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Abstract—Gram-Schmidt Orthonormalization (GSO) Euclidean vectors based depth function is proposed to 

compute projection depth.  The performance of GSO algorithm has been studied with exact and approximate 

algorithms, used in the associated estimator namelyStahel-Donoho (S-D) location and scatter estimators, for 

bivariate data.The efficiency of GSO algorithm is checked out by computing average misclassification error in 

discriminant analysis under real and stimulatingenvironment. The study concludesthat GSO algorithm based 

projection depth estimators performs well when compared with exact and approximate algorithms. 
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I. INTRODUCTION 
Data depth is a function which quantifies the 

centrality of a point in a given data cloud. It is closely 

related to central regions or trimmed regions. It plays 

an important role in many notable fields of 

statistics,namely; data exploration, ordering, 

asymptotic distributions and robust 

estimation.Manydepth procedures have been 

developedin the past few decades, namely,half space 

depth [13], simplicial depth [7], regression depth [11] 

and projection depth [8],[18],[14].  

Data depth has been used to compute 

multivariate measures of location and dispersion. In 

recent years data depth,based on projections has been 

increasingly studied and is mostly used in multivariate 

statistics. The essence of depth function in 

multivariate analyses is to measure the degree of 

centrality of a point relative to a data set. An analysis 

of multivariate statistical data is done by 

consideringeach univariate projection of the data. The 

main idea is, a central point is located in a multivariate 

data cloud only if it is located centrally in each 

univariate projection of this data cloud. The depth of a 

point in a multivariate data cloud is defined asthe 

minimum of the depths arising from the univariate 

projection of the data. 

This paper is organized as follows. Section 2 

describes the projection depth and associated 

estimator. Section 3 presents an abstract of various 

computational algorithms such as exact, fixed and 

random. The computational aspects of the proposed 

algorithm, namely, Gram-Schmidt Orthonormalization 

procedure is also furnished in the section. Section 4 

examines the performance of the proposed GSO 

algorithm and critically compares the various 

algorithms of projection depth procedure through 

some examples. Section 5demonstrates the superiority 

of the GSO algorithm by applying it in the 

discriminant analysis under real and simulation 

environment. 

II. PROJECTION DEPTH AND ITS 

ASSOCIATED ESTIMATOR 
[14]Established a projection-based depth 

function, which has the highest breakdown point 

among all the existing affine equivariant multivariate 

location estimators and associated medians. The 

projection depth is appeared very favorable to robust 

statistics when compared with the others depth 

notions.It is due to the reason that all the desirable 

properties of the general statistical depth function 

defined in [18], namely, affine invariance, maximality 

at center, monotonicity relative to deepest point, and 

vanishing at infinity are satisfied.Also, it can induce 

the favorable estimators, such as Stahel-

Donohoestimator and depth weighted means for 

multivariate data [15], [16].[15]Introduced the concept 

of multidimensional trimming on projection depth. 

Exact computation of bivariate projection depth and 

Stahel-Donohoestimator,furthermore, with a proper 

choices of  ,  are formulated and studied by 

[17].Furthercomputing issues of projection depth and 

its associated estimators has studied by [10]. The basic 

idea of computing, projection depth is summarized 

given below. 

Let µ (.) and σ (.)be univariate location and 

scale measures, respectively. Then the outlyingness of 

a point Rx    with respect to distribution functions F 

of X in as[8], [14]. 

|)F,x,u(Q|sup)F,x(O
1||u|| 

    (1) 

where       FuFnxuTFxQ  /,   and Fu is the 

distribution of u
T
x. If   0)(  FuFuxuT  , and

  0,, FxuQ , which denotes the projection of xonto the 

unit vectors u. Note that the most popular outlying 
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function robust choice of µ and σ is the median (Med) 

and the median absolute deviation (MAD). Let Fu be 

the distribution furthermore, the projection depth and 

its associated estimator depend on the robust choice of 

(Med, MAD), Q(x, u, X
n
) in (1) with respect to the unit 

vectors u in (1). 

)X,x,u(Qsup)X,x(O n

1||u||

n



    (2) 

where,
)Xu(MAD

|)Xu(Medxu|
)X,x,u(Q

nT

nTT
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Whereu
T
 denotes the projection of x onto the unit 

vector u and  Xu,...,Xu,XuXu n
T

2
T

1
TnT  . The 

projection depth value of a given point x ε R
p
 with 

respect to F can be defined as 
)]F,X(O1[

1
)F,X(PD


  

The famous Stahel-Donoho location estimator [2], 

[12] i.e. the Projection Weighted Mean (PWM) and 

Projection Weighted Scatter (PWS) is given by 
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WherePWM(F) and PWS(F) is the aforementioned 

Stahel-Donoho location and scatter estimators, w2(.) 

denotes the weight function on [0, 1] based on 

projection depth outlying function (µ(F),σ(F)) as 

respectively. Note that the projection depth and its 

associated estimators awell defined, certain monotony 

conditions are required as follows
 

    ,0dxF)F,x(PDwi 
 

      .2,1i,dxFF,xPDwx i
i

 

With a finite sample },...,2,1{ nXXXnX    from X and 

Fn be the corresponding empirical distribution of F 

based inX
n
.  

III. GSO PROCEDURE OF COMPUTING 

PROJECTION DEPTH 

In high dimensions, approximate algorithms 

include fixed and random direction procedures [17], 

[3] gives low efficiency. To enhance the efficiency 

and reduce the computational complexity, Gram-

Schmidt orthogonal Euclidean vector based 

projections have been introduced to compute depth.
 

The fixed direction procedure uses fixed m 

directions which cut the upperhalfplane equally, and 

chooses the direction which can maximize (2). While 

random direction procedure randomly picks some m 

directions and chooses the optimal direction for 

computing the projection depth. The detailed 

computational steps are given by [3].An exact 

algorithm of computation of bivariate projection depth 

and the Stahel-Donoho estimator has been studied by 

[17]. Further, the simplified version of the 

computational procedure is given by [9]. 

In mathematics, particularly linear algebra 

and numerical analysis, the Gram-Schmidt process is a 

method for orthogonalnormalizationof vectors in an 

inner product space, most commonly the Euclidean 

space R
n
 equipped with the standard inner product. 

The Gram-Schmidt process takes a finite, linearly 

independent set },...,1{ kvvS  for nk   and generates 

an orthogonal set },...,1{'
kvvS  that spans the same k-

dimensional subspace of R
n
 as S. The basic idea of 

Gram-Schmidt process is as follows: Let ,11 vu 

and  






1k

1j
kjukk )v(projvu             (5) 

where, ,
,

,
)( u

uu

vu
vuproj   

Here, vuv,u T , denotes the inner product of the 

vectors u and v.Also, .
u

u
e

k

k
k  The sequence u1,…,uk 

is the orthogonal vectors, and the normalized vectors 

e1,…,ek form an orthonormal set. The computation of 

the sequence u1,…,uk is known as Gram-Schmidt 

orthogonalization, while the computation of the 

sequence e1,…,ek is known as Gram-Schmidt 

orthonormalization as the vectors are normalized. 

 When this process is implemented on the 

vectors 𝑢𝑘  are often not quite orthogonal, due to 

rounding errors.The Gram-Schmidt process can be 

stabilized by a small modification. Instead of 

computing the vector 𝑢𝑘 as in (5), it is computed as

)u(projuu,...,)u(projuu,)v(projvu
)2k(

k1ku
)2k(

k
)1k(

k
)1(

k1u
)1(

k
)2(

kk1uk
)1(
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 each 

step finds a vector )i(
ku orthogonal to )1i(

k
u

 .Thus )i(
ku  is 

also beingorthogonalized against any errors 

introduced in computation of )1i(
k

u
 . 

IV. NUMERICAL ANALYSIS 

 This section presents some examples to 

examine the performance of a Matlab implementation 

of the proposed GSO algorithm alongwith exact and 

approximate algorithms. 

 

A. Real Data 

To illustrate the performance of projection 

depth, a real data example is presented. The data set is 

taken from [5] (Sweat data, Page 215). The data 

consists of 19 observations. The data describe 19 

healthy females were measured with two variables 

sweat rate (X1) and sodium content (X2).  The scatter 

plot and the projection depth-size plots are displayed 

in the figure 1. It is noted that the larger size of the dot 

corresponds to the larger depth of the point. The 

computed projection depth values under the various 

algorithms with GSO are presented in the table 1. 
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(a)  

 
(b) 

Figure 1 (a) Scatter plot (b) Projection depth-size plot 
(GSO) 

TABLE I 

The Computed Projection Depth Values 

Index Fixed(1000) Random(1000) Exact GSO 

1 0.391675 0.386317 0.375349 0.491492 

2 0.307042 0.306444 0.305747 0.306028 

3 0.431026 0.426063 0.414516 0.555394 

4 0.285616 0.279735 0.27095 0.311501 

5 0.259398 0.253863 0.245614 0.278839 

6 0.396943 0.396735 0.393545 0.401643 

7 0.269014 0.262612 0.262133 0.2726 

8 0.157949 0.160002 0.15457 0.1567 

9 0.240117 0.243466 0.234637 0.237457 

10 0.443961 0.415142 0.41369 0.467244 

11 0.449288 0.449321 0.449288 0.457557 

12 0.310127 0.312281 0.30121 0.415504 

13 0.303121 0.303158 0.303121 0.314594 

14 0.513441 0.513905 0.508065 0.518881 

15 0.197541 0.192297 0.191923 0.198288 

16 0.164966 0.167696 0.164595 0.173674 

17 0.205882 0.208916 0.201178 0.266995 

18 0.280616 0.282938 0.276772 0.296182 

19 0.582278 0.580748 0.568047 0.695879 

It is noted that, all procedures represent the 

19
th

 observation as the location of a given data, since 

it has the largest depth value. Further comparing the 

depth value under various algorithms, the GSO gives 

the highest among them.   

B. Simulation Results 

A simulation study is performed to compare 

the efficiency of the proposed GSO procedure along 

with various notions of projection depth procedure. 

The data (n=25) are generated from a multivariate 

normal distribution, mean vector µ= (0,0) and the unit 

covariance matrix, =I2. The results are listed in table 

2.  

TABLE II 

The Computed Projection Depth Values 
S.N

o 

Fixed(100

0) 

Random(10

00) 
Exact GSO 

1 
0.279751 0.279985 

0.2797

51 

0.2846

88 

2 
0.177699 0.177773 

0.1776
99 

0.1878
25 

3 
0.300351 0.300372 

0.3002

42 

0.3128

25 

4 
0.418745 0.419082 

0.4187
45 

0.4213
92 

5 
0.402708 0.402620 

0.4025

44 

0.4063

53 

6 
0.260813 0.261744 

0.2608
13 

0.2626
46 

7 
0.177237 0.177604 

0.1771

37 

0.1872

85 

8 
0.314549 0.315592 

0.3145
49 

0.3165
94 

9 
0.327815 0.327222 

0.3264

25 

0.3401

21 

10 
0.443497 0.443604 

0.4434
97 

0.4626
1 

11 
0.395648 0.395218 

0.3948

40 

0.4020

85 

12 
0.180137 0.180194 

0.1800
76 

0.1931
11 

13 
0.490847 0.491594 

0.4908

47 

0.4930

41 

14 
0.236695 0.236771 

0.2366
22 

0.2519
2 

15 
0.287932 0.288072 

0.2879

32 

0.2979

97 

16 
0.261341 0.262160 

0.2613

41 

0.2629

05 

17 
0.557417 0.558160 

0.5574

17 

0.5595

98 

18 
0.201091 0.201263 

0.2010

91 

0.2014

18 

19 
0.355026 0.355581 

0.3550

26 

0.3668

98 

20 
0.361799 0.361851 

0.3617

99 

0.3699

37 

21 
0.446930 0.446945 

0.4469

30 

0.4751

39 

22 
0.490172 0.490325 

0.4901

72 

0.5106

81 

23 
0.291422 0.291432 

0.2914

22 

0.3097

73 

24 
0.402583 0.402858 

0.4025

83 

0.4047

46 

25 
0.313248 0.313340 

0.3132

48 

0.3274

95 

The table indicates that, 17
th

 observation 

represents the location of generating data, since it has 

the largest depth value. Further, it is noted that GSO 

gives the highest depth value compared to the exact 

and approximate algorithms.  
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V. APPLICATION IN DISCRIMINANT 

ANALYSIS 

 The superiority of the GSO algorithm over 

the approximate and exact algorithms is studied by 

performing classification technique, namely 

discriminant analysis and compared the 

misclassification rate. [4] Developed the 

computational algorithm for fast and robust 

discriminant analysis, which is used for MATLAB 

implementation. The Stahel-Donoho estimator based 

projection depth approach is used for computing 

location and scatter values. Further, the analysis was 

performed simulated data with contamination.  

A. Real Data 

 A real data set is taken from [6] (Page 584). 

The data consists of two different groups: π1 is 

ridingmower owners and π2 is without 

ridingmowers(non-owners) with each of sample 12. 

The owners or non-owners on the basis ofvariables, 

income (x1) and lot size (x2). The computed group-

wise misclassification and its averages are presented 

in Table 3. 
TABLE III 

Computed Misclassification Probabilities 

under Various Projection Depths 

Procedures 
Misclassification Probabilities 

π1 π2 Average 

Exact 0.1667 0.2500 0.2083 

Fixed 0.1667 0.2500 0.2083 

Random 0.1667 0.2500 0.2083 

GSO 0.0833 0.1667 0.1250 

 

It is observed that, the GSO algorithm gives very less 

average misclassification rate when compared with 

approximate and exact algorithms. That GSO 

procedure is misclassifies only 12%, but all other 

procedures misclassifies around 21% of the original 

data. 

B. Simulation Result 

To compare the GSO procedure with the 

approximate and exact procedure a simulation study is 

also performed with/without contamination.  The data 

were generated from two different normal 

distributions (g=2, p=2) with varying sample sizes 50 

and 100.The data were generated from thenormal 

distribution with covariance matrices ∑1=I2and ∑2= 

1.5I2and means µ1= (1, 1) and µ2= (3, 3). The location 

and scale contaminations are applied as described 

using the values of µ1= (-4, -4) and µ2= (-5, -5) along 

with the covariance matrices ∑1 =3 I2and ∑2 = 2I2.The 

various levels of contamination such as 0%,5%, 10%, 

15% and 20% were considered in two cases also. The 

obtained results with the contamination are displayed 

in the table4. 

 

 

 

 

TABLE IV 
Computed Misclassification Probabilities 

under Various Contamination Levels 

n1=n2=50 

Error Exact Fixed Random GSO 

0.00 0.0645 0.0645
 

0.0645
 

0.0645
 

0.05 0.0690 0.0690
 

0.0690
 

0.0690
 

0.10 0.0769 0.0769
 

0.0769
 

0.0718
 

0.15 0.0854 0.0854 0.0854 0.0769 

0.20 0.0897 0.0897 0.0897 0.0824 

n1=n2=100 

0.00 0.0952 0.0952 0.0952 0.0952 

0.05 0.0984 0.0984 0.0984 0.0984 

0.10 0.1205 0.1205 0.1205 0.1193 

0.15 0.1250 0.1250 0.1250 0.1236 

0.20 0.1582 0.1582 0.1582 0.1429 

 It is noted that, when the contamination level 

increases misclassification probabilities is also 

increasing under all the procedures. On comparing the 

average probability of misclassification values in the 

above table, it is evident that the procedures GSO 

algorithm produces less when compared with exact 

and approximate algorithms. It is concluded that the 

GSO performs better than the exact and approximate 

algorithms. It shows that it is superior to the other 

algorithms under with/without contaminating data.  

VI. CONCLUSION 

This paper presents a novel idea of 

computing, projection depth. The computational 

aspect of the GSO algorithm is described. The 

performance of the GSO algorithm is discussed 

through numerical analysis. Further, the superiority of 

the GSO is demonstrated over the exact and 

approximate procedures by applying it in discriminant 

analysis under with/without contamination. It is 

concluded that, the performance of GSOprocedure is 

much better than approximate and exact algorithms. 

The study can be extended to higher dimensions. The 

new GSO procedure can be applied in almost all 

multivariate analysis and in turn it is very useful to 

research communities doing research in the field of 

data mining and computer vision.  
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