tau_2})$ is a $S_{\tau_{ij}} - \alpha - T_0$ -space.

Remark 5.7 From the above results, we conclude that the relation between two classes of supra pairwise separation axioms and $S_{\tau_{ij}}$ - α -separation axioms.

 $\begin{array}{ccc} Supra \ pairwise \ T_2\text{-}space \Rightarrow S_{\tau_{ij}}\text{-}\alpha\text{-}T_2\text{-}space \\ & \Downarrow & & \Downarrow \\ Supra \ pairwise \ T_1\text{-}space \Rightarrow S_{\tau_{ij}}\text{-}\alpha\text{-}T_1\text{-}space \\ & \Downarrow & & \Downarrow \\ Supra \ pairwise \ T_0\text{-}space \Rightarrow S_{\tau_{ij}}\text{-}\alpha\text{-}T_0\text{-}space \end{array}$

6 Conclusion

In this paper, we introduced notion of $S_{\tau_{ij}}$ - α -open set and $S_{\tau_{ij}}$ - α -separation axioms. Also investigate the relationship between supra pairwise separation axioms and $S_{\tau_{ij}}$ - α -separation axioms.

References

- S.P. Arya and T.M. Nour, Separation axioms for bitopological spaces, Indian Jr.Pure appl.Math., 19(1),(1988), 42-50.
- [2] Hardi N. Aziz, Dilan F. Ahamed and Hero M. Salih, New types of separation axioms in bitopological spaces, zanco Jr. of pure and applied sciences, 27(4)(2015), 20-26.

ISSN: 2231-5373

http://www.ijmttjournal.org

- [3] S. Boss, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc. 73(1981),237-246.
- [4] K. Chandrasekhara Rao and R. Gowri, Some separation axioms of bičech closure spaces, Antartica.Jr.Math, 4(2),(2007), 167-173.
- [5] A. Csaszar, Separation axioms for generalized topologies, Acta Math.Hungar, 104,(2004), 63-69.
- [6] R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and supra S α -continuous functions, General Math., Vol.16, Nr.2(2008), 34(1967), 77-84.
- [7] R. Gowri and A. K. R. Rajayal, On supra bitopological spaces, IOSR-Jr. of Mathematics, Vol 13(5), (2017), 55-58
- [8] R. Gowri and A. K. R. Rajayal, Higher separation axioms in supra bitopological spaces, IJMER, ISSN: 2277-7881, Vol 6, 11(3),(2017), 64-71.
- [9] R.C. Jain, The role of regularly open sets in general topology Ph.D. Thesis, Meerut university, Institute of Advanced studies, Meerut, India, 1980.
- [10] J.C. Kelly, bitopological spaces, Proc. London Math. Soc.No.(3), 13(1963), 71-89.
- [11] A. Kar, P. Battacharyya, Bitopological pre open sets, pre continuity and pre open mappings, Indian J. Math. 34(1992), 295-309.
- [12] S. Lal, Pairwise concepts in bitopological spaces, Aust.Jr. Math. soc (ser.A), 26(2015), 241-250.
- [13] B. K. Mahmoud, On supra separation axioms for supra topological spaces, Tirkit Jr. Pure science 22(2)(2017), 117-120.
- [14] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian Jr. Pure and Appl.Math.No.4(14)(1983), 502-510.
- [15] T. M. Nour, A note on five separation axioms in bitopological spaces, Indian Jr.Pure and Appl. Math. 26(7)(1995), 669-674.
- [16] C. W. Patty, Bitopological spaces, Pure math. Jr. 34(1967), 387-392.
- [17] S. Selvanayaki and N. Rajesh, Separation axioms in bitopological spaces, Int.Jr.of computer applications, 35(9), (2011), 975-887.
- [18] D. Sreeja, C. Janaki, A New Type of Separation Axioms in topological spaces, Asian Journal of current Engineering and Maths, 4 Jul-Aug (2012), 199-203.