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I. INTRODUCTION
The concept of fuzzy set and fuzzy set operations was introduced by L.A.Zadeh [11]. A fuzzy
topological space using the concept of fuzzy sets was introduced by C.L.Chang [2]. Thakur S.S [9] introduced
the concept of fuzzy generalized closed sets. In this paper we have introduced a new type of fuzzy closed set
called fuzzy y* generalized closed set and investigated some of their properties.

ILPRELIMINARIES

Definition 2.1: [11] Let X be a non-empty set. A fuzzy set A in X is characterized by its membership function
pa - X—[0,1] and pa(X) is interpreted as the degree of member of element x in a fuzzy set A, for each x € X. It
is clear that A is determined by the set of tuples of A = {(X, pa(x)) : x € X }.
Definition 2.2: [11] Let A and B be two fuzzy sets A = {(X, pa(X)) : X € X} and B = {(x, us(X)) : x € X}.Then,
their union A v B, intersection A A B and complement A°are also fuzzy sets with membership functions defined
as follows :

(@) pa’(X) = 1-pa(x), vV X € X,

(b) mavp(x) = max{pa(x), ps(X)} Vv X € X,

(€) panp(x) =min { pa(x), ue(X)}, Vx € X
Further,

(@) A cBifand only if pa(x) < ps(x), ¥V X € X,
(b) A=Bifandonly if pa(x) = ug(x), v X € X.
Definition 2.3: [4] A family t of fuzzy sets is called fuzzy topology (FT in short) for X if it satisfy the three
axioms:
(@ 0,1€er
(b) VA BET=>AABET
(c) v (Aj)jE] €T Vg4 €T
The pair (X, 1) is called a fuzzy topological space (FTS for short). The elements of t are called fuzzy open
sets in X and their respective complements are called fuzzy closed sets of (X, 7).
Definition 2.4: [3] A fuzzy set Aina FTS (X, ) is said to be a
(@) fuzzy y closed set (FyCS) if cl(int(A)) A int(cl(A)) < A
(b) fuzzy y open set (FyOS) if A <int(cl(A)) V cl(int(A))
Remark 2.5: [3]
(i) Any union of fuzzy y open setsina FTS X is a fuzzy y open setina FTS X.
(if) Any intersection of fuzzy y closed sets is a fuzzy y closed set ina FTS X.
Definition 2.6: [3] Let A be a fuzzy setina FTS X. Then we define y interior and y closure as
ycl(A) =A{B:B>A Bisafuzzyy closed set in X}
yint(A) = v {B : B < A, Bisa fuzzy y open set in X}.
Properties 2.7: [3] Let A be a fuzzy setina FTS X. Then
YCl(A) = (vint(A))°
y int(A°) = (ycl(A)°
Properties 2.8: [3] Let A and B be any two fuzzy sets ina FTS X. Then
1) yint(0) =0, yint(1) =1,
2) yint(A) is a fuzzy y open set in X,
3) yint(yint(A)) = yint(A),
4) If A <B thenyint(A) <yint(B),
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5) yint(AAB) =yint(A) A yint(B),

6) yint(AvB) > yint(A) v yint(B).
Properties 2.9: [3] Let A and B be any two fuzzy sets in a fuzzy topological spaces X. Then

1) yel(©)=0;ycl(D) =1,

2) ycl(A) is a fuzzy y closed set in X,

3) vcl(ycl(A)) =ycl(A),

4) If A<B thenycl(A) < ycl(B),

5) ycl(AvB) =ycl(A) v ycl(B),

6) ycl(AAB) <ycl(A) A ycl(B).
Definition 2.10: [5] A fuzzy set A is a quasi-coincident with a fuzzy set B, denoted by A,B, if there exists x € X
such that A(x)+B(x) > 1.
Definition 2.11: [5] If A and B are not quasi-coincident then we write A;B. A<B < Az(1-— B).
Definition 2.12: [8] A fuzzy Set A in a FTS (X, t) is called fuzzy nowhere dense if there exists no non-zero
fuzzy open set B in (X, 1) such that B < cl(A) that is intcl(A) = 0.
Definition 2.13: [6] The intersection of all fuzzy open subsets of a topological space (X, t) containing A is
called the Kernel of A, this means ker(A) = A {G €1, A <G}.
Definition 2.14: [7] A fuzzy point p in a set X is also a fuzzy set with membership function:

(r, forx=y
(%) _{0, forx #y
where x € X and 0 < r <1,y is called the support of pand r the value of p. We denote this fuzzy point by
x, or p. A fuzzy point x, is said to be belonged to a fuzzy subset A in X, denoted by x, € A if and only if
r< pz(x).
Il. FUZZY y* GENERALIZED CLOSED SETS

In this section we have introduced a new type of fuzzy closed set called fuzzy y* generalized closed set
and studied some of the properties.
Definition 3.1: An fuzzy set A of a FTS (X, 1) is said to be a fuzzy y* generalized closed set (Fy*GCS for
short) if  cl(int(A)) A int(cl(A)) <U, whenever A <U and U is a fuzzy open set in X.
Example 3.2: Let X = {a, b} and © ={0, 1, G;, G,} be a FT on X, where G; =(x, (0.5,, 0.6,)), G, =
(x, (0.4,, 0.5,)). Then (X, 1) is a FTS. Let A =(x, (0.5,,0.5,)) be a fuzzy set in (X, t). We have A < G;.
Now cl(int(A)) A int(cl(A)) = G,° A G, = G, < Gy, where G, is a FOS in X. This implies A is a Fy*GCS in
X.

Theorem 3.3: Every FCS is a Fy*GCS in (X, 1) but not conversely in general.
Proof: Let A be a FCS in (X, 1), then cl(A) = A. Let A < U and U be a FOS in (X, t). Now cl(int(A)) A
int(cl(A)) < cl(A) = A < U, by hypothesis. Hence A is a Fy*GCS in (X, 1).

Example 3.4: In Example 3.2, the FS A =(x, (0.5,, 0.5,)) isa Fy*GCS but nota FCS in (X, 1), as cl(A) =
G+ A.

Theorem 3.5: Every FSCS [1] in (X, 1) is a Fy*GCS but not conversely in general.
Proof: Let A be a FSCS in X, then int(cl(A)) < A. Let A < U and U be a FOS in (X, 1). Now cl(int(A)) A
int(cl(A)) < cl(int(A)) AA< cl(A) AA=A<U.Hence Aisa Fy*GCSin (X, 1).

Example 3.6: Let X = {a, b} and © = {0,1, Gy, G;} be a FT on X, where G; =(x, (0.5,, 0.4,)), G,
=(x, (0.6,,0.5,)). Then (X, 1) is a FTS. Let A =(x, (0.5,,0.3,)) be a fuzzy set in (X, t). Now cl(int(A)) A
int(cl(A)) =0 A G; =0 < U, then A is a Fy*GCS but not a FSCS in (X, 1), as int(cl(A)) = G; £ A.

Theorem 3.7: Every FPCS[10] isa Fy*GCS in (X, 1) but not conversely in general.
Proof: Let A bera FPCS in X, then cl(int(A) < A. Let A < U and U be a FOS in (X, t). Now cl(int(A)) A
int(cl(A)) < A Aint(cl(A)) <A A cl(A)=A <U. Hence A is a Fy*GCS in (X, 1).

Example 3.8: Let X = {a, b} and 1 = {0, 1, Gy, G,} be a FT on X, where G; =(x, (0.3,, 0.3,)), G,
=(x, (0.5,, 0.6,)). Then (X, 1) is a FTS. Let A =(x, (0.4,, 0.4,)) be a fuzzy set in (X, 7). Now cl(int(A)) A
int(cl(A)) = G,°AG; = G; < G,, where A < G, Then A is a Fy*GCS in X, but not a FPCS in (X, 1), as
cl(int(A)) = G, £ A.

Theorem 3.9: Every FRCS [10] is a Fy*GCS in (X, t) but not conversely in general.
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Proof: Let A be a FRCS in X, then cl(int(A) = A. Let A<U and U be a FOS in (X, 1). Now cl(int(A)) A
int(cl(A)) = A Aint(cl(A)) < A A cl(A) = A <U. Hence A is a Fy*GCS in (X, 1).

Example 3.10: In Example 3.8, A is a Fy*GCS in (X, 1) but not a FRCS as cl(int(A) = G,° # A.

Theorem 3.11: Every FaCS [10] isa Fy*GCS in (X, 1) but not conversely in general.

Proof: Let A be a FaCS in X, then cl(int(cl(A)) < A. Let A < U and U be a FOS in (X, t). Now cl(int(A)) A
int(cl(A)) < cl(int(cl(A))) A int(cl(A)) < A A cl(A) = A <U. Hence Ais a Fy*GCS in (X, 1).

Example 3.12: In Example 3.8, A is a Fy*GCS but not a FaCS as cl(int(cl(A)) = G, £ A.

Theorem 3.13: Every FyCS [3] isa F y*GCS in (X, 1) but not conversely in general.
Proof: Let A be a FyCS in X, then cl(int(A) A (int(cl(A)) < A. Let A < U and U be a FOS in (X, 1). Now
cl(int(A)) A int(cl(A)) < A < U. Hence Alisa Fy*GCS in (X, 7).

Example 3.14: Let X = {a, b} and = {0,1, G;, G,} be a FT on X, where G; =(x, (0.3,, 0.3)), G,
=(x, (0.5,, 0.5,)). Then (X, 1) is a FTS. Let A =(x, (0.4,, 0.4,)) be a fuzzy set in (X, 1). Now cl(int(A)) A
int(cl(A) ) = G,°A G,= G, < G, where A< G,. Then A is a Fy*GCS but not a FyCS as cl(int(A)) A int(cl(A) )
= Gz £ A.

Theorem 3.15: Bvery FGCS [9] isa Fy*GCS in (X, 1) but not conversely in general.
Proof: Let A be a FGCS in X. Let A <U and U be a FOS in (X, 7). Now cl(int(A)) A int(cl(A)) < cl(A) A cl(A)
=cl(A) < U, by hypothesis. Hence A is a Fy*GCS in (X, 7).

Example 3.16: Let X = {a, b} and t© = {0, 1, Gy, G,} be a FT on X, where G; =(x,(0.5,,0.6,)), G,
=(x, (0.4,, 0.5,)). Then (X, 1) is a FTS. Let A =(x,(0.4,, 0.5;,)) be a fuzzy set in (X, 7). Now cl(int(A)) A
int(cl(A)) = G,°A G, = G, < Gy, G, where A < Gy, G,. Then A is a Fy*GCS but not a FGCS as cl(A) =G,° £ G,
Gz but A < le Gz.

In the following diagram we have provided relation between various types of fuzzy closedness.

/ FCS A

FPCS l FRCS
FaCS —| Fy* ‘\'
2 V"6CS  e—— Escs
FGCS «— | FyCS

Theorem 3.17: Let (X, t) be a FTS. Then for every A € Fy*GC(X) and for every B € FS(X), A <B <cl(int(A)
= B € F y*GC(X).

Proof: Let B <U and U be a FOS in X. Let A < B, A < U, by hypothesis. Since B < cl(int(A), cl(int(B)) <
cl(int(A)). Also int(cl(B)) < int(cl(cl(int(A)))) < int(cl(int(A))) < int(cl(A)). Therefore cl(int(B)) A int(cl(B)) <
cl(int(A)) A int(cl(A)) < U, by hypothesis. Hence B € Fy*GC(X).

Theorem 3.18: A fuzzy set A of a FTS (X, 1) is a Fy*GCS if and only if A;F = (int(cl(A) A cl(int(A)))4F for
every FCS F of X.

Proof: Necessity: Let F be a FCS and A;F, then A< F, where F® is a FOS in X. Then int(cl(A)) A cl(int(A)) <
F%, by hypothesis. Hence by Definition 2.11, (int(cl(A) A cl(int(A))); F.
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Sufficiency: Let U be a FOS in X such that A < U.Then U%is a FCS and A < (U°)". Therefore A; U". By
hypothesis, A;U°= (int(cl(A) A cl(int(A)));U°". Hence int(cl(A)) A cl(int(A)) < (U%)°= U. Therefore int(cl(A))
A cl(int(A)) < U. Hence A isa Fy*GCS.

Theorem 3.19: If A is both a FOS and a Fy*GCS then Aiisa FyCS in (X,1).

Proof: Let A beaFOS and a Fy*GCS in (X, t). Thenas A <A, cl(int(A) A int(cl(A)) < A. Hence Aisa FyCS
in (X, 7).

Theorem 3.20: For a fuzzy set A in (X, 1) the following are equivalent:

i.  AisbothaFOSand aFy*GCS
ii. AisaFROS

Proof: (i) = (ii) Let A be a FOS and a F y*GCS in X. Then by Theorem 3.19, A is a FyCS. So cl(int(A)) A
int(cl(A)) < A. We have int(cl(A)) = int(cl(A)) A cl(A) = int(cl(A)) A cl(int(A)) < A. Hence int(cl(A)) < A—
(1). Since Aisa FOS, it is a FPOS. Hence A < int(cl(A)) — (2). Therefore from (1) and (2) A= int(cl(A)) and A
isa FROS in X.

(i))=(i) Let A be a FROS in X then A = int(cl(A)). Since every FROS is a FOS, Asisa FOS in X and A<A,
Therefore cl(int(A)) A int(cl(A)) = cl(int(A)) AA=AAcl(A) < A. Hence AisaFy*GCS.

Theorem 3.21: Let F< A< Xwhere AisaFOSanda Fy*GCS in X. Then Fis a Fy*GCS in A if and only if
FisaFy*GCSin X.

Proof: Necessity: Let F be a Fy*GCS in A. Let Ube a FOS in X and F<U. Then F< AAUand AAU s a
FOS in A. Hence int, (cly (F)) A cly(inty (F)) < A AU and by Theorem 3.19, A is a FyCS. Therefore int(cl(A))
Acl(int(A)) < A. Now int(cl(F)) A cl(int(F)) < [int(cl(F)) A cl(int(F))] A [int(cl(A)) A cl(int(A))] < (int(cl(F)) A
cl(int(F))) A A= int,(cl5(F)) A cla(inty (F)) <A AU < U. That is int(cl(F)) A cl(int(F)) < U, whenever F < U.
Hence Fisa Fy*GCS in X.

Sufficiency: Let V be a FOS in A such that F < V. Since A is a FOS in X, V is a FOS in X. Therefore int(cl(F))
A cl(int(F)) < V as F is a Fy*GCS in X. Thus, int, (cla (F)) A cla(int, (F)) = int(cl(F)) Acl(int(F)) AASV A A
< V. Hence F is a Fy*GCS in A.

Theorem 3.22: Fora Fy*GCS Aina FTS (X, 1), the following condition hold:

i. AisaFROS thenscl(A)isa Fy*GCS
ii. AisaFRCS thensint(A) isa Fy*GCS

Proof: (i) Let A be a FROS in (X, 1). Then int(cl(A)) = A. By the definition of semi closure we have scl(A) =
AV int(cl(A)) = A. Since Aisa Fy*GCS in X, scl(A) is a Fy*GCS in X.

(i) Let A be a FRCS in (X, t). Then cl(int(A)) = A. By the definition of semi interior we have sint(A) = AA
cl(int(A)) = A. Since Ais a Fy*GCS in X, sint(A) is a Fy*GCS in X.

Theorem 3.23: If every fuzzy set in (X, 1) is a Fy*GCS then FO(X) < FyC(X).

Proof: Suppose that every fuzzy set is a Fy*GCS in (X, t). Let U € FO(X) then as U < U and by hypothesis,
int(cl(U)) A cl(int(U)) < U. Therefore U € FyC(X). Hence FO(X) < FyC(X).

Theorem 3.24: A fuzzy set A of X isa Fy*GCS if int(cl(A)) A cl(int(A)) < ker(A).

Proof: Let A be any fuzzy set and let U be any FOS in X such that A < U. By hypothesis int(cl(A)) A cl(int(A))
< ker(A). Since A < U, ker(A) <U. Therefore int(cl(A)) A cl(int(A)) < U and hence Aisa Fy*GCS in X.

Theorem 3.25: If a fuzzy set A of a FTS X is nowhere dense, then A isa Fy*GCS in X.

Proof: If A is a fuzzy nowhere dense subset, then by Definition 2.12, int(cl(A)) =0.Let A <U where U isa
FOS in X. Then cl(int(A)) A int(cl(A)) =0 < U and hence A is a Fy*GCS in X.
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Theorem 3.26: Let A be a Fy*GCS in (X, 1) and pz(x) be a fuzzy point such that pg (X)q(cl(int(A)) A
int(cl(A)). Then cl(ps(X))q A

Proof: Assume that A is a Fy*GCS in (X, 1) and pz(X)q(cl(int(A)) A int(cl(A)).Suppose that cl(pz(x))gA, then
A < (cl(pg(x)))" where (cl(u3(x)))" is a FOS in (X, 1). Then by hypothesis , cl(int(A)) A int(cl(A)) < (cl(pp(X)))°
= int(us(X))° < (u5(x))". Therefore(cl(int(A)) A int(cl(A))5(1g(X)), which is a contradiction to the hypothesis.
Hence cl(ps(X))q A

Theorem 3.27: If Aisa FOS and a Fy*GCS in (X, 1), then int(A) is a FROS in X.

Proof: Since A is a FOS and a Fy*GCS in (X, 1), then by Theorem 3.19, A is a FyCS, which implies int(cl(A))
A cl(int(A)) < A. Therefore int[int(cl(A)) A cl(int(A))] < int(A) which implies int(cl(int(A)) < int(A). Since A
isa FOS, it is a FaOS. Hence int(A) < int(cl(int(A)). Therefore int(A) = int(cl(int(A)). Thus int(A) is a FROS.

IV.FUZZY y* GENERALIZED OPEN SETS

In this section we have introduced a new type of fuzzy open set called fuzzy y* generalized open set
and studied some of its properties.
Definition 4.1: The complement A°of a F y*GCS A in a FTS (X, 1) is called a fuzzy y* generalized open set
(Fy*GOS in short) in X.

Example 4.2: In Example 3.2, A=(x,(0.5,,0.5,)) isaFy*GOS in X.

Theorem 4.3: Every FOS, FSOS, FPOS, FROS, FaOS, FyOS, FGOS are Fy*GOS but not conversely in
general.

Proof: Straight forward.

Example 4.4: Obvious from Example 3.4, Example 3.6, Example 3.8, Example 3.10, Example 3.12, Example
3.14, Example 3.16 by taking complement of A in the respective examples.

Theorem 4.5: Let (X, 1) be a FTS. Then for every A € Fy*GO(X) and for every B € FS(X), int(cl(A)) <B <
A=Be Fy*GO(X).

Proof: Let A be a Fy*GOS of X. Let B<U and U be a FOS in X. As A is a Fy*GCS and A°< B‘<
cl(int(A%) from the hypothesis, B is a Fy*GCS, by Theorem 3.17. This implies B is a Fy*GOS in X. Hence B
€ Fy*GO(X).

Theorem 4.6: If Alisa FyCS and a Fy*GOS in (X, 1), then Ais a FyOS in (X, 7).
Proof: Obvious from the Theorem 3.19 by taking complement.

Theorem 4.7: A fuzzy set A of a FTS (X, 1) isa Fy*GOS if and only if F < cl(int(A)) v int(cl(A))
whenever FisaFCSand F < A.

Proof: Necessity: Suppose A isa Fy*GOS in X. Let F be a FCS, such that F < A.Then F°® isa FOS and A° <
F°, by hypothesis A°is a Fy*GCS. We have int(cl(A%)) A cl(int(A%) < F° Therefore F < cl(int(A)) v
int(cl(A)).

Sufficiency: Let U be a FOS, such that A° < U. Now U° < A and U°® is a FCS in X. Then by hypothesis, U° <
cl(int(A)) v int(cl(A)). Therefore int(cl(A%)) A cl(int(A%)) < U and A® isa Fy*GCS. Hence A is a Fy*GOS in
X.

Theorem 4.8: A fuzzy set A of a FTS (X,r) isa Fy*GOS, then F < cl(int(cl(A))) whenever F is FCS and
F<A.

Proof: Suppose A is a Fy*GOS in X. Let F be a FCS such that F < A. Then F® is a FOS and A° < F°. By
hypothesis A° is a Fy*GCS, we have cl(int(A%) A int(cl(A%) < F. Now int(cl(int(A°))) = cl(int(A%)) A
int(cl(int(A%)) < cl(int(A%) A int(cl(A%) < F°. Therefore F < cl(int(cl(A))) .
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