Description of Some Right Unit Elements of the Complete Semigroups of Binary Relations of the Class $\Sigma_{6}(X, 8)$.

Didem Yeşil Sungur ${ }^{\# 1}$,GiuliTavdgiridze ${ }^{* 2}$
${ }^{1}$ Canakkale Onsekiz Mart University, Faculty of Science and Art, Department of Mathematics,TURKEY
${ }^{2}$ Shota Rustaveli BatumiState University, Faculty of Mathematics, Physics and Computer Sciences, GEORGİA

Abstract

Let D be any X - semilattice of unions and Q be a subsemilattice of D which satisfies the following conditions; $Q=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ be a $X-$ semilattice where $T_{7} \subset T_{6} \subset T_{5} \subset T_{3} \subset T_{1} \subset T_{0}$, $T_{7} \subset T_{6} \subset T_{5} \subset T_{2} \subset T_{1} \subset T_{0}, \quad T_{7} \subset T_{6} \subset T_{4} \subset T_{2} \subset T_{1} \subset T_{0}, \quad T_{2} \cup T_{3}=T_{1}, \quad T_{4} \cup T_{3}=T_{1}$, $T_{4} \cup T_{5}=T_{2}, T_{2} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{2} \neq \varnothing, T_{5} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{5} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing$. In this paper, we investigate a binary relation α which is right unit element.

Keywords-Semigroups, Binary relation, Right unit elements.

I.INTRODUCTION

It is well known that in the theory of semigroups, any semigroup is isomorphically embeddable in some semigroups of binary relations. Many studies related with this fact are available in literature. Among them, we refer the papers of Diasamidze [1-4]. In general he studied semigroups but, in particular, he investigates the semigroups of the binary relations. Moreover, in his papers he presents how the idempotents, one-sided units, regular, irreducible and externally adjoined elements of semigroups have exclusively important role in the investigation of the abstract properties of semigroups.

To construct all these work we first give some basic definitions.
A partially ordered set A is called a semilattice if there exists a greatest lower bound for every pair of elements of A.

Let X be an arbitrary nonempty set, D be some nonempty set of subsets of the set X and also let D closed under the union of its subsets, i.e., $\cup D^{\prime} \in D$ for any nonempty subset D^{\prime} of the set D. In that case , the set D is called a complete X - semilattice of unions. The union of all elements of the set D is denoted by the symbol \breve{D}. Clearly, $\breve{D} \in D$ is the largest element. We say that an element Y covers Z in the semilattice D if $Y \supset Z$ and there is no other element $T \in D$ such that $Y \supset T \supset Z$. Using the cover relation, we can obtain a graphic representation of the semilattice of unions D. Each element of D is represented in the form of a small circle. If $Y \supset Z$ then Y is located above Z and also Y and Z are connected by a rectilinear line.

Recall that a binary relation on the set X is a subset of the cartesian product $X \times X$. If α and β are binary relations on the set X with the elements $x, y, z \in X$ the condition $(x, y) \in \alpha$ is denoted as $x \alpha y$ and $x \alpha y \beta z$ means the conditions $x \alpha y$ and $y \beta z$ are satisfied simultaneously. The binary relation $\alpha^{-1}=\{(x, y) \mid y \alpha x\}$ is usually called the binary relation inverse to α. The empty binary relation which is an empty subset of $X \times X$ is denoted by \varnothing. The binary relation $\delta=\alpha \circ \beta$ is called the product of the binary relations α and β. A pair (x, z) belongs to δ if and only if there exists $y \in X$ such that $x \alpha y \beta z$. The binary operation \circ is associative. So, B_{X}, the set of all binary relations on X, is therefore a semigroup with respect to the operation \circ. This semigroup is called the semigroup of all binary relations on the set X.

Further, let $x, y \in X, Y \subseteq X, \alpha \in B_{X}(D), T \in D, \varnothing \neq D^{\prime} \subseteq D$ and $t \in \breve{D}$. Then we have the following notations,

$$
\begin{array}{ll}
y \alpha=\{x \in X \mid y \alpha x\} & , Y \alpha=\bigcup_{y \in Y} y \alpha, \\
2^{X}=\{Y \mid Y \subseteq X\} & , V(D, \alpha)=\{Y \alpha \mid Y \in D\}, \\
D_{t}=\left\{Z^{\prime} \in D \mid t \in Z^{\prime}\right\} & , D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\}, \\
X^{*}=2^{X} \backslash\{\varnothing\} & , \ddot{D_{T}}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\} .
\end{array}
$$

Let f be an arbitrary mapping from X into D. Then one can construct such a mapping f with a binary relation α_{f} on X provided by the condition below,

$$
\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x)) .
$$

The set of all such binary relations is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the product operation of binary relations. This semigroup, $B_{X}(D)$, is called a complete semigroup of binary relations defined by an $X-$ semilattice of unions D.

Now, let's take any $\alpha, \beta \in B_{X}(D)$. If $\beta \circ \alpha=\beta$ then α is called a right unit element of semigroup $B_{X}(D)$. If $\alpha \circ \alpha=\alpha$ then α is called an idempotent element of semigroup $B_{X}(D)$. And if $\alpha \circ \beta \circ \alpha=\alpha$ for some $\beta \in B_{X}(D)$ then a binary relation α is called a regular element of semigroup $B_{X}(D)$.
Note that the semilattice D is partially ordered with respect to the set-theoretic inclusion. Let $\varnothing \neq D^{\prime} \subseteq D$ and $N\left(D, D^{\prime}\right)=\left\{Z \in D \mid Z \subseteq Z^{\prime}\right.$ for any $\left.Z^{\prime} \in D^{\prime}\right\}$. It is clear that $N\left(D, D^{\prime}\right)$ is the set of all lower bounds of a nonempty subset D^{\prime} included in D. If $N\left(D, D^{\prime}\right) \neq \varnothing$ then $\cup N\left(D, D^{\prime}\right)$ belongs to D and it is the greatest lower bound of D^{\prime} and is denoted by $\Lambda\left(D, D^{\prime}\right)=\cup N\left(D, D^{\prime}\right)$.

We say that a nonempty element T is a nonlimiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \varnothing$. A nonempty element T is limiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\varnothing$.

In this work, we use complete X - semilattices of unions to define of all binary relations on a set X, which are called complete semigroups of binary relations. Let Q be a subsemilattice of D which satisfies the following conditions. $Q=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \quad$ be a $X-\quad$ semilattice where $T_{7} \subset T_{6} \subset T_{5} \subset T_{3} \subset T_{1} \subset T_{0}, \quad T_{7} \subset T_{6} \subset T_{5} \subset T_{2} \subset T_{1} \subset T_{0} \quad T_{7} \subset T_{6} \subset T_{4} \subset T_{2} \subset T_{1} \subset T_{0}$, $T_{2} \cup T_{3}=T_{1}, \quad T_{4} \cup T_{3}=T_{1}, \quad T_{4} \cup T_{5}=T_{2}, \quad T_{2} \backslash T_{3} \neq \varnothing, \quad T_{3} \backslash T_{2} \neq \varnothing, \quad T_{5} \backslash T_{4} \neq \varnothing, \quad T_{4} \backslash T_{5} \neq \varnothing$, $T_{4} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing$. Mainly, we investigate and determine right unit elements of $B_{X}(Q)$ for a finite set X and in particular, we give formulas for the calculation of the number of right unit elements.

Now, we continue with some essential definitions and theorems given by the cited references.
Definition 1.1 [2, Definition 1] Let $\alpha \in B_{X}(D), T \in V\left(X^{*}, \alpha\right), Y_{T}^{\alpha}=\{y \in X \mid y \alpha=T\}$. Then a representation of a binary relation α of the form $\alpha=\bigcup_{T \in V\left(X^{*}, \alpha\right)}\left(Y_{T}^{\alpha} \times T\right)$ is called quasinormal.
Note that, if $\alpha=\bigcup_{T \in V\left(X^{*}, \alpha\right)}\left(Y_{T}^{\alpha} \times T\right)$ is a quasinormal representation of the binary relation α, then the following conditions are true,

1. $X=\bigcup_{T \in V\left(X^{*}, \alpha\right)} Y_{T}^{\alpha}$,
2. $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$ for $T, T^{\prime} \in V\left(X^{*}, \alpha\right)$ and $T \neq T^{\prime}$.

Definition 1.2 [3, Definition 2] Let \square and D ' be some nonempty subsets of the complete X semilattices of unions. We say that a subset ${ }^{\square} D$ generates a set D^{\prime} if any element from D^{\prime} is a set-theoretic union of the elements from D.

Definition 1.3 [4, Definition 1.14.2] We say that a complete X - semilattice of unions D is an XIsemilattice of unions if it satisfies the following two conditions,

- $\Lambda\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$,
- $Z=\bigcup_{t \in Z} \Lambda\left(D, D_{t}\right)$ for any nonempty element Z of D.

Theorem 1.4 [4, Corollary 1.18.1] Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ and $D_{j}=\left\{T_{1}, \ldots, T_{j}\right\}$ be some sets, where $k \geq 1$ and $j \geq 1$. Then the numbers $s(k, j)$ of all possible mappings of the sets Y on any subset D_{j}^{\prime} of the set D_{j} and $T_{j} \in D_{j}^{\prime}$ can be calculated by the formula

$$
s(k, j)=j^{k}-(j-1)^{k}
$$

Theorem 1.5 [4, Theorem 6.1.3]Let D be a complete $X-$ semilattice of unions. The semigroup $B_{X}(D)$ possesses a right unit iff D is an $X I-$ semilattice of unions.

Lemma 1.6 [1, Lemma 3.1] Let D complete X - semilattices of unions. If a binary relation \mathcal{E} having the form

$$
\varepsilon=\varepsilon(D, f)=\bigcup_{t \in \bar{D}}\left(\{x\} \times \Lambda\left(D, D_{t}\right)\right) \cup((X \backslash \breve{D}) \times \breve{D})
$$

is a right unit of the semigroup $B_{X}(D)$, then it is the largest right unit of this semigroup.
Definition 1.7 [5, Definition 7] A one-to-one mapping φ between the complete $X-$ semilattices of unions D^{\prime} and $D^{\prime \prime}$ is called a complete isomorphism if the condition

$$
\varphi\left(\cup D_{1}\right)=\bigcup_{T^{\prime} \in D_{1}}^{\cup} \varphi\left(T^{\prime}\right)
$$

is fulfilled for each nonempty subset D_{1} of the semilattice D^{\prime}.
Definition 1.8 [5, Definition 8] Let α be some binary relation of the semigroup $B_{X}(D)$. We say that a complete isomorphism φ between XI - semilattice of unions Q and D is a complete α - isomorphism if

1. $Q=V(D, \alpha)$,
2. $\varphi(\varnothing)=\varnothing$ for $\varnothing \in V(D, \alpha)$ and $\varphi(T) \alpha=T$ for any $T \in V(D, \alpha)$.

Theorem 1.9 [4, Theorem 6.3.3] Let X be a finite set, $\alpha \in B_{X}(D)$ and $D(\alpha)$ be the set of those elements T of the semilattice $D=V(D, \alpha) \backslash\{\varnothing\}$ which are nonlimiting elements of the set $\ddot{D}(\alpha)_{T}$. A binary relation α having a quasinormal representation of the form $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is a right unit element of the semigroup $B_{X}(D)$ iff

1. $V(D, \alpha)$ is a complete $X I-$ semilattice of unions and $V(D, \alpha)=D$,
2. $\bigcup_{\substack{\prime} \ddot{D}(\alpha)_{T}} Y_{T^{\prime}}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$,
3. $Y_{T}^{\alpha} \cap T \neq \varnothing$ for any nonlimiting element T of the set $\ddot{D}(\alpha)_{T}$.

Definition 1.10 [4, Definition 6.3.4] Let $\Phi\left(Q, D^{\prime}\right)$ be a set of all complete isomorphism of the XI semilattice of unions Q on the semilattice D^{\prime} such that $\varphi \in \Phi\left(Q, D^{\prime}\right)$ only if φ is a α - isomorphism for some relation $\alpha \in B_{X}(D)$ and $V(D, \alpha)=Q$.
$\Omega(Q)$ is the set of all $X I$ - subsemilattices of the complete X - semilattice of unions D such that $Q^{\prime} \in \Omega(Q)$ only if there exists some complete isomorphism between the semilattices Q^{\prime} and Q.
Theorem 1.11 [5, Theorem 22] Let $D=\left\{\breve{D}, T_{1}, T_{2}, \ldots, T_{m}\right\}$ be some finite X - semilattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{m-1}, P_{m}\right\}$ be the family of sets of pairwise disjoint subsets of the set X, φ is a mapping of the semilattice D on the family sets $C(D)$ that satisfies the condition $\varphi(\breve{D})=P_{0}$ and $\varphi\left(T_{i}\right)=P_{i}$ for any $i=1,2, \ldots, m$ and $\hat{D}_{Z}=D \backslash\{T \in D \mid Z \subseteq T\}$, then the following equalities are valid:

$$
\begin{equation*}
\breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup \cdots \cup P_{m} \tag{1.1}
\end{equation*}
$$

and

$$
Z_{i}=P_{0} \cup \bigcup_{T \in \hat{D}_{Z_{i}}} \varphi(T) \text { foralli }=1,2, \ldots, m
$$

In the sequel these equalities will be called formal.
It is proved that if the elements of the semilattice D are represented in the form 1.1 , then among the parameters $P_{i}(i=0,1,2, \ldots, m-1)$ there exists such parameters thatcannot be empty sets for D. Such sets $P_{i}(0 \leq i \leq m-1)$ are called bases sources, whereas sets $P_{j}(0 \leq j \leq m-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exists or is always greater than one.

Note that the set P_{0} is always considered to be a source of completeness.

II. RESULTS

Xcvxcvxcv Let X be a finite set, $D=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ be a $X-$ subsemilattice of unions of D satisfies the following conditions.The diagram of the D is shown in the following figure.

$$
\begin{aligned}
& T_{7} \subset T_{6} \subset T_{5} \subset T_{3} \subset T_{1} \subset T_{0} \\
& T_{7} \subset T_{6} \subset T_{5} \subset T_{2} \subset T_{1} \subset T_{0} \\
& T_{7} \subset T_{6} \subset T_{4} \subset T_{2} \subset T_{1} \subset T_{0} \\
& T_{2} \cup T_{3}=T_{1}, T_{4} \cup T_{3}=T_{1}, \\
& T_{4} \cup T_{5}=T_{2}, \\
& T_{2} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{2} \neq \varnothing, \\
& T_{5} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{5} \neq \varnothing, \\
& T_{4} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing .
\end{aligned}
$$

Let

$$
\varphi=\left(\begin{array}{llllllll}
T_{0} & T_{1} & T_{2} & T_{3} & T_{4} & T_{5} & T_{6} & T_{7} \\
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & P_{7}
\end{array}\right)
$$

is a mapping of the semilattice D onto the family sets $C(D)$. Then for the formal equalities of the semilattice D we have a form,

$$
\begin{align*}
& T_{0}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \\
& T_{1}=P_{0} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \\
& T_{2}=P_{0} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \\
& T_{3}=P_{0} \cup P_{2} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \tag{2.1}\\
& T_{4}=P_{0} \cup P_{3} \cup P_{5} \cup P_{6} \cup P_{7} \\
& T_{5}=P_{0} \cup P_{4} \cup P_{6} \cup P_{7} \\
& T_{6}=P_{0} \cup P_{7} \\
& T_{7}=P_{0}
\end{align*}
$$

Here the elements $P_{1}, P_{2}, P_{3}, P_{4}, P_{7}$ are basis sources, the elements P_{0}, P_{5}, P_{6} is sources of completeness of the semilattice D.

Theorem 2.1 The semigroup $B_{X}(D)$ always has a right unit element.

Proof. Let $t \in D, D_{t}=\{Z \in D \mid t \in Z\}$ and $\wedge\left(D, D_{t}\right)$ is the exact lower bound of the set D_{t} in D. Then the formal equalities follows that,

$$
D_{t}=\left\{\begin{array}{l}
D, \text { if } t \in P_{0} \\
T_{0}, \text { if } t \in P_{1} \\
\left\{T_{3}, T_{1}, T_{0}\right\}, \text { if } t \in P_{2} \\
\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\}, \text { if } t \in P_{3} \\
\left\{T_{5}, T_{3}, T_{2}, T_{1}, T_{0}\right\}, \text { if } t \in P_{4} \\
\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}, \text { if } t \in P_{5} \\
\left\{T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}, \text { if } t \in P_{6} \\
\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}, \text { if } t \in P_{7}
\end{array} \quad \wedge\left(D ; D_{t}\right)=\left\{\begin{array}{l}
T_{7}, \text { if } t \in P_{0} \\
T_{0}, \text { if } t \in P_{1} \\
T_{3}, \text { if } t \in P_{2} \\
T_{4}, \text { if } t \in P_{3} \\
T_{5}, \text {,ift } t P_{4} \\
T_{6}, \text { if } t \in P_{5} \\
T_{6}, \text { if } t \in P_{6} \\
T_{6}, \text { if } t \in P_{7}
\end{array}\right.\right.
$$

We have $D^{\wedge}=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{0}\right\}, \wedge\left(D ; D_{t}\right) \in D$ for all $t \in D$ and $T_{2}=T_{4} \cup T_{5}, T_{1}=T_{2} \cup T_{3}$. So from the Definition 1.3follows that the semilattice D is $X I$-semilattice. In view of the Theorem 1.5 $B_{X}(D)$ always has a right unit element.

Lemma 2.2 For the semilattice D, the following equalities are true.

$$
\begin{aligned}
& P_{0}=T_{7} \\
& P_{5} \cup P_{6} \cup P_{7}=\left(T_{3} \cap T_{4}\right) \backslash T_{7} \\
& P_{4}=T_{5} \backslash T_{4} \\
& P_{3}=T_{4} \backslash T_{3} \\
& P_{2}=T_{3} \backslash T_{2} \\
& P_{1}=T_{0} \backslash T_{1}
\end{aligned}
$$

Proof. The given Lemma immediately follows from the formal equalities 2.1 of the semilattice D.
Theorem 2.3 The binary relation
$\varepsilon=\left(T_{7} \times T_{7}\right) \cup\left(\left(\left(T_{3} \cap T_{4}\right) \backslash T_{7}\right) \times T_{6}\right) \cup\left(\left(T_{5} \backslash T_{4}\right) \times T_{5}\right) \cup\left(\left(T_{4} \backslash T_{3}\right) \times T_{4}\right) \cup\left(\left(T_{3} \backslash T_{2}\right) \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{1}\right) \times T_{0}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right)$
is the largest right unit of the semigroup $B_{X}(D)$.
Proof. Using Lemma 1.6 and Theorem 2.1 we have that

$$
\begin{array}{rlc}
\varepsilon & = & \bigcup_{t \in D}\left(\{t\} \times \wedge\left(D ; D_{t}\right)\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right) \\
= & \left(P_{0} \times T_{7}\right) \cup\left(\left(P_{5} \cup P_{6} \cup P_{7}\right) \times T_{6}\right) \cup\left(P_{4} \times T_{5}\right) \cup\left(P_{3} \times T_{4}\right) \cup\left(P_{2} \times T_{3}\right) \cup\left(P_{1} \times T_{0}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right) \\
& = & \left(T_{7} \times T_{7}\right) \cup\left(\left(\left(T_{3} \cap T_{4}\right) \backslash T_{7}\right) \times T_{6}\right) \cup\left(\left(T_{5} \backslash T_{4}\right) \times T_{5}\right) \cup\left(\left(T_{4} \backslash T_{3}\right) \times T_{4}\right) \\
& \cup\left(\left(T_{3} \backslash T_{2}\right) \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{1}\right) \times T_{0}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right)
\end{array}
$$

Corollary 2.4 A binary relation α having quasinormal representation as

$$
\begin{aligned}
\alpha= & \left(Y_{7}^{\alpha} \times T_{7}\right) \cup\left(Y_{6}^{\alpha} \times T_{6}\right) \cup\left(Y_{5}^{\alpha} \times T_{5}\right) \cup\left(Y_{4}^{\alpha} \times T_{4}\right) \\
& \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
\end{aligned}
$$

where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, is a right unit of the semigroup $B_{X}(D)$ iff the binary relation α satisfies the following conditions,

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq T_{7}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \supseteq T_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \supseteq T_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq T_{4} \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha} \supseteq T_{3}, Y_{6}^{\alpha} \cap T_{6} \neq \varnothing, Y_{5}^{\alpha} \cap T_{5} \neq \varnothing, Y_{4}^{\alpha} \cap T_{4} \neq \varnothing \\
& Y_{3}^{\alpha} \cap T_{3} \neq \varnothing, Y_{0}^{\alpha} \cap T_{0} \neq \varnothing
\end{aligned}
$$

Proof. It is easy to see, that the set $D(\alpha)=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$ is a generating set of the semilattice D. Then the following equalities,

$$
\begin{aligned}
& \ddot{D}(\alpha)_{T_{7}}=\left\{T_{7}\right\}, \ddot{D}(\alpha)_{T_{6}}=\left\{T_{7}, T_{6}\right\}, \ddot{D}(\alpha)_{T_{5}}=\left\{T_{7}, T_{6}, T_{5}\right\}, \ddot{D}(\alpha)_{T_{4}}=\left\{T_{7}, T_{6}, T_{4}\right\}, \\
& \ddot{D}(\alpha)_{T_{3}}=\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}, \ddot{D}(\alpha)_{T_{2}}=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{2}\right\}, \\
& \ddot{D}(\alpha)_{T_{1}}=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}, \\
& \ddot{D}(\alpha)_{T_{1}}=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\},
\end{aligned}
$$

are hold. By statement b) of the Theorem 1.9 follows that

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq T_{7}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \supseteq T_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \supseteq T_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq T_{4}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha} \supseteq T_{3}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha} \supseteq T_{2}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \supseteq T_{1} .
\end{aligned}
$$

For the last conditions we have

$$
\begin{gathered}
Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha}=\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha}\right) \cup\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup Y_{2}^{\alpha} \supseteq T_{5} \cup T_{4} \cup Y_{2}^{\alpha} \\
=T_{2} \cup Y_{2}^{\alpha} \supseteq T_{2} \\
Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha}=\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha}\right) \cup\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha}\right) \\
\cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \supseteq T_{5} \cup T_{4} \cup T_{3} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \\
\\
=T_{1} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \supseteq T_{1}
\end{gathered}
$$

is always satisfied.
Now for using limiting element definition we find,

$$
\begin{aligned}
& \left.l\left(\ddot{D}(\alpha)_{T_{7}}, T_{7}\right)=\cup\left(\ddot{D}(\alpha)_{T_{7}} \backslash T_{7}\right\}\right)=\varnothing, T_{7} \backslash l\left(\ddot{D}(\alpha)_{T_{7}}, T_{7}\right)=T_{7} \backslash \varnothing=T_{7} \neq \varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{6}}, T_{6}\right)=\cup\left(\ddot{D}(\alpha)_{T_{6}} \backslash\left\{T_{6}\right\}\right)=T_{7}, T_{6} \backslash l\left(\ddot{D}(\alpha)_{T_{6}}, T_{6}\right)=T_{6} \backslash T_{7} \neq \varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{5}}, T_{5}\right)=\cup\left(\ddot{D}(\alpha)_{T_{5}} \backslash\left\{T_{5}\right\}\right)=T_{6}, T_{5} \backslash l\left(\ddot{D}(\alpha)_{T_{5}}, T_{5}\right)=T_{5} \backslash T_{6} \neq \varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{4}}, T_{4}\right)=\cup\left(\ddot{D}(\alpha)_{T_{4}} \backslash\left\{T_{4}\right\}\right)=T_{6}, T_{4} \backslash l\left(\ddot{D}(\alpha)_{T_{4}}, T_{4}\right)=T_{4} \backslash T_{6} \neq \varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{3}}, T_{3}\right)=\cup\left(\ddot{D}(\alpha)_{T_{3}} \backslash\left\{T_{3}\right\}\right)=T_{5}, T_{3} \backslash l\left(\ddot{D}(\alpha)_{T_{3}}, T_{3}\right)=T_{3} \backslash T_{5} \neq \varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{2}}, T_{2}\right)=\cup\left(\ddot{D}(\alpha)_{T_{2}} \backslash\left\{T_{2}\right\}\right)=T_{2}, T_{2} \backslash l\left(\ddot{D}(\alpha)_{T_{2}}, T_{2}\right)=T_{2} \backslash T_{2}=\varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{1}}, T_{1}\right)=\cup\left(\ddot{D}(\alpha)_{T_{1}} \backslash\left\{T_{1}\right\}\right)=T_{1}, T_{1} \backslash l\left(\ddot{D}(\alpha)_{T_{1}}, T_{1}\right)=T_{1} \backslash T_{1}=\varnothing, \\
& l\left(\ddot{D}(\alpha)_{T_{0}}, T_{0}\right)=\cup\left(\ddot{D}(\alpha)_{T_{0}} \backslash\left\{T_{0}\right\}\right)=T_{1}, T_{0} \backslash l\left(\ddot{D}(\alpha)_{T_{0}}, T_{0}\right)=T_{0} \backslash T_{1} \neq \varnothing .
\end{aligned}
$$

Therefore, $\quad T_{7}, T_{6}, T_{5}, T_{4}, T_{3}$ and T_{0} are nonlimiting elements of the sets $\ddot{D}(\alpha)_{T_{7}}, \ddot{D}(\alpha)_{T_{6}}, \ddot{D}(\alpha)_{T_{5}}, \ddot{D}(\alpha)_{T_{4}}, \ddot{D}(\alpha)_{T_{3}}$ and $\ddot{D}(\alpha)_{T_{0}}$ respectively. By the statement c) Theorem 1.9it follows, that the conditions

$$
Y_{6}^{\alpha} \cap T_{6} \neq \varnothing, Y_{5}^{\alpha} \cap T_{5} \neq \varnothing, Y_{4}^{\alpha} \cap T_{4} \neq \varnothing, Y_{3}^{\alpha} \cap T_{3} \neq \varnothing, Y_{0}^{\alpha} \cap T_{0} \neq \varnothing
$$

are hold. As a result of these we have,

$$
\begin{align*}
& Y_{7}^{\alpha} \supseteq T_{7}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \supseteq T_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \supseteq T_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq T_{4}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha} \supseteq T_{3}, Y_{6}^{\alpha} \cap T_{6} \neq \varnothing, Y_{5}^{\alpha} \cap T_{5} \neq \varnothing, Y_{4}^{\alpha} \cap T_{4} \neq \varnothing, \tag{2.2}\\
& Y_{3}^{\alpha} \cap T_{3} \neq \varnothing, Y_{0}^{\alpha} \cap T_{0} \neq \varnothing .
\end{align*}
$$

Theorem 2.5 $E_{X}^{(r)}(D)$ are the set of all right unit elements of the semigroup $B_{X}(D)$. If X be a finite set, then we calculate the number of right unit elements through this formula

$$
\begin{aligned}
\left|E_{X}^{(r)}(D)\right| & =2^{\mid\left(T_{3} \cap T_{4} \backslash T_{7} \mid\right.} \cdot\left(2^{T_{6} \backslash T_{7} \mid}-1\right) \cdot\left(3^{\left|T_{5} \backslash T_{4}\right|}-2^{\left|T_{5} \backslash T_{4}\right|}\right) \cdot\left(3^{\left|T_{4} \backslash T_{3}\right|}-2^{\left|T_{4} \backslash T_{3}\right|}\right) \\
& \cdot\left(4^{\left|T_{3} \backslash T_{2}\right|}-3^{\left|T_{3} \backslash T_{2}\right|}\right) \cdot\left(8^{\left|T_{0} \backslash T_{1}\right|}-3^{\left|T_{0} \backslash T_{1}\right|}\right) \cdot 8^{\left|X \backslash T_{0}\right|} .
\end{aligned}
$$

Proof. Assume that $\alpha \in E_{X}^{(r)}(D)$ and from Corollary 2.4, we have that α has a quasinormal representation as $\alpha=\bigcup_{T \in D}\left(Y_{T}^{\alpha} \times T\right)$, where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ (i.e., $D=V(D, \alpha)$)and satisfies the following conditions

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq T_{7}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \supseteq T_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \supseteq T_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq T_{4}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha} \supseteq T_{3}, Y_{6}^{\alpha} \cap T_{6} \neq \varnothing, Y_{5}^{\alpha} \cap T_{5} \neq \varnothing, Y_{4}^{\alpha} \cap T_{4} \neq \varnothing, \\
& Y_{3}^{\alpha} \cap T_{3} \neq \varnothing, Y_{0}^{\alpha} \cap T_{0} \neq \varnothing .
\end{aligned}
$$

Further, let f_{α} be a mapping from the set X in the semilattice D satisfying the condition $f_{\alpha}(t)=t \alpha$ for all $t \in X$. We can define $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$ and $f_{6 \alpha}$ which are the restrictions of the mapping f_{α} on the sets $T_{7,}\left(T_{3} \cap T_{4}\right) \backslash T_{7}, T_{5} \backslash T_{4}, T_{4} \backslash T_{3}, T_{3} \backslash T_{2}, T_{0} \backslash T_{1}$ and $X \backslash T_{0}$, respectively. It is clear, that the intersection disjoint sets of the set

$$
\left\{T_{7},\left(T_{3} \cap T_{4}\right) \backslash T_{7}, T_{5} \backslash T_{4}, T_{4} \backslash T_{3}, T_{3} \backslash T_{2}, T_{0} \backslash T_{1}, X \backslash T_{0}\right\}
$$

are empty set and

$$
T \cup\left(\left(T_{3} \cap T_{4}\right) \backslash T_{7}\right) \cup\left(T_{5} \backslash T_{4}\right) \cup\left(T_{4} \backslash T_{3}\right) \cup\left(T_{3} \backslash T_{2}\right) \cup\left(T_{0} \backslash T_{1}\right) \cup\left(X \backslash T_{0}\right)=X
$$

Now, we are going to find properties of maps $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$ and $f_{6 \alpha}$.

1. Let $t \in T_{7}$. Then, by using Equation 2.2 and the definition of the set Y_{7}^{α}, we have $t \in T_{7} \subseteq Y_{7}^{\alpha} \Rightarrow f_{0 \alpha}(t)=T_{7}$ for all $t \in T_{7}$.
2. Let $t \in\left(T_{3} \cap T_{4}\right) \backslash T_{7}$. Then, by using Equation 2.2 and definition of the sets Y_{7}^{α} and Y_{6}^{α}, we have $t \in\left(T_{3} \cap T_{4}\right) \backslash T_{7} \subseteq T_{3} \cap T_{4} \subseteq\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cap\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha}\right)=Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \Rightarrow$ $f_{1 \alpha}(t) \in\left\{T_{7}, T_{6}\right\}$ for all $t \in\left(T_{3} \cap T_{4}\right) \backslash T_{7}$.
Suppose that $Y_{6}^{\alpha} \cap T_{6} \neq \varnothing$ and $t_{1} \in Y_{6}^{\alpha} \cap T_{6} \Rightarrow t_{1} \in Y_{6}^{\alpha}$ and $t_{1} \in T_{6} \Rightarrow t_{1} \alpha=T_{6}$ and $t_{1} \in T_{6}$. If $t_{1} \in T_{7}$ then $t_{1} \in T_{7} \subseteq Y_{7}^{\alpha} \Rightarrow f_{1 \alpha}\left(t_{1}\right)=T_{7}$ for some $t_{1} \in T_{7}$. Which contradicts with $t_{1} \alpha=T_{6}$ (T_{6} is not equal to T_{7} in $\left.D\right)$. So $Y_{6}^{\alpha} \cap T_{6} \subseteq\left(T_{3} \cap T_{4}\right) \backslash T_{7}$ and $f_{1 \alpha}\left(t_{1}\right)=T_{6}$ for some $t_{1} \in T_{6} \backslash T_{7}$.
3. Let $t \in T_{5} \backslash T_{4}$. Then, by using Equation 2.2 and definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}$ and Y_{5}^{α}, we have $t \in T_{5} \backslash T_{4} \subseteq T_{5} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \Rightarrow f_{2 \alpha}(t)=t \alpha \in\left\{T_{7}, T_{6}, T_{5}\right\}$ for all $t \in T_{5} \backslash T_{4}$.
Suppose that $Y_{5}^{\alpha} \cap T_{5} \neq \varnothing$ and $t_{2} \in Y_{5}^{\alpha} \cap T_{5} \Rightarrow t_{2} \in Y_{5}^{\alpha}$ and $t_{2} \in T_{5} \Rightarrow t_{2} \alpha=T_{5}$. If $t_{2} \in T_{4}$ then $t_{2} \in T_{4} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}$. Therefore, $t_{2} \alpha \in\left\{T_{7}, T_{6}, T_{4}\right\}$. Which contradicts of the equality $t_{2} \alpha=T_{5}$, since $T_{5} \notin\left\{T_{7}, T_{6}, T_{4}\right\}$. So $f_{2 \alpha}\left(t_{2}\right)=T_{5}$ for some $t_{2} \in T_{5} \backslash T_{4}$.
4. Let $t \in T_{4} \backslash T_{3}$. Then, by using Equation 2.2 and definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}$ and Y_{4}^{α}, we have $t \in T_{4} \backslash T_{3} \subseteq T_{4} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \Rightarrow t \alpha \in\left\{T_{7}, T_{6}, T_{4}\right\}$. Therefore $\quad f_{3 \alpha}(t) \in\left\{T_{7}, T_{6}, T_{4}\right\} \quad$ for \quad all $t \in T_{4} \backslash T_{3}$.
Suppose that $Y_{4}^{\alpha} \cap T_{4} \neq \varnothing$ and $t_{3} \in Y_{4}^{\alpha} \cap T_{4} \Rightarrow t_{3} \in Y_{4}^{\alpha}$ and $t_{3} \in T_{4} \Rightarrow t_{3} \alpha=T_{4}$. If $t_{3} \in T_{3}$ then $t_{3} \in T_{3} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha}$. Therefore, $t_{3} \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$. Which contradicts of the equality $t_{3} \alpha=T_{4}$, since $T_{4} \notin\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$. So $f_{3 \alpha}\left(t_{3}\right)=T_{4}$ for some $t_{3} \in T_{4} \backslash T_{3}$.
5. Let $t \in T_{3} \backslash T_{2}$. Then, by using Equation 2.2 and definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}$ and Y_{3}^{α}, we have $t \in T_{3} \backslash T_{2} \subseteq T_{3} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{3}^{\alpha} \Rightarrow t \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$. Therefore $f_{4 \alpha}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$ for all $t \in T_{3} \backslash T_{2}$.

Suppose that $Y_{3}^{\alpha} \cap T_{3} \neq \varnothing$ and $t_{4} \in Y_{3}^{\alpha} \cap T_{3} \Rightarrow t_{4} \in Y_{3}^{\alpha}$ and $t_{4} \in T_{3} \Rightarrow t_{4} \alpha=T_{3}$. If $t_{4} \in T_{2}$ then $t_{4} \in T_{2} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha}$. Therefore, $t_{4} \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{4}\right\}$. Which contradicts of the equality $t_{4} \alpha=T_{3}$, since $T_{3} \notin\left\{T_{7}, T_{6}, T_{5}, T_{4}\right\}$. So $f_{4 \alpha}\left(t_{4}\right)=T_{3}$ for some $t_{4} \in T_{3} \backslash T_{2}$.
6. Let $t \in T_{0} \backslash T_{1}$. Then, by using Equation 2.2 and definition of the sets $Y_{i}^{\alpha}, i=0,1, \ldots, 7$, we have $t \in T_{0} \backslash T_{1} \subseteq T_{0} \subseteq \quad \bigcup_{i=0}^{7} Y_{i}^{\alpha} \Rightarrow t \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} . \quad$ Therefore $f_{5 \alpha}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in T_{0} \backslash T_{1}$.
Suppose that $Y_{0}^{\alpha} \cap T_{0} \neq \varnothing$ and $t_{5} \in Y_{0}^{\alpha} \cap T_{0} \Rightarrow t_{5} \in Y_{0}^{\alpha}$ and $t_{5} \in T_{0} \Rightarrow t_{5} \alpha=T_{0}$. If $t_{5} \in T_{1}$ then $t_{5} \in T_{1} \subseteq Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha}$. Therefore, $t_{5} \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$. Which contradicts of the equality $t_{5} \alpha=T_{0}$, since $T_{0} \notin\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$. So $f_{5 \alpha}\left(t_{5}\right)=T_{0}$ for some $t_{5} \in T_{0} \backslash T_{1}$.
7. Let $t \in X \backslash T_{0}$ Then, by using Equation 2.2 and the definition of the sets $Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}$ and $\quad Y_{0}^{\alpha}, \quad$ we have $t \in X \backslash T_{0} \subseteq X \subseteq Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \cup Y_{0}^{\alpha} \Rightarrow$ $t \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$. Therefore $f_{6 \alpha}(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in X \backslash T_{0}$.

Therefore, there is an ordered system $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}, f_{6 \alpha}\right)$ of every binary relation α in which is the element of $E_{X}^{(r)}(D)$.

Now, let

$$
\begin{aligned}
& f_{0}: T_{7} \rightarrow\left\{T_{7}\right\} \\
& f_{1}:\left(T_{3} \cap T_{4}\right) \backslash T_{7} \rightarrow\left\{T_{7}, T_{6}\right\} \\
& f_{2}: T_{5} \backslash T_{4} \rightarrow\left\{T_{7}, T_{6}, T_{5}\right\} \\
& f_{3}: T_{4} \backslash T_{3} \rightarrow\left\{T_{7}, T_{6}, T_{4}\right\} \\
& f_{4}: T_{3} \backslash T_{2} \rightarrow\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\} \\
& f_{5}: T_{0} \backslash T_{1} \rightarrow\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \\
& f_{6}: X \backslash T_{0} \rightarrow\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} .
\end{aligned}
$$

are such mappings which satisfies the following conditions:

1. $f_{0}(t)=T_{7}$ for all $t \in T_{7}$,
2. $f_{1}(t) \in\left\{T_{7}, T_{6}\right\}$ for all $t \in\left(T_{3} \cap T_{4}\right) \backslash T_{7}$ and $f_{1}\left(t_{1}\right)=T_{6}$ for some $t_{1} \in T_{6} \backslash T_{7}$,
3. $f_{2}(t) \in\left\{T_{7}, T_{6}, T_{5}\right\}$ for all $t \in T_{5} \backslash T_{4}$ and $f_{2}\left(t_{2}\right)=T_{5}$ for some $t_{2} \in T_{5} \backslash T_{4}$,
4. $f_{3}(t) \in\left\{T_{7}, T_{6}, T_{4}\right\}$ for all $t \in T_{4} \backslash T_{3}$ and $f_{3}\left(t_{3}\right)=T_{4}$ for some $t_{3} \in T_{4} \backslash T_{3}$,
5. $f_{4}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$ for all $t \in T_{3} \backslash T_{2}$ and $f_{4}\left(t_{4}\right)=T_{3}$ for some $t_{4} \in T_{3} \backslash T_{2}$,
6. $f_{5}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in T_{0} \backslash T_{1}$ and $f_{5}\left(t_{5}\right)=T_{0}$ for some $t_{5} \in T_{0} \backslash T_{1}$,
7. $f_{6}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in X \backslash T_{0}$.

Then, we can define a map f from X in the semilattice D by following way:

$$
f(t)=\left\{\begin{array}{l}
f_{0}(t), \text { if } t \in T_{7}, \\
f_{1}(t), \text { if } t \in\left(T_{3} \cap T_{4}\right) \backslash T_{7}, \\
f_{2}(t), \text { if } t \in T_{5} \backslash T_{4}, \\
f_{3}(t), \text { if } t \in T_{4} \backslash T_{3}, \\
f_{4}(t), \text { if } t \in T_{3} \backslash T_{2}, \\
f_{5}(t), \mathrm{if} t \in T_{0} \backslash T_{1}, \\
f_{6}(t), \mathrm{if} t \in X \backslash T_{0} .
\end{array}\right.
$$

Further, we identify the binary relation $\beta=\bigcup_{x \in X}(\{x\} \times f(x))$ which is originated with the mapping f. Since, $Y_{i}^{\beta}=\left\{t \in X \mid t \beta=T_{i}\right\}(i=0,1,2, \ldots, 6)$, then binary relation β is represented by following form

$$
\beta=\left(Y_{6}^{\beta} \times T_{6}\right) \cup\left(Y_{5}^{\beta} \times T_{5}\right) \cup\left(Y_{4}^{\beta} \times T_{4}\right) \cup\left(Y_{3}^{\beta} \times T_{3}\right) \cup\left(Y_{2}^{\beta} \times T_{2}\right) \cup\left(Y_{1}^{\beta} \times T_{1}\right) \cup\left(Y_{0}^{\beta} \times T_{0}\right) .
$$

If the definitions of Y_{i}^{β} taken into consideration, then we have
$Y_{7}^{\beta} \supseteq T_{7}, Y_{7}^{\beta} \cup Y_{6}^{\beta} \supseteq T_{6}, Y_{7}^{\beta} \cup Y_{6}^{\beta} \cup Y_{5}^{\beta} \supseteq T_{5}, Y_{7}^{\beta} \cup Y_{6}^{\beta} \cup Y_{4}^{\beta} \supseteq T_{4}$,
$Y_{7}^{\beta} \cup Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{3}^{\beta} \supseteq T_{3}, Y_{6}^{\beta} \cap T_{6} \neq \varnothing, Y_{5}^{\beta} \cap T_{5} \neq \varnothing, Y_{4}^{\beta} \cap T_{4} \neq \varnothing$,
$Y_{3}^{\beta} \cap T_{3} \neq \varnothing, Y_{0}^{\beta} \cap T_{0} \neq \varnothing$.
(By suppose $f_{1}\left(t_{1}\right)=T_{6}$ for some $t_{1} \in T_{6} \backslash T_{7}, f_{2}\left(t_{2}\right)=T_{5}$ for some $t_{2} \in T_{5} \backslash T_{4}, f_{3}\left(t_{3}\right)=T_{4}$ for some $t_{3} \in T_{4} \backslash T_{3}, f_{4}\left(t_{4}\right)=T_{3}$ for some $t_{4} \in T_{3} \backslash T_{2}, f_{5}\left(t_{5}\right)=T_{0}$ for some $\left.t_{5} \in T_{3} \backslash T_{2}.\right)$

From these properties and Corollary 2.4, we have that the binary relation β is an element of $E_{X}^{(r)}(D)$.
Therefore for every binary relation $\alpha \in E_{X}^{(r)}(D)$ and ordered system $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right.$, $f_{6 \alpha}$) exist one to one mapping.

And also, by using the Theorem 1.4, the number of the mappings $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$ and $f_{6 \alpha}$ are respectively as

$$
\begin{align*}
& 1,2^{\left.| | T_{3} \cap T_{4}\right\rangle T_{7} \mid} \cdot\left(2^{\left|T_{6} \backslash T_{7}\right|}-1\right), 3^{\left|T_{5} \backslash T_{4}\right|}-2^{\left|T_{5} \backslash T_{4}\right|}, \tag{2.3}\\
& 3^{\left|T_{4} \backslash T_{3}\right|}-2^{\left|T_{4} \backslash T_{3}\right|}, 4^{\left|T_{3} \backslash T_{2}\right|}-3^{\left|T_{3} \backslash T_{2}\right|}, 8^{\left|T_{0} \backslash T_{1}\right|}-7^{\left|T_{0} \backslash T_{1}\right|}, 8^{\left|X \backslash T_{0}\right|} .
\end{align*}
$$

By using Equation 2.3, we calculate the number of ordered system $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}, f_{6 \alpha}\right)$ or the number of right unit elements through this formula

$$
\begin{aligned}
\mid E_{X}^{(r)}(D)= & 2^{\mid\left(T_{3} \cap T_{4} \backslash T_{7} \mid\right.} \cdot\left(2^{\left|T_{6} \backslash T_{7}\right|}-1\right) \cdot\left(3^{\left|T_{5} \backslash T_{4}\right|}-2^{\left|T_{5} \backslash T_{4}\right|}\right) \cdot\left(3^{\left|T_{4} \backslash T_{3}\right|}-2^{\left|T_{4} \backslash T_{3}\right|}\right) \\
& \cdot\left(4^{\left|T_{3} \backslash T_{2}\right|}-3^{\left|T_{3} \backslash T_{2}\right|}\right) \cdot\left(8^{\left|T_{0} \backslash T_{1}\right|}-7^{\left|T_{0} \backslash T_{1}\right|}\right) \cdot 8^{\left|X \backslash T_{0}\right|} .
\end{aligned}
$$

References

[1] Diasamidze Ya., Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 117, No. 4, 4271-4319, 2003.
[2] Diasamidze Ya., Makharadze Sh., Fartenadze G., Maximal Subgroups of Complete Semigroups of Binary Relations. Proceedigs of A. Razmadze Mathematical Institute, Vol. 131, 21-38, 2003.
[3] Diasamidze Ya., To the The Theory of the Binary Relation Semigroups. Proceedigs of A. Razmadze Mathematical Institute, Vol. 128, 1-15, 2002.
[4] Diasamidze Ya., Makharadze Sh., Complete semigroups of binary relations. Kriter Yay nevi, İstanbul, 1-520, 2010
[5] Diasamidze Ya., Makharadze Sh., Complete Semigroups of Binary Relations Defined by X-Semilattices of Unions. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 166, No. 5, 615-633., 2010

