Semitotal Block Double Domination in Graphs

M. H. Muddebihal^{#1}, Suhas P. Gade^{*2}

¹Professor, Department of Mathematics, Gulbarga University, Kulburgi-585106, Karnataka, India.

²Assistant Professor, Department of Mathematics, Sangameshwar College, Solapur-413001, Maharashtra, India.

Abstract

For any graph G = (V, E), the semitotal block graph $T_b(G) = H$, whose set of vertices is the union of the set of vertices and block of G and in which two vertices are adjacent if and if the corresponding vertices of G are adjacent or the corresponding members are incident in G. A subset D^d of $V[T_b(G)]$ is double dominating set of $T_b(G)$ if for every vertex $v \in V[T_b(G)], |N[v] \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbor in D^d or v is in $V[T_b(G)] - D^d$ and has at least two neighbors in D^d . The semitotal block dominating number $\gamma_{ddtb}(G)$ is a minimum cardinality of the semitotal block double dominating set of G and is denoted by $\gamma_{ddtb}(G)$. In this paper, we establish some sharp bounds for $\gamma_{ddtb}(G)$. Also some upper and lower bounds on $\gamma_{ddtb}(G)$ in terms of elements of G and other dominating parameters of G are obtained.

Subject classification number: *AMS* – 05*C*69, 05*C*70.

Keyword: semi total block graph, Dominating set, Strong split dominating set, Double domination.

1. Introduction

In this paper we consider only finite, undirected, connected graphs with no loops and no multiple edges. Terms not defined here are used in the sense of Harary[2]. Let G be a graph with V = V(G) is the vertex set of G and E =E(G) is the edge set of G. The neighborhood of a vertex $v \in V$ is defined by $N(v) = \{u \in V/uv \in E\}$. The close neighborhood of a vertex v is $N[v] = N(v) \cup \{v\}$. The order |V(G)| of G is denoted by p. The degree of v is d(v) = |N(v)|. The maximum degree of a graph G is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(G)$. A set D of vertices in a graph G is called a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. The domination in graphs with many variations is now well studied in graph theory. The recent book of Chartrand and Lesniak[1] includes a chapter on domination. A thorough study of domination appears in [3]. For any graph G =(V, E), the semitotal block graph $T_b(G) = H$, whose set of vertices is the union of the set of vertices and blocks of G and in which two vertices are adjacent if and if the corresponding vertices of G are adjacent or the corresponding members are incident in G. This concept was introduced in [4]. The vertex connectivity denoted as $\kappa(G)$ is the minimum number of vertices whose removal gives a disconnected graph. A dominating set D of G is called strong split dominating set of G if $\langle V(G) - D \rangle$ is totally disconnected with at least two vertices. The strong split domination number $\gamma_{ss}(G)$ is the minimum cardinality of minimal strong split dominating set. Introduction and study of $\gamma_{ss}(G)$ appears in [5]. In this paper we, continue the study of a variation of the domination theme, namely that of semitotal block double domination in graph G. A subset D^d of $V[T_b(G)]$ is double dominating set of $T_b(G)$ if for every vertex $v \in V[T_b(G)], |N[v] \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[T_b(G)] - D^d$ and has at least two neighbours in D^d . The semitotal block dominating number $\gamma_{ddtb}(G)$ is a minimum cardinality of the semitotal block double dominating set of G and is denoted by γ_{ddtb} (G). In this paper, we establish some sharp bounds for $\gamma_{ddtb}(G)$. Also some upper and lower bounds on $\gamma_{ddtb}(G)$ in terms of elements of G and other dominating parameters of G are obtained.

2. Specific value of $\gamma_{ddtb}(G)$

In this section, we illustrate the semitotal block double domination number by giving the value of $\gamma_{ddtb}(G)$ for several classes of graphs. Also we found some constraints for which $\gamma_{ddtb}(G)$ follows the equality relations with other domination parameters of *G*. Some proofs are straightforward and are omitted.

We need the following theorem to prove one of our results.

Theorem A[5]: For any graph $G, \frac{p}{1+\Lambda(G)} \leq \gamma(G)$.

Main Results

Proposition 2.1: For any nontrivial tree T, $\gamma_{ddth}(T) = n + 1$ where n is the number of blocks.

Proposition 2.2: For any nontrivial tree *T*, γ_{ddtb} (*T*) = *p*

Proposition 2.3: For any star graph $K_{1,n}$ $n \ge 2$, $\gamma_{ddtb}(K_{1,n}) = n + 1$.

Proposition 2.4: For any bipartite graph $K_{m,n}$, $m \le n$, $\gamma_{ddtb}(K_{m,n}) = m + 1$.

Proposition 2.5: For any nontrivial tree T, $\gamma_{ddtb}(T) = \beta_0(G) + 2$.

Proposition 2.6: For any (p, q) connected graph G, $\gamma_{ddtb}(G) \leq \gamma_{dd}(G)$.

Theorem 2.7: For any nontrivial tree *T* with $p \ge 3$ vertices, $\gamma_{ddtb}(T) = C_0 + V_e$ where C_0 is the number of cut vertices and V_e is the number of end vertices.

Proof: Let $B = \{B_1, B_2, B_3, ..., B_n\}$ be the set of blocks of T and $H = \{b_1, b_2, b_3, ..., b_n\}$ be the corresponding block vertices of the set B in $T_b(T)$. Let $H_1 = \{v_1, v_2, v_3, ..., v_k\}$ be the set of end vertices of T and $C = \{c_1, c_2, c_3, ..., c_l\}$ be the set of cut vertices of T such that $|H_1| = V_e$ and $|C| = C_0$. Then in $T_b(T)$, $V[T_b(T)] = C \cup H \cup H_1$. Let D^d be a double dominating set of $T_b(G)$ such that $D^d = C \cup H_1$ then any vertex $v \in V[T_b(T)] - D^d = H$ has two neighborhood in D^d . Hence D^d is a γ_{ddtb} - set of T, which gives $|D^d| = \gamma_{ddtb}(T)$. Thus $\gamma_{ddtb}(T) = |C \cup H_1|$, which implies that $\gamma_{ddtb}(G) = C_0 + V_e$.

Theorem 2.8: For any nontrivial tree *T* with $p \ge 3$, $\gamma_{ddtb}(T) = n + \kappa(T)$, where *n* is the number of blocks and $\kappa(T)$ is the vertex connectivity.

Proof: Let *T* be a graph, in which each block is complete. Then in $T_b(T)$, each block is also complete. Let $B = \{B_1, B_2, B_3, ..., B_n\}$ be the set of blocks of *T* and $H = \{b_1, b_2, b_3, ..., b_n\}$ be the corresponding block vertices of the set *B* in $T_b(T)$. Let $H_1 = \{v_1, v_2, v_3, ..., v_k\}$ be the set of end vertices of *T* and $C = \{c_1, c_2, c_3, ..., c_k\}$ be the set of cut vertices of T such that |H| = n. Hence $|H_1| = V_e$ and $|C| = C_0$. Then in $T_b(T)$, $V[T_b(T)] = H \cup H_1 \cup C$. We consider $D^d = C \cup H_1$ be the set such that for any vertex $v \in V[T_b(T)] - \{C \cup H_1\}$ is dominated by at least two vertices of $T_b(T)$. Thus $\{C \cup H_1\}$ is a double dominating set of $T_b(T)$. Thus $|C \cup H_1| = |H \cup \kappa|$, since $\kappa = 1$ for every nontrivial tree, then we have $\gamma_{ddtb}(T) = n + \kappa(T)$

3. LOWER BOUNDS FOR $\gamma_{ddtb}(G)$.

Here we establish lower bounds for $\gamma_{ddtb}(G)$ in terms of elements of *G*.

For two vertices x and y of a graph G, the distance between x and y is denoted by d(x, y).

Theorem 3.1: Let D^d be a double dominating set of $T_b(G)$ and $u, v \in D^d$, then $|D^d| \ge 1 + d(u, v)$.

Proof: Since $\langle D^d \rangle$ is connected, then there exist a distance between every pair of vertices. Hence one can easily verify that $|D^d| \ge 1 + d(u, v)$.

For a vertex v of a graph G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The maximum eccentricity is its diameter, diam(G). Now we have the following.

Theorem 3.2: For any connected (p, q) graph G, $\gamma_{ddtb}(G) \ge 1 + diam(G)$.

Proof: Let D^d be a γ_{ddtb} -set of G. We first notice that any two vertices $u, v \in D^d$ there is a path in which end vertices are u and v. Let x, y be two vertices of G such that d(x, y) = diam(G). Since $|V(G) - D^d| \ge 0$, then $D^d = \{x, u, v, ..., y\} \subseteq T_b(G)$. If $\{x, y\} \subseteq D^d$, by the Theorem 9, $\gamma_{ddtb}(G) \ge 1 + diam(G)$.

Theorem 3.3: Let G be a graph with $\delta(G) \ge 2$. If D^d is a minimal double dominating set of $T_b(G)$, then $V[T_b(G)] - D^d$ contains a minimal dominating set.

Proof: Let D^d be a minimal double dominating set of $T_b(G)$. Suppose there exists a vertex $v \in D^d$ which is adjacent to no vertex in $V[T_b(G)] - D^d$. Then v is adjacent to at least two vertices of D^d itself. Therefore $D^d - \{v\}$ is a double dominating set, which is a contradiction. Thus every vertex in D^d must be adjacent to at least one vertex in $V[T_b(G)] - D^d$. Thus $V[T_b(G)] - D^d$, is a dominating set of $T_b(G)$ and hence it contains a minimal dominating set.

Theorem 3.4: For any connected (p, q) graph $G, \frac{1}{2}(2q - p(p - 3)) \le \gamma_{ddtb}(G)$.

Proof: Let D^d be a γ_{ddtb} -set of G. Then there exists a vertex $v \in D^d$ which is not adjacent to any vertex in $V[T_b(G)] - D^d$. Since from proposition 6, $\gamma_{dd}(G) \ge \gamma_{ddtb}(G)$. This implies that $q \le \frac{p(p-1)}{2} - (p - \gamma_{ddtb}(G))$. It follows that $\frac{1}{2}(2q - p(p-3)) \le \gamma_{ddtb}(G)$.

Theorem 3.5: For any connected (p, q) graph G, $p - q + \delta(G) \le \gamma_{ddtb}(G)$.

Proof: Let D^d be a γ_{ddtb} -set of G. Then there exists a vertex $v \in D^d$. But in $G \deg(v) = \Delta(G)$. Since $\gamma_{dd}(G) \ge \gamma_{ddtb}(G)$. Thus $q \ge |V(G) - D^d| + \deg(u) \ge |V(G) - D^d| + \delta(G)$. Which implies that $p - q + \delta(G) \le \gamma_{ddtb}(G)$.

Theorem 3.6: For any non-trivial tree *T* with $p \ge 2$, $\delta(T) + 1 \le \gamma_{ddtb}(T)$.

Proof: Since each edge of *T* is K_2 and each block in $T_b(T)$ is K_3 . Let γ_{ddtb} -set of *T*. Then there is a vertex $v \in D^d$ such that v is not a adjacent to any vertex of $V[T_b(T)] - D^d$. It follows that $degv \leq \gamma_{ddtb}(G)$. Since in $T_b(T)$, $\delta(G) + 1 \leq degv$. This implies that $\delta(T) + 1 \leq \gamma_{ddtb}(T)$.

Theorem 3.7: For any connected (p, q) graph $G, \gamma_{ss}(G) \leq \gamma_{ddtb}(G)$.

Proof: Let *G* be a graph with $p \ge 3$ vertices and let $V = \{v_1, v_2, v_3, ..., v_p\}$ be the set of vertices of *G*. Let $B = \{B_1, B_2, B_3, ..., B_n\}$ be the set of blocks of *G* and let $H = \{b_1, b_2, b_3, ..., b_n\}$ be the corresponding block vertices of the set *B* in $T_b(G)$. Further let $D = \{v_1, v_2, v_3, ..., v_k\}$ be the set of vertices of *G* such that $\forall v_i \in V - D$ is an isolate then *D* is the γ_{ss} -set of *G*. Since $V[T_b(G)] = V(G) \cup H$. Let $D_1 \subseteq D$, now we consider $v_i, v_j \in V[T_b(G)]$ such that $\deg(v_i) \ge \deg(v_j)$ and again we consider $H_1 \subseteq H, \forall v_k \in H_1$, $\deg(v_k) \ge \deg(v_i)$ or $\deg(v_j)$. Then for any vertex $v \in V[T_b(G)] - \{H_1 \cup D_1\}$ is adjacent to at least two vertices of $T_b(G)$. Thus $D^d = H_1 \cup D_1$ is double dominating set of $T_b(G)$. Thus $|D| \le |H_1 \cup D_1|$ and it follows that $\gamma_{ss}(G) \le \gamma_{ddtb}(G)$.

Theorem 3.8: For any connected (p,q) graph G with $G \neq k_3$. Then $\gamma_{ddtb}(G) \ge \frac{5p-2q}{4}$.

Proof: Let D^d be a γ_{ddtb} -set of G. Every vertex in $V[T_b(G)] - D^d$ is adjacent to at least two vertices in D^d and any vertex in D^d must have at least one neighbor in D^d . Hence $q \ge 2|V(G) - D^d| + \frac{|V(G) - D^d|}{2} = \frac{5}{2}|V(G) - D^d| + \frac{\gamma_{ddtb}(G)}{2} = \frac{5}{2}(p - \gamma_{ddtb}(G)) + \frac{\gamma_{ddtb}(G)}{2}$. Thus $2q \ge 5p - 4\gamma_{ddtb}(G)$, so that $\gamma_{ddtb}(G) \ge \frac{5p - 2q}{4}$.

Theorem 3.9: For any connected (p,q) graph G with $G \neq P_{p}$, p = 5,6,7, $\gamma_{ddtb}(G) \geq \frac{2p}{\Delta(G)+1}$.

Proof: Let D^d be a γ_{ddtb} -set of G and D be a γ_{dd} -set of G. Since $\gamma_{ddtb}(G) \leq \gamma_{dd}(G)$ if $G \neq P_p$, p = 5,6,7 so on. Let t be the number of edges with one end in D and other end in V(G) - D. Since every vertex in D has at least one neighbor in D, since for any connected graph G, there exists at least one vertex $u \in V(G)$ such that $\deg(u) = \Delta(G)$, then $t \leq (\Delta(G) - 1)|D^d| = (\Delta(G) - 1)\gamma_{ddtb}(G)$. Also every vertex in V(G) - D is adjacent to at least two vertices in D and so $t \geq 2|V - D^d| = 2(p - \gamma_{ddtb}(G))$. Thus $2p - 2\gamma_{ddtb}(G) \leq (\Delta(G) - 1)\gamma_{ddtb}(G)$ and it follows that $\gamma_{ddtb}(G) \geq \frac{2p}{\Delta(G)+1}$.

Theorem 3.10: For any connected (p,q) graph G, γ_{ddtb} (G) $\geq \frac{2p}{\delta(G)+1}$.

Proof: Let D^d be a γ_{ddtb} -set of G. Since $\gamma_{ddtb}(G) \le \gamma_{dd}(G)$ (if $G \ne P_{p_c} p = 5,6,7$ so on) and t denote the number of edges joining the vertices of D^d to the vertices of $V(G) - D^d$. Then by definition of double dominating set any

vertex $v \in D^d$ has exactly deg(v) - 1 neighbours in $V(G) - D^d$. Thus $t = \sum (\deg(v) - 1)$. Since for any graph G there exists at least one vertex $v \in V(G)$ such that deg $(v) = \delta(G)$. Further $|D^d|(\delta - 1) \ge t = 2|V - D^d|$ it implies that $\gamma_{ddtb}(G)(\delta-1) \ge 2p - 2\gamma_{ddtb}(G)$. Hence $\gamma_{ddtb}(G)\delta(G) - \gamma_{ddtb}(G) + 2\gamma_{ddtb}(G) \ge 2p$. Which gives, $\gamma_{ddtb}(G)(\delta(G) + 1) \ge 2p$. Hence $\gamma_{ddtb}(G) \ge \frac{2p}{\delta(G)+1}$.

Theorem 3.11: For any connected (p,q) graph $G, \gamma_{ddtb}(G) \ge \gamma(G) + 1$.

Proof: We consider the following two cases.

CaseI: Suppose G is acyclic graph. Let D^d be a γ_{ddtb} -set of G. Since $\gamma(G) \leq p-1$ and if $D^d = V(G)$, then G is acyclic and $\gamma_{ddth}(G) \ge \gamma(G) + 1$.

CaseII: Suppose G is cyclic graph. Then there exists a vertex $v \in V(G)$ such that v is adjacent to u and $u, w \in V(G)$ V(G) and u, w has a unique path joining the vertices. Hence $uv\{u, w\}$ forms a cycle. Further $v \in D$, where D is a dominating set of G. But either $\{v, u\}$ or $\{v, w\} \in D^d$ set. Clearly $\gamma_{ddth}(G) \ge \gamma(G) + 1$.

4. UPPER BOUNDS FOR $\gamma_{ddtb}(G)$.

Here we establish upper bounds for γ_{ddtb} (G) in terms of elements of G.

Theorem 4.1: For any connected (p, q) graph G with $n \ge 1$ blocks, $\gamma_{ddtb}(G) \le n + \frac{p \Delta(G)}{1 + \Delta(G)}$

Proof: Let $B = \{B_1, B_2, B_3, \dots, B_n\}$ be the set of blocks of G and $H = \{b_1, b_2, b_3, \dots, b_n\}$ be the corresponding block vertices in $T_h(G)$. Since $V[T_h(G)] = V(G) \cup B$. Let D be a dominating set of G. Then each $v \in V[T_h(G)]$ is also dominating by some vertices of D. Then $V[T_h(G)] - D$ is also a dominating set of G. Let D^d be a double dominating set of $T_b(G)$. Then $|D^d| \leq |V[T_b(G) - D]|$. From Theorem A[5], $\gamma_{ddtb}(G) \leq \left| p + n - \frac{p}{1 + \lambda(G)} \right|$ it follows that,

 $\gamma_{ddtb}(G) \leq n + \frac{p.\Delta(G)}{1+\Delta(G)}.$

The clique number $\omega(G)$ of G is the minimum order of a clique in the graph. Clearly $\omega(G) = \beta_0(\overline{G})$. We give an upper bound for $\gamma_{ddtb}(G)$.

Theorem 4.2: For any connected (p,q) graph G with n blocks and $p \ge 3$, $\gamma_{ddtb}(G) \le p + n - 2$.

Proof: If $T_b(G) = H$ it implies that $\gamma_{ddtb}(G) = \alpha_0(H)$ which gives $\alpha_0(H) = p + n - \beta_0(H)$. Further it implies that $p + n - \omega(\overline{H})$. Since $\beta_0(\overline{H}) \ge 2$, then $\gamma_{ddtb}(G) \le p + n - 2$.

NORDHAUS-GADDUM TYPE RESULTS

Theorem 4.3: For any connected (p, q) graph G with $p \ge 3$ vertices,

 $(\mathrm{I})\gamma_{ddtb}\left(G\right)+\gamma_{ddtb}\left(\bar{G}\right)\leq 2p+1.$ (II) $\gamma_{ddtb}(G)$. $\gamma_{ddtb}(\bar{G}) \leq p(p+1)$.

References

- [1] G.Chartrand and Lesniak, Graphs and Digraphs, third edition, Chapman and Hall, London, (1996).
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading Mass (1974).

[3] T.W. Hyness, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graph, Marcell Dekker, INC- (1998).

[4] V.R. Kulli, The semitotal-block graph and the Total-block graph of a graph, Indian journal of Pure and Applied Mathematics Vol. 7, No.6 (June 1976), 625-630.

[5] V.R. Kulli, Theory of domination in Graphs, Vishva International Publications, (2010).