Regular Elements of the Complete Semigroups of Binary Relations

DidemYeşil Sungur ${ }^{\# 1}$, GiuliTavdgiridze ${ }^{* 2}$, Barış Albayrak ${ }^{\# 3}$, Nino Tsinaridze ${ }^{* 4}$
${ }^{1}$ Canakkale Onsekiz Mart University, Faculty of Science and Art, Department of Mathematics,TURKEY
${ }^{2,4}$ Shota Rustaveli BatumiState University, Faculty of Mathematics, Physics and Computer Sciences, GEORGİA
${ }^{3}$ Canakkale Onsekiz, Mart University, Biga School of Applied Sciences, TURKEY

Abstract—In this paper, we investigate regular elements properties in given semilattice $Q=\left\{T_{1}, T_{2}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$. Additionally, we will calculate the number of regular elements of $B_{X}(D)$ for a finite set X.

Keywords-Semigroups, Binary relation, Regular elements.

I.INTRODUCTION

Let X be an arbitrary nonempty set and B_{X} be semigroup of all binary relations on the set X. If D is a nonempty set of subsets of X which is closed under the union then D is called a complete X - semilattice of unions.

Let $x, y \in X, Y \subseteq X, \alpha \in B_{X}, T \in D, \varnothing \neq D^{\prime} \subseteq D$ and $t \in \breve{D}$. Then we have the following notations,

$$
\begin{aligned}
& y \alpha=\{x \in X \mid(y, x) \in \alpha\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\} \\
& D_{t}=\left\{Z^{\prime} \in D \mid t \in Z^{\prime}\right\}, D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\}, \ddot{D}_{T}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\} \\
& N\left(D, D^{\prime}\right)=\left\{Z \in D \mid Z \subseteq Z^{\prime} \text { forany } Z^{\prime} \in D^{\prime}\right\}, \Lambda\left(D, D^{\prime}\right)=\cup N\left(D, D^{\prime}\right)
\end{aligned}
$$

Let f be an arbitrary mapping from X into D. Then one can construct a binary relation α_{f} on X by $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))$. The set of all such binary relations is denoted by $B_{X}(D)$ and called a complete semigroup of binary relations defined by an X - semilattice of unions D. This structure was comprehensively investigated in Diasamidze [1].

A complete X - semilattice of unions D is an $X I$ - semilattice of unions if $\Lambda\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$ and $Z=\bigcup_{t \in Z} \Lambda\left(D, D_{t}\right)$ for any nonempty element Z of D.
$\alpha \in B_{X}(D)$ is idempotent if $\alpha \circ \alpha=\alpha$ and $\alpha \in B_{X}(D)$ is regular if $\alpha \circ \beta \circ \alpha=\alpha$ for some $\beta \in B_{X}(D)$.

Let D^{\prime} be an arbitrary nonempty subset of the complete $X-$ semilattice of unions D. Set $l\left(D^{\prime}, T\right)=\cup\left(D^{\prime} \backslash D_{T}^{\prime}\right)$. We say that a nonempty element T is a nonlimiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \varnothing$. Also, a nonempty element T said to be limiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\varnothing$. Let $D=\left\{\breve{D}, Z_{1}, Z_{2}, \ldots, Z_{m-1}\right\}$ be finite $X-$ semilattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2} \ldots, P_{m-1}\right\}$ be the family of pairwise nonintersecting subsets of X. If $\varphi=\left(\begin{array}{cccc}\breve{D} & Z_{1} & \cdots & Z_{m-1} \\ P_{0} & P_{1} & \cdots & P_{m-1}\end{array}\right)$ is a mapping from D on $C(D)$ then $\breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup \ldots \cup P_{m-1}$ and $Z_{i}=P_{0} \cup \bigcup_{T \in D \backslash D_{Z}} \varphi(T)$ satisfy.

Definitions and properties of $\Phi\left(D, D^{\prime}\right), \Omega(D), R\left(D^{\prime}\right)$ and $R_{\varphi}\left(D, D^{\prime}\right)$ can be found in [1].

In this paper, we take in particular $Q=\left\{T_{1}, T_{2}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$ subsemilattice of $X-$ semilattice of unions D which the elements are satisfying
$T_{1} \subset T_{3} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, T_{1} \subset T_{3} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}$,
$T_{2} \subset T_{4} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, T_{2} \subset T_{4} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}$,
$T_{2} \subset T_{3} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, T_{2} \subset T_{3} \subset T_{5} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}$,
$T_{2} \cup T_{1}=T_{3,} T_{4} \cup T_{3}=T_{5}, T_{m-2} \cup T_{m-1}=T_{m}, T_{2} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{2} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing$
and $T_{3} \backslash T_{4} \neq \varnothing, T_{m-2} \backslash T_{m-1} \neq \varnothing, T_{m-1} \backslash T_{m-2} \neq \varnothing$.
We will investigate the properties of regular element $\alpha \in B_{X}(D)$ satisfying $V(D, \alpha)=Q$. Moreover, we will calculate the number of regular elements of $B_{X}(D)$ for a finite set X.

Theorem 1.1 [2, Theorem 10] Let α and σ be binary relations of the semigroup $B_{X}(D)$ such that $\alpha \circ \sigma \circ \alpha=\alpha$. If $D(\alpha)$ is some generating set of the semilattice $V(D, \alpha) \backslash\{\varnothing\}$ and $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is a quasinormal representation of the relation α, then $V(D, \alpha)$ is a complete XI - semilattice of unions. Moreover, there exists a complete isomorphism φ between the semilattice $V(D, \alpha)$ and $D^{\prime}=\{T \sigma \mid T \in V(D, \alpha)\}$, that satisfies the following conditions:

1. $\varphi(T)=T \sigma$ and $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$
2. $\bigcup_{\substack{\prime \\ T^{\prime} \in \ddot{D}(\alpha)_{T}}} Y_{T^{\prime}}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$,
3. $Y_{T}^{\alpha} \cap \varphi(T) \neq \varnothing$ for all nonlimiting element T of the set $\ddot{D}(\alpha)_{T}$,
4. If T is a limiting element of the set $\ddot{D}(\alpha)_{T}$, then the equality $\cup B(T)=T$ is always holds for the set $B(T)=\left\{Z \in \ddot{D}(\alpha)_{T} \mid Y_{Z}^{\alpha} \cap \varphi(T) \neq \varnothing\right\}$.

On the other hand, if $\alpha \in B_{X}(D)$ such that $V(D, \alpha)$ is a complete $X I-$ semilattice of unions and if some complete α-isomorphism φ from $V(D, \alpha)$ to a subsemilattice D^{\prime} of D satisfies the conditions $b)-d$) of the theorem, then α is a regular element of $B_{X}(D)$.

Theorem 1.2 [1, Theorem 6.3.5] Let X be a finite set. If φ is a fixed element of the set $\Phi\left(D, D^{\prime}\right)$ and $|\Omega(D)|=m_{0} \quad$ and $\quad q \quad$ is \quad a number of all automorphisms of the semilattice D then $\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot q \cdot\left|R_{\varphi}\left(D, D^{\prime}\right)\right|$.

II. RESULTS

Let X be a finite set, D be a complete $X-$ semilattice of unions and $Q=\left\{T_{1}, T_{2}, T_{3}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$ be a $X-$ subsemilattice of unions of D satisfies the following conditions. The diagram of the Q is shown in the following figure.

$$
\begin{array}{ll}
& T_{1} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, \\
T_{1} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}, \\
T_{m} & T_{2} \subset T_{4} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, \\
T_{m-3} & T_{2} \subset T_{4} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}, \\
T_{m-4} & T_{2} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, \\
T_{6} & T_{2} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-3} \subset T_{m-2} \subset T_{m}, \\
T_{3}, & T_{2} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{2} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing, \\
T_{1} & T_{m-2} \backslash T_{m-1} \neq \varnothing, T_{m-1} \backslash T_{m-2} \neq \varnothing, T_{2} \cup T_{1}=T_{3}, \\
T_{2} & T_{4} \cup T_{3}=T_{5,}, \ldots, T_{m-2} \cup T_{m-1}=T_{m .} .
\end{array}
$$

Let $C(Q)=\left\{P_{i} \mid i=1,2, \ldots, m\right\}$. Then

$$
\begin{gathered}
T_{m}=P_{m} \cup P_{m-1} \cup P_{m-2} \cup \cdots \cup P_{1}, \\
\\
T_{m-1}=P_{m} \cup P_{m-2} \cup \cdots \cup P_{1} \\
T_{m-2}=P_{m} \cup P_{m-1} \cup \cdots \cup P_{1}, \ldots, \\
\\
T_{4}=P_{m} \cup P_{3} \cup P_{2} \cup P_{1}, \\
\\
T_{3}=P_{m} \cup P_{4} \cup P_{2} \cup P_{1}, \\
\\
T_{2}=P_{m} \cup P_{1}, \\
\\
T_{1}=P_{m} \cup P_{4} \cup P_{2}
\end{gathered}
$$

are obtained.
First, we investigate that in which conditions Q is $X I$ - semilattice of unions. We determine the greatest lower bounds of the each semilattice Q_{t} in Q for $t \in T_{m}$. We get,

$$
Q_{t}= \begin{cases}Q & , t \in P_{m} \tag{2.1}\\ \left\{T_{m}, T_{m-2}\right\} & , t \in P_{m-1} \\ \left\{T_{m}, T_{m-1}\right\} & , t \in P_{m-2} \\ \left\{T_{m}, T_{m-1}, T_{m-2}\right\} & , t \in P_{m-3} \\ \left\{T_{m}, T_{m-1}, T_{m-2}, T_{m-3}\right\} & , t \in P_{m-4} \\ \vdots & \\ \left\{T_{m}, \ldots, T_{5}, T_{3}, T_{1}\right\} & , t \in P_{4} \\ \left\{T_{m}, \ldots, T_{4}\right\} & , t \in P_{3} \\ \left\{T_{m}, \ldots, T_{3}, T_{1}\right\} & , t \in P_{2} \\ \left\{T_{m}, \ldots, T_{3}, T_{2}\right\} & , t \in P_{1}\end{cases}
$$

From the Equation (2.1) the greatest lower bounds for each semilattice Q_{t}

$$
\begin{array}{lll}
t \in P_{m} & \Rightarrow N\left(Q, Q_{t}\right)=\varnothing & \Rightarrow \Lambda\left(Q, Q_{t}\right)=\varnothing \\
t \in P_{m-1} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-2}, T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-2} \\
t \in P_{m-2} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-1}, T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-1} \\
t \in P_{m-3} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-3} \\
t \in P_{m-4} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-3} \\
\vdots & \vdots & \vdots \tag{2.2}\\
t \in P_{4} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{1} \\
t \in P_{3} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{4}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{4} \\
t \in P_{2} & \Rightarrow N\left(Q, Q_{t}\right)=\varnothing & \Rightarrow \Lambda\left(Q, Q_{t}\right)=\varnothing \\
t \in P_{1} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{2}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{2}
\end{array}
$$

are obtained. If $t \in P_{m}$ or $t \in P_{2}$, then $\Lambda\left(D, D_{t}\right)=\varnothing \notin D$. So, $P_{m} \cup P_{2}=\varnothing$. Also using the Equation (2.2), we have seen easily $\bigcup_{t \in T_{i}} \Lambda\left(Q, Q_{t}\right) \in D$.

Lemma 2.1 Q is XI - semilattice of unions if and only if $T_{1} \cap T_{4}=\varnothing$
Proof. \Rightarrow : Let Q be a $X I-$ semilattice of unions. Then $P_{m} \cup P_{2}=\varnothing$ and $T_{1}=P_{2}, T_{4}=P_{1} \cup P_{3}$ by Equation (2.1). Therefore $T_{1} \cap T_{4}=\varnothing$ since P_{1}, P_{2} and P_{3} are pairwise disjoint sets.
\Leftarrow If $T_{1} \cap T_{4}=\varnothing$, then $P_{m} \cup P_{2}=\varnothing$. Using the Equation (2.2), we see that $\bigcup_{t \in T_{i}} \Lambda\left(Q, Q_{t}\right)=T_{i}$. So, we have Q is $X I$ - semilattice of unions.

Lemma 2.2 Let $G=\left\{T_{1}, T_{2}, \ldots, T_{m-1}\right\}$ be a generating set of Q. Then the elements $T_{1}, T_{2}, T_{4}, T_{6}, \ldots, T_{m-1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{1}}, \ddot{G}_{T_{2}}, \ddot{G}_{T_{4}}, \ddot{G}_{T_{6}}, \ldots, \ddot{G}_{T_{m-1}}$ respectively and T_{3}, T_{5} is limiting element sof the sets $\ddot{G}_{T_{3}}, \ddot{G}_{T_{5}}$ respectively.

Proof. Definition of \ddot{D}_{T} and $l\left(\ddot{G}_{T_{i}}, T_{i}\right)=\cup\left(\ddot{G}_{T_{i}} \backslash\left\{T_{i}\right\}\right), i \in\{1,2, \ldots, m-1\}$, we find nonlimiting and limiting elements of $\ddot{G}_{T_{i}}$.

$$
\begin{array}{ll}
T_{1} \backslash l\left(\ddot{G}_{T_{1}}, T_{1}\right)=T_{1} \backslash \varnothing \neq \varnothing, & T_{1} \text { nonlimiting element of } \ddot{G}_{T_{1}} \\
T_{2} \backslash l\left(\ddot{G}_{T_{2}}, T_{2}\right)=T_{2} \backslash \varnothing \neq \varnothing, & T_{2} \text { nonlimiting element of } \ddot{G}_{T_{2}} \\
T_{3} \backslash l\left(\ddot{G}_{T_{3}}, T_{3}\right)=T_{3} \backslash T_{3}=\varnothing, & T_{3} \text { limiting element of } \ddot{G}_{T 3} \\
T_{4} \backslash l\left(\ddot{G}_{T_{4}}, T_{4}\right)=T_{4} \backslash T_{2} \neq \varnothing, & T_{4} \text { nonlimiting element of } \ddot{G}_{T_{4}} \\
T_{5} \backslash l\left(\ddot{G}_{T_{5}}, T_{5}\right)=T_{5} \backslash T_{5}=\varnothing, & T_{5} \text { limiting element of } \ddot{G}_{T_{5}} \\
T_{6} \backslash l\left(\ddot{G}_{T_{6}}, T_{6}\right)=T_{6} \backslash T_{5} \neq \varnothing, & T_{6} \text { nonlimiting element of } \ddot{G}_{T_{6}} \\
\vdots & \vdots \\
T_{m-4} \backslash l\left(\ddot{G}_{T_{m-4}}, T_{m-4}\right)=T_{m-4} \backslash T_{m-5} \neq \varnothing, & T_{m-4} \text { nonlimiting element of } \ddot{G}_{T_{m-4}} \\
T_{m-3} \backslash l\left(\ddot{G}_{T_{m-3}}, T_{m-3}\right)=T_{m-3} \backslash T_{m-4} \neq \varnothing, & T_{m-3} \text { nonlimiting element of } \ddot{G}_{T_{m-3}} \\
T_{m-2} \backslash l\left(\ddot{G}_{T_{m-2}}, T_{m-2}\right)=T_{m-2} \backslash T_{m-3} \neq \varnothing, & T_{m-2} \text { nonlimiting element of } \ddot{G}_{T_{m-2}} \\
T_{m-1} \backslash l\left(\ddot{G}_{T_{m-1}}, T_{m-1}\right)=T_{m-1} \backslash T_{m-3} \neq \varnothing, & T_{m-1} \text { nonlimiting element of } \ddot{G}_{T_{m-1}}
\end{array}
$$

Now, we determine properties of a regular element α of $B_{X}(Q)$ where $V(D, \alpha)=Q$ and $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$.

Theorem 2.3 Let $\alpha \in B_{X}(Q)$ with a quasinormal representation of the form $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$ such that $V(D, \alpha)=Q$. Then $\alpha \in B_{X}(D)$ is a regular iff $T_{1} \cap T_{4}=\varnothing$ and for some complete α-isomorphism $\varphi: Q \rightarrow D^{\prime} \subseteq D$, the following conditions are satisfied:

$$
\begin{align*}
& Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right) \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-4}^{\alpha} \supseteq \varphi\left(T_{m-4}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \varphi\left(T_{m-3}\right) \tag{2.3}\\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \varphi\left(T_{m-2}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \varphi\left(T_{m-1}\right) \\
& Y_{4}^{\alpha} \cap \varphi\left(T_{4}\right) \neq \varnothing, Y_{6}^{\alpha} \cap \varphi\left(T_{6}\right) \neq \varnothing, Y_{m-4}^{\alpha} \cap \varphi\left(T_{m-4}\right) \neq \varnothing \\
& Y_{m-3}^{\alpha} \cap \varphi\left(T_{m-3}\right) \neq \varnothing, Y_{m-2}^{\alpha} \cap \varphi\left(T_{m-2}\right) \neq \varnothing, Y_{m-1}^{\alpha} \cap \varphi\left(T_{m-1}\right) \neq \varnothing
\end{align*}
$$

Proof. Let $G=\left\{T_{1}, T_{2}, \ldots, T_{m-1}\right\}$ be a generating set of Q.
\Rightarrow : Since $\alpha \in B_{X}(D)$ is regular and $V(D, \alpha)=Q$ is $X I$ - semilattice of unions, by Theorem 1.1, there exits a complete α-isomorphism $\varphi: Q \rightarrow D^{\prime}$. By Theorem $1.1(a), \varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$. Applying the Theorem 1.1 (b) and

$$
\begin{aligned}
& Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right) \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-4}^{\alpha} \supseteq \varphi\left(T_{m-4}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \varphi\left(T_{m-3}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \varphi\left(T_{m-2}\right) \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \varphi\left(T_{m-1}\right)
\end{aligned}
$$

Moreover, considering that the elements $T_{1}, T_{2}, T_{4}, T_{6}, \ldots, T_{m-1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{1}}$, $\ddot{G}_{T_{2}}, \ddot{G}_{T_{4}}, \ddot{G}_{T_{6}}, \ldots, \ddot{G}_{T_{m-1}}$ respectively and using the Theorem $1.1(c)$, following properties

$$
Y_{4}^{\alpha} \cap \varphi\left(T_{4}\right) \neq \varnothing, Y_{6}^{\alpha} \cap \varphi\left(T_{6}\right) \neq \varnothing, Y_{m-4}^{\alpha} \cap \varphi\left(T_{m-4}\right) \neq \varnothing, \ldots, Y_{m-1}^{\alpha} \cap \varphi\left(T_{m-1}\right) \neq \varnothing
$$

are obtained. Therefore there exists a complete α-isomorphism φ which holds given conditions.
$\Leftarrow:$ Since $V(D, \alpha)=Q, V(D, \alpha)$ is $X I-$ semilattice of unions. Let $\varphi: Q \rightarrow D^{\prime} \subseteq D$ be complete α - isomorphism which holds given conditions. So, considering Equation (2.3), satisfying Theorem 1.1 (a) - (c). Remembering that T_{3} and T_{5} are limiting elements of the sets $\ddot{G}_{T_{3}}$ and $\ddot{G}_{T_{5}}$, we constitute the set $B\left(T_{3}\right)=\left\{Z \in \ddot{G}_{T_{3}} \mid Y_{Z}^{\alpha} \cap \varphi\left(T_{3}\right) \neq \varnothing\right\}$ and $B\left(T_{5}\right)=\left\{Z \in \ddot{G}_{T_{5}} \mid Y_{Z}^{\alpha} \cap \varphi\left(T_{5}\right) \neq \varnothing\right\}$. It has been proved that $\cup B\left(T_{3}\right)=T_{3}$ and $\cup B\left(T_{5}\right)=T_{5}$ in [?, Theorem 3.4]. By Theorem 1.1, we conclude that α is the regular element of the $B_{X}(D)$.

Now we calculate the number of regular elements α, satisfying the hyphothesis of Theorem 2.3. Let $\alpha \in B_{X}(D)$ be a regular element which is quasinormal representation of the form $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$ and $V(D, \alpha)=Q$. Then there exist a complete $\alpha-$ isomorphism $\varphi: Q \rightarrow D^{\prime}=\left\{\varphi\left(T_{1}\right), \varphi\left(T_{2}\right), \ldots, \varphi\left(T_{m}\right)\right\}$ satisfying the hyphothesis of Theorem 2.3. So, $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$. We will denote $\varphi\left(T_{i}\right)=\bar{T}_{i}, i=1,2, \ldots m$. Diagram of the $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ is shown in the following figure. Then the Equation (2.3) reduced to below equation.

$$
\begin{align*}
& Y_{1}^{\alpha} \supseteq \varphi\left(\bar{T}_{1}\right), Y_{2}^{\alpha} \supseteq \varphi\left(\bar{T}_{2}\right), Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(\bar{T}_{4}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{6}^{\alpha} \supseteq \varphi\left(\bar{T}_{6}\right), \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \varphi\left(\bar{T}_{m-2}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \varphi\left(\bar{T}_{m-1}\right), \tag{2.4}\\
& Y_{4}^{\alpha} \cap \varphi\left(\bar{T}_{4}\right) \neq \varnothing, Y_{6}^{\alpha} \cap \varphi\left(\bar{T}_{6}\right) \neq \varnothing, \\
& Y_{m-4}^{\alpha} \cap \varphi\left(\bar{T}_{m-4}\right) \neq \varnothing, Y_{m-3}^{\alpha} \cap \varphi\left(\bar{T}_{m-3}\right) \neq \varnothing, \\
& Y_{m-2}^{\alpha} \cap \varphi\left(\bar{T}_{m-2}\right) \neq \varnothing, Y_{m-1}^{\alpha} \cap \varphi\left(\bar{T}_{m-1}\right) \neq \varnothing
\end{align*}
$$

On the other hand, $\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3} \backslash \bar{T}_{4}, \ldots, \bar{T}_{k+1} \backslash \bar{T}_{k} \quad(k=3,5,6,7, \ldots, m-5, m-2), \ldots, \quad\left(\bar{T}_{m-1} \cap\right.$ $\left.\bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}, \bar{T}_{m-1} \backslash \bar{T}_{m-2}, \bar{T}_{m-2} \backslash \bar{T}_{m-1}, X \backslash \bar{T}_{m}$ are also pairwise disjoint sets and union of these sets equals X.

Lemma 2.4 For every $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$, there exists an ordered system of disjoint mappings $\left\{\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3} \backslash \bar{T}_{4}, \ldots, \bar{T}_{k+1} \backslash \bar{T}_{k}(k=3,5,6,7, \ldots, m-5, m-2)\right.$ $\left.\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}, \bar{T}_{m-2} \backslash \bar{T}_{m-1}, X \backslash \bar{T}_{m}\right\}$.

Proof. Let $f_{\alpha}: X \rightarrow D$ be a mapping satisfying the condition $f_{\alpha}(t)=t \alpha$ for all $t \in X$. We consider the restrictions of the mapping f_{α} as $f_{1 \alpha}, f_{2 \alpha}, f_{4 \alpha}, \ldots, f_{k \alpha}, \ldots, f_{(m-3) \alpha}, f_{(m-2) \alpha}, f_{(m-1) \alpha}, f_{m \alpha}$ on the sets $\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3} \backslash \bar{T}_{4}, \ldots, \bar{T}_{k+1} \backslash \bar{T}_{k} \quad(k=3,5,6,7, \ldots, m-5, m-2)$ $\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}, \bar{T}_{m-2} \backslash \bar{T}_{m-1}, X \backslash \bar{T}_{m}$ respectively.

Now, considering the definition of the sets $Y_{i}^{\alpha},(i=1,2, \ldots, m-1)$ together with the Equation (2.4) we have,

$$
\begin{aligned}
& t \in \bar{T}_{1} \Rightarrow t \in Y_{1}^{\alpha} \Rightarrow f_{1 \alpha}(t)=T_{1}, \forall t \in \bar{T}_{1} \\
& t \in \bar{T}_{2} \Rightarrow t \in Y_{2}^{\alpha} \Rightarrow f_{2 \alpha}(t)=T_{2}, \forall t \in \bar{T}_{2} \\
& t \in \bar{T}_{3} \backslash \bar{T}_{4} \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \Rightarrow f_{4 \alpha}(t)=\left\{T_{1}, T_{2}, T_{3}\right\}, \forall t \in \bar{T}_{3} \backslash \bar{T}_{4} \\
& t \in \bar{T}_{k+1} \backslash \bar{T}_{k} \Rightarrow t \in \bar{T}_{k+1} \backslash \bar{T}_{k} \subseteq \bar{T}_{k+1} \subseteq Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{k+1}^{\alpha} \\
& \quad \Rightarrow f_{k \alpha}(t) \in\left\{T_{1}, T_{2}, \ldots, T_{k+1}\right\}, \forall t \in \bar{T}_{k+1} \backslash \bar{T}_{k}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow t \in \bar{T}_{m-1} \cap \bar{T}_{m-2} \subseteq Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \\
t \in\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \Rightarrow f_{(m-3) \alpha}(t) \in\left\{T_{1}, \ldots, T_{m-3}\right\}, \\
\forall t \in\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \\
t \in \bar{T}_{m-2} \backslash \bar{T}_{m-1} \Rightarrow t \in \bar{T}_{m-2} \subseteq Y_{1}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \\
\Rightarrow f_{(m-1) \alpha}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\}, \forall t \in \bar{T}_{m-2} \backslash \bar{T}_{m-1} \\
t \in X \backslash \bar{T}_{m} \Rightarrow t \in X \backslash \bar{T}_{m} \subseteq X=\bigcup_{i=1}^{m} Y_{i}^{\alpha} \Rightarrow f_{m \alpha}(t) \in Q, \forall t \in X \backslash \bar{T}_{m}
\end{gathered}
$$

Besides, $Y_{k+1}^{\alpha} \cap \bar{T}_{k+1} \neq \varnothing$ so there is an element $t_{k+1} \in Y_{k+1}^{\alpha} \cap \bar{T}_{k+1}$. Then $t_{k+1} \alpha=T_{k+1}$ and $t_{k+1} \in \bar{T}_{k+1}$. If $t_{k+1} \in \bar{T}_{k}$ then $t_{k+1} \in \bar{T}_{k} \subseteq Y_{1}^{\alpha} \cup \cdots \cup Y_{k}^{\alpha}$. Thus $t_{k+1} \alpha \in\left\{T_{1}, \ldots, T_{k}\right\}$ which is in contradiction with the equality $t_{k+1} \alpha=T_{k+1}$. So, there is an element $t_{k+1} \in \bar{T}_{k+1} \backslash \bar{T}_{k}$ such that $f_{k \alpha}\left(t_{k+1}\right)=T_{k+1}$.

Similarly, $f_{(m-3) \alpha}\left(t_{m-3}\right)=T_{m-3}$ for some $t_{m-3} \in\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}, f_{(m-1) \alpha}\left(t_{m-2}\right)=T_{m-2}$ for some $t_{m-2} \in \bar{T}_{m-2} \backslash \bar{T}_{m-1}$. Therefore, for every $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$ there exists an ordered system $\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{m \alpha}\right)$.
On the other hand, suppose that for $\alpha, \beta \in R_{\varphi}\left(Q, D^{\prime}\right)$ which $\alpha \neq \beta$, be obtained $f_{\alpha}=\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{m \alpha}\right)$ and $f_{\beta}=\left(f_{1 \beta}, f_{2 \beta}, \ldots, f_{m \beta}\right)$. If $f_{\alpha}=f_{\beta}$, we get

$$
f_{\alpha}=f_{\beta} \Rightarrow f_{\alpha}(t)=f_{\beta}(t), \forall t \in X \Rightarrow t \alpha=t \beta, \forall t \in X \Rightarrow \alpha=\beta
$$

which contradicts to $\alpha \neq \beta$. Therefore different binary relations's ordered systems are different.
Lemma 2.5 Let Q be an XI - semilattice of unions and $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ be ordered system from X in the semilattice D such that

$$
\begin{aligned}
& f_{1}: \bar{T}_{1} \rightarrow\left\{T_{1}\right\}, f_{1}(t)=T_{1}, \\
& f_{2}: \bar{T}_{2} \rightarrow\left\{T_{2}\right\}, f_{2}(t)=T_{2}, \\
& f_{4}: \bar{T}_{3} \backslash \bar{T}_{4} \rightarrow\left\{T_{1}, T_{2}, T_{3}\right\}, f_{4}(t) \in\left\{T_{1}, T_{2}, T_{3}\right\}, \\
& f_{k}: \bar{T}_{k+1} \backslash \bar{T}_{k} \rightarrow\left\{T_{1}, \ldots, T_{k+1}\right\}, f_{k}(t) \in\left\{T_{1}, \ldots, T_{k+1}\right\} \\
& \text { and } f_{k}\left(t_{k+1}\right)=T_{k+1} \exists_{k+1} \in \bar{T}_{k+1} \backslash \bar{T}_{k}, \\
& f_{m-3}:\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \rightarrow\left\{T_{1}, \ldots, T_{m-3}\right\}, f_{m-3}(t) \in\left\{T_{1}, \ldots, T_{m-3}\right\} \\
& \text { and } f_{m-3}\left(t_{m-3}\right)=T_{m-3} \exists t_{m-3} \in\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}, \\
& f_{m-1}: \bar{T}_{m-2} \backslash \bar{T}_{m-1} \rightarrow\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\}, f_{m-1}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\} \\
& \text { and } f_{m-1}\left(t_{m-2}\right)=T_{m-2} \exists t_{m-2} \in \bar{T}_{m-2} \backslash \bar{T}_{m-1}, \\
& f_{m}: X \backslash \bar{T}_{m} \rightarrow Q, f_{m-1}(t) \in Q .
\end{aligned}
$$

Then $\beta=\bigcup_{x \in X}(\{x\} \times f(x)) \in B_{X}(D)$ is regular and φ is complete β - isomorphism. So $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Proof. First we see that $V(D, \beta)=Q$. Considering $V(D, \beta)=\{Y \beta \mid Y \in D\}$, the properties of f mapping, $\bar{T}_{i} \beta=\bigcup_{x \in \bar{T}_{i}} x \beta$ and $D^{\prime} \subseteq D$, we get $V(D, \beta)=Q$.

Also, $\beta=\bigcup_{T \in V\left(X^{*}, \beta\right)}\left(Y_{T}^{\beta} \times T\right)$ is quasinormal representation of β since $\varnothing \notin Q$. From the definition of β, $f(x)=x \beta$ for all $x \in X$. It is easily seen that $V\left(X^{*}, \beta\right)=V(D, \beta)=Q$. We get $\beta=\bigcup_{i=1}^{m}\left(Y_{i}^{\beta} \times T_{i}\right)$.

On the other hand

$$
\begin{aligned}
& t \in \bar{T}_{1} \Rightarrow t \beta=f(t)=T_{1} \Rightarrow t \in Y_{1}^{\beta} \Rightarrow \bar{T}_{1} \subseteq Y_{1}^{\beta} \\
& t \in \bar{T}_{2} \Rightarrow t \beta=f(t)=T_{2} \Rightarrow t \in Y_{2}^{\beta} \Rightarrow \bar{T}_{2} \subseteq Y_{2}^{\beta}, \\
& t \in \bar{T}_{4} \Rightarrow t \beta=f(t)=\left\{T_{2}, T_{4}\right\} \Rightarrow t \in Y_{2}^{\beta} \cup Y_{4}^{\beta} \Rightarrow \bar{T}_{4} \subseteq Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \\
& t \in \bar{T}_{k},(k=3,5,6, \ldots, m-5, m-2) \Rightarrow t \beta \in\left\{T_{1}, T_{2}, \ldots, T_{k}\right\} \Rightarrow t \in Y_{1}^{\beta} \cup Y_{2}^{\beta} \cup \cdots \cup Y_{k}^{\beta} \\
& \Rightarrow Y_{1}^{\beta} \cup Y_{2}^{\beta} \cup \cdots \cup Y_{k}^{\beta} \supseteq \bar{T}_{k} \\
& t \in \bar{T}_{m-3} \Rightarrow t \beta \in\left\{T_{1}, \ldots, T_{m-3}\right\} \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \\
& \Rightarrow Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \bar{T}_{m-3} \\
& \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \\
& t \in \bar{T}_{m-1} \Rightarrow t \beta \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\} \\
& \Rightarrow Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \bar{T}_{m-1}
\end{aligned}
$$

Also, for $k=4,6$ by using $f_{k-1}\left(t_{k}\right)=T_{k}, \exists t \in \bar{T}_{k+1} \backslash \bar{T}_{k}$, we obtain $Y_{k}^{\beta} \cap \bar{T}_{k} \neq \varnothing$. Similarly, $Y_{m-4}^{\alpha} \cap \varphi\left(\bar{T}_{m-4}\right) \neq \varnothing, \quad Y_{m-3}^{\beta} \cap \bar{T}_{m-3} \neq \varnothing, \quad Y_{m-2}^{\beta} \cap \bar{T}_{m-2} \neq \varnothing$ and $Y_{m-1}^{\beta} \cap \bar{T}_{m-1} \neq \varnothing$. Therefore the mapping $\varphi: Q \rightarrow D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ to be defined $\varphi\left(T_{i}\right)=\bar{T}_{i}$ satisfies the conditions in the Equation (2.4) for β. Hence φ is complete β - isomorphism because of $\varphi(T) \beta=\bar{T} \beta=T$, for all $T \in V(D, \beta)$. By Theorem 2.3, $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Therefore, there is one to one correspondence between the elements of $R_{\varphi}\left(Q, D^{\prime}\right)$ and the set of ordered systems of disjoint mappings.

Theorem 2.6 Let X be a finite set and Q be $X I-$ semilattice and $m \geq 7$. If $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ is α-isomorphic to Q and $\Omega(Q)=m_{0}$, then

$$
\begin{aligned}
& \left|R\left(D^{\prime}\right)\right|=2 m_{0} 3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\left((k+1)^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}-k^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}\right) \\
& \left((m-3)^{\left.\mid \bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \mid}-(m-4)^{\left.\mid \bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \mid}\right) \\
& \left((m-2)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}-(m-3)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}\right) m^{\left|X \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

Proof. Lemma 2.4 and Lemma 2.5 show us that the number of the ordered system of disjoint mappings $\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{(m-1) \alpha}\right)$ is equal to $\left|R_{\varphi}\left(Q, D^{\prime}\right)\right|$, which $\alpha \in B_{X}(D)$ regular element $V(D, \alpha)=Q$ and $\varphi: Q \rightarrow D^{\prime}$ is a complete α-isomorphism.

The number of the mappings $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, \ldots, f_{(m-5) \alpha}, f_{(m-4) \alpha}, f_{(m-3) \alpha}, f_{(m-2) \alpha}$ and $f_{(m-1) \alpha}$ are respectively as

$$
1,1,3^{\left|\bar{T}_{3}\right| \bar{T}_{4} \mid},(k+1)^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}-k^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}(k=3,5,6, \ldots, m-5, m-2)
$$

$$
\begin{aligned}
& (m-3)^{\left|\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5}\right|}-(m-4)^{\left|\left(\bar{T}_{m-1} \cap \bar{T}_{m-2}\right)\right| \bar{T}_{m-5} \mid}, \\
& (m-2)^{\left|\bar{T}_{m-2}\right| \bar{T}_{m-1} \mid}-(m-3)^{\left|\bar{T}_{m-2}\right| \bar{T}_{m-1} \mid}, m^{\left|X \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

The number of all automorphisms of the semilattice Q is $q=2$. Therefore by using, there is one to one correspondence between the elements of $R_{\varphi}\left(Q, D^{\prime}\right)$ and the set of ordered systems of disjoint mappings and Theorem 1.2, then

$$
\begin{aligned}
& \left|R\left(D^{\prime}\right)\right|=2 m_{0} 3^{\left|\bar{T}_{3}\right| \bar{T}_{4} \mid}\left((k+1)^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}-k^{\left|\bar{T}_{k+1}\right| \bar{T}_{k} \mid}\right) \\
& \left((m-3)^{\left.\mid \bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \mid}-(m-4)^{\left.\mid \bar{T}_{m-1} \cap \bar{T}_{m-2}\right) \backslash \bar{T}_{m-5} \mid}\right) \\
& \left((m-1)^{\left|\bar{T}_{m-2}\right| \bar{T}_{m-1} \mid}-(m-3)^{\left|\bar{T}_{m-2}\right| \bar{T}_{m-1} \mid}\right) m^{\left|x \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

III.ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the Commission of the Scientific Research Projects of Canakkale Onsekiz Mart University (Project No: FBA-2017-1299)

References

[1] Y. Diasamidze, "Complete Semigroups of Binary Relations", Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 117, No. 4, 4271-4319, 2003.
[2] Diasamidze Ya., Makharadze Sh., "Complete Semigroups of Binary Relations Defined by X - Semilattices of Unions",Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 166, No. 5, 615-633, 2010.

