On Fuzzy γ^* Generalized Closed Sets in Fuzzy Topological Spaces

Keerthana.R¹, Jayanthi.D²

¹*M.Sc Mathematics*, ²*Assistant Professor of Mathematics*

Avinashilingam (Deemed to be) University, Coimbatore, Tamilnadu, India.

Abstract: In this paper, we have introduced a new class of fuzzy set called fuzzy γ^* generalized closed set, and investigated some of their properties. Some characterizations of the fuzzy γ^* generalized closed sets are also studied.

Keywords: Fuzzy sets, fuzzy topology, fuzzy point, fuzzy γ closed sets, fuzzy γ^* generalized closed sets.

I. INTRODUCTION

The concept of fuzzy set and fuzzy set operations was introduced by L.A.Zadeh [11]. A fuzzy topological space using the concept of fuzzy sets was introduced by C.L.Chang [2]. Thakur S.S [9] introduced the concept of fuzzy generalized closed sets. In this paper we have introduced a new type of fuzzy closed set called fuzzy γ^* generalized closed set and investigated some of their properties.

II.PRELIMINARIES

Definition 2.1: [11] Let X be a non-empty set. A fuzzy set A in X is characterized by its membership function $\mu_A : X \rightarrow [0,1]$ and $\mu_A(x)$ is interpreted as the degree of member of element x in a fuzzy set A, for each $x \in X$. It is clear that A is determined by the set of tuples of $A = \{(x, \mu_A(x)) : x \in X\}$.

Definition 2.2: [11] Let A and B be two fuzzy sets $A = \{(x, \mu_A(x)) : x \in X\}$ and $B = \{(x, \mu_B(x)) : x \in X\}$. Then, their union A \lor B, intersection A \land B and complement A^c are also fuzzy sets with membership functions defined as follows :

- (a) $\mu_A^{c}(x) = 1 \mu_A(x), \forall x \in X,$
- (b) $\mu_{A \vee B}(x) = \max{\{\mu_A(x), \mu_B(x)\}}, \forall x \in X,$
- (c) $\mu_{A \wedge B}(x) = \min \{ \mu_A(x), \mu_B(x) \}, \forall x \in X.$ Further,
- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x), \forall x \in X$,
- (a) $A \equiv B$ if and only if $\mu_A(x) \supseteq \mu_B(x)$, $\forall x \in X$, (b) A = B if and only if $\mu_A(x) = \mu_B(x)$, $\forall x \in X$.

Definition 2.3: [4] A family τ of fuzzy sets is called fuzzy topology (FT in short) for X if it satisfy the three axioms:

(a) $\overline{0}, \overline{1} \in \tau$

(b)
$$\forall A, B \in \tau \Rightarrow A \land B \in \tau$$

(c) $\forall (A_j)_{j \in I} \in \tau \Rightarrow \bigvee_{j \in J} A_j \in \tau$

The pair (X, τ) is called a fuzzy topological space (FTS for short). The elements of τ are called fuzzy open sets in X and their respective complements are called fuzzy closed sets of (X, τ) .

Definition 2.4: [3] A fuzzy set A in a FTS (X, τ) is said to be a

- (a) fuzzy γ closed set (F γ CS) if cl(int(A)) \land int(cl(A)) \leq A
- (b) fuzzy γ open set (F γ OS) if $A \le int(cl(A)) \lor cl(int(A))$

Remark 2.5: [3]

(i) Any union of fuzzy γ open sets in a FTS X is a fuzzy γ open set in a FTS X.

(ii) Any intersection of fuzzy γ closed sets is a fuzzy γ closed set in a FTS X.

Definition 2.6: [3] Let A be a fuzzy set in a FTS X. Then we define γ interior and γ closure as

 γ cl(A) = \land { B : B \ge A, B is a fuzzy γ closed set in X}

 γ int(A) = V {B : B \leq A, B is a fuzzy γ open set in X}.

Properties 2.7: [3] Let A be a fuzzy set in a FTS X. Then

 $\gamma cl(A^c) = (\gamma int(A))^c$

 γ int(A^c) = (γ cl(A))^c

Properties 2.8: [3] Let A and B be any two fuzzy sets in a FTS X. Then

- 1) $\gamma int(\overline{0}) = \overline{0}, \gamma int(\overline{1}) = \overline{1},$
- 2) γ int(A) is a fuzzy γ open set in X,
- 3) $\gamma int(\gamma int(A)) = \gamma int(A)$,
- 4) If $A \le B$ then $\gamma int(A) \le \gamma int(B)$,

5) $\gamma int(A \land B) = \gamma int(A) \land \gamma int(B)$,

6) $\gamma int(A \lor B) \ge \gamma int(A) \lor \gamma int(B)$.

Properties 2.9: [3] Let A and B be any two fuzzy sets in a fuzzy topological spaces X. Then

- 1) $\gamma cl(\overline{0}) = \overline{0}; \gamma cl(\overline{1}) = \overline{1},$
- 2) γ cl(A) is a fuzzy γ closed set in X,
- 3) $\gamma cl(\gamma cl(A)) = \gamma cl(A)$,
- 4) If $A \le B$ then $\gamma cl(A) \le \gamma cl(B)$,
- 5) $\gamma cl(A \lor B) = \gamma cl(A) \lor \gamma cl(B)$,
- 6) $\gamma cl(A \land B) \leq \gamma cl(A) \land \gamma cl(B).$

Definition 2.10: [5] A fuzzy set A is a quasi-coincident with a fuzzy set B, denoted by A_qB , if there exists $x \in X$ such that A(x)+B(x) > 1.

Definition 2.11: [5] If A and B are not quasi-coincident then we write $A_{\bar{q}}B$. $A \leq B \iff A_{\bar{q}}(1-B)$.

Definition 2.12: [8] A fuzzy Set A in a FTS (X, τ) is called fuzzy nowhere dense if there exists no non-zero fuzzy open set B in (X, τ) such that B < cl(A) that is intcl(A) = $\overline{0}$.

Definition 2.13: [6] The intersection of all fuzzy open subsets of a topological space (X, τ) containing A is called the Kernel of A, this means ker(A) = $\land \{G \in \tau, A \leq G\}$.

Definition 2.14: [7] A fuzzy point \tilde{p} in a set X is also a fuzzy set with membership function:

$$\mu_{\widetilde{p}}(x) = \begin{cases} r, & \text{for } x = y \\ 0, & \text{for } x \neq y \end{cases}$$

where $x \in X$ and $0 < r \le 1$, y is called the support of \tilde{p} and r the value of \tilde{p} . We denote this fuzzy point by x_r or \tilde{p} . A fuzzy point x_r is said to be belonged to a fuzzy subset \tilde{A} in X, denoted by $x_r \in \tilde{A}$ if and only if $r \le \mu_{\tilde{A}}(x)$.

III. FUZZY γ^* GENERALIZED CLOSED SETS

In this section we have introduced a new type of fuzzy closed set called fuzzy γ^* generalized closed set and studied some of the properties.

Definition 3.1: An fuzzy set A of a FTS (X, τ) is said to be a fuzzy γ^* generalized closed set $(F\gamma^*GCS \text{ for short})$ if $cl(int(A)) \land int(cl(A)) \leq U$, whenever $A \leq U$ and U is a fuzzy open set in X.

Example 3.2: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.4_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.5_a, 0.5_b) \rangle$ be a fuzzy set in (X, τ) . We have $A \leq G_1$. Now cl(int(A)) \land int(cl(A)) = $G_2^{c} \land G_2 = G_2 \leq G_1$, where G_1 is a FOS in X. This implies A is a F γ *GCS in X.

Theorem 3.3: Every FCS is a $F\gamma^*GCS$ in (X, τ) but not conversely in general. **Proof:** Let A be a FCS in (X, τ) , then cl(A) = A. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land$ $int(cl(A)) \le cl(A) = A \le U$, by hypothesis. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.4: In Example 3.2, the FS A = $\langle x, (0.5_a, 0.5_b) \rangle$ is a F γ *GCS but not a FCS in (X, τ), as cl(A) = $G_2^c \neq A$.

Theorem 3.5: Every FSCS [1] in (X, τ) is a $F\gamma^*GCS$ but not conversely in general. **Proof:** Let A be a FSCS in X, then $int(cl(A)) \le A$. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land int(cl(A)) \le cl(int(A)) \land A \le cl(A) \land A = A \le U$. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.6: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.5_a, 0.4_b) \rangle$, $G_2 = \langle x, (0.6_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.5_a, 0.3_b) \rangle$ be a fuzzy set in (X, τ) . Now cl(int(A)) \land int(cl(A)) = $\overline{0} \land G_1 = \overline{0} \leq U$, then A is a F γ *GCS but not a FSCS in (X, τ) , as int(cl(A)) = $G_1 \not\leq A$.

Theorem 3.7: Every FPCS [10] is a $F\gamma^*GCS$ in (X, τ) but not conversely in general. **Proof:** Let A be a FPCS in X, then $cl(int(A) \le A$. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land int(cl(A)) \le A \land cl(A) = A \le U$. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.8: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.3_a, 0.3_b) \rangle$, $G_2 = \langle x, (0.5_a, 0.6_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.4_a, 0.4_b) \rangle$ be a fuzzy set in (X, τ) . Now cl(int(A)) \land int(cl(A)) = $G_2^c \land G_1 = G_1 \leq G_2$, where $A \leq G_2$. Then A is a F γ *GCS in X, but not a FPCS in (X, τ) , as cl(int(A)) = $G_2^c \leq A$.

Theorem 3.9: Every FRCS [10] is a $F\gamma^*GCS$ in (X, τ) but not conversely in general.

Proof: Let A be a FRCS in X, then cl(int(A) = A. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land int(cl(A)) = A \land int(cl(A)) \le A \land cl(A) = A \le U$. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.10: In Example 3.8, A is a $F\gamma^*GCS$ in (X, τ) but not a FRCS as $cl(int(A) = G_2^c \neq A$. **Theorem 3.11:** Every F α CS [10] is a $F\gamma^*GCS$ in (X, τ) but not conversely in general. **Proof:** Let A be a F α CS in X, then $cl(int(cl(A)) \leq A$. Let $A \leq U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land$ $int(cl(A)) \leq cl(int(cl(A))) \land$ $int(cl(A)) \leq A \land cl(A) = A \leq U$. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.12: In Example 3.8, A is a $F\gamma^*GCS$ but not a F αCS as $cl(int(cl(A)) = G_2^{c} \leq A$.

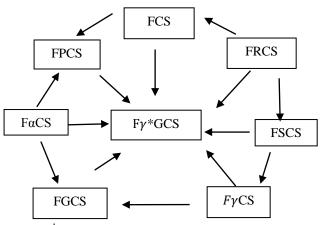
Theorem 3.13: Every $F\gamma CS$ [3] is a $F\gamma^*GCS$ in (X, τ) but not conversely in general. **Proof:** Let A be a $F\gamma CS$ in X, then $cl(int(A) \land (int(cl(A)) \le A)$. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land int(cl(A)) \le A \le U$. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.14: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.3_a, 0.3_b) \rangle$, $G_2 = \langle x, (0.5_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.4_a, 0.4_b) \rangle$ be a fuzzy set in (X, τ) . Now cl(int(A)) \land int(cl(A)) = $G_2^c \land G_2 = G_2 \leq G_2$ where $A \leq G_2$. Then A is a F γ *GCS but not a F γ CS as cl(int(A)) \land int(cl(A)) = $G_2 \leq A$.

Theorem 3.15: Every FGCS [9] is a $F\gamma^*GCS$ in (X, τ) but not conversely in general. **Proof:** Let A be a FGCS in X. Let $A \le U$ and U be a FOS in (X, τ) . Now $cl(int(A)) \land int(cl(A)) \le cl(A) \land cl(A)$ $= cl(A) \le U$, by hypothesis. Hence A is a $F\gamma^*GCS$ in (X, τ) .

Example 3.16: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.4_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.4_a, 0.5_b) \rangle$ be a fuzzy set in (X, τ) . Now cl(int(A)) \land int(cl(A)) = $G_2^c \land G_2 = G_2 \leq G_1, G_2$ where $A \leq G_1, G_2$. Then A is a F γ *GCS but not a FGCS as cl(A) = $G_2^c \not\leq G_1, G_2$ but $A \leq G_1, G_2$.

In the following diagram we have provided relation between various types of fuzzy closedness.



Theorem 3.17: Let (X, τ) be a FTS. Then for every $A \in F\gamma^*GC(X)$ and for every $B \in FS(X)$, $A \le B \le cl(int(A))$

 $\Rightarrow \qquad B \in F \gamma^* GC(X).$

Proof: Let $B \le U$ and U be a FOS in X. Let $A \le B$, $A \le U$, by hypothesis. Since $B \le cl(int(A), cl(int(B)) \le cl(int(A))$. Also $int(cl(B)) \le int(cl(cl(int(A)))) \le int(cl(int(A))) \le int(cl(A))$. Therefore $cl(int(B)) \land int(cl(B)) \le cl(int(A)) \land int(cl(A)) \le U$, by hypothesis. Hence $B \in F\gamma^*GC(X)$.

Theorem 3.18: A fuzzy set A of a FTS (X, τ) is a F γ *GCS if and only if $A_{\bar{q}}F \Rightarrow (int(cl(A) \land cl(int(A)))_{\bar{q}}F$ for every FCS F of X.

Proof: Necessity: Let F be a FCS and $A_{\bar{q}}F$, then $A \leq F^c$, where F^c is a FOS in X. Then $int(cl(A)) \wedge cl(int(A)) \leq F^c$, by hypothesis. Hence by Definition 2.11, $(int(cl(A) \wedge cl(int(A)))_{\bar{q}}F$.

Sufficiency: Let U be a FOS in X such that $A \le U$. Then U^c is a FCS and $A \le (U^c)^c$. Therefore $A_{\bar{q}} U^c$. By hypothesis, $A_{\bar{q}} U^c \Rightarrow (int(cl(A) \land cl(int(A)))_{\bar{q}} U^c$. Hence $int(cl(A)) \land cl(int(A)) \le (U^c)^c = U$. Therefore $int(cl(A)) \land cl(int(A)) \le U$. Hence A is a $F\gamma^*GCS$.

Theorem 3.19: If A is both a FOS and a $F\gamma^*GCS$ then A is a $F\gamma CS$ in (X,τ) .

Proof: Let A be a FOS and a $F\gamma^*GCS$ in (X, τ) . Then as $A \le A$, $cl(int(A) \land int(cl(A)) \le A$. Hence A is a $F\gamma CS$ in (X, τ) .

Theorem 3.20: For a fuzzy set A in (X, τ) the following are equivalent:

- i. A is both a FOS and a $F\gamma^*GCS$
- ii. A is a FROS

Proof: (i) \Rightarrow (ii) Let A be a FOS and a F γ *GCS in X. Then by Theorem 3.19, A is a F γ CS. So cl(int(A)) \land int(cl(A)) \leq A. We have int(cl(A)) = int(cl(A)) \land cl(A) = int(cl(A)) \land cl(int(A)) \leq A. Hence int(cl(A)) \leq A \rightarrow (1). Since A is a FOS, it is a FPOS. Hence A \leq int(cl(A)) \rightarrow (2). Therefore from (1) and (2) A= int(cl(A)) and A is a FROS in X.

(ii) \Rightarrow (i) Let A be a FROS in X then A = int(cl(A)). Since every FROS is a FOS, As is a FOS in X and A \leq A, Therefore cl(int(A)) \land int(cl(A)) = cl(int(A)) \land A = A \land cl(A) \leq A. Hence A is a F γ *GCS.

Theorem 3.21: Let $F \le A \le X$ where A is a FOS and a $F\gamma^*GCS$ in X. Then F is a $F\gamma^*GCS$ in A if and only if F is a $F\gamma^*GCS$ in X.

Proof: Necessity: Let F be a $F\gamma^*GCS$ in A. Let U be a FOS in X and $F \leq U$. Then $F \leq A \wedge U$ and $A \wedge U$ is a FOS in A. Hence $int_A(cl_A(F)) \wedge cl_A(int_A(F)) \leq A \wedge U$ and by Theorem 3.19, A is a $F\gamma CS$. Therefore $int(cl(A)) \wedge cl(int(A)) \leq A$. Now $int(cl(F)) \wedge cl(int(F)) \leq [int(cl(F)) \wedge cl(int(F))] \wedge [int(cl(A)) \wedge cl(int(A))] \leq (int(cl(F)) \wedge cl(int(F))) \wedge cl(int(F))) \wedge cl(int(F)) \wedge cl(int(F)) \leq A \wedge U \leq U$. That is $int(cl(F)) \wedge cl(int(F)) \leq U$, whenever $F \leq U$. Hence F is a $F\gamma^*GCS$ in X.

Sufficiency: Let V be a FOS in A such that $F \le V$. Since A is a FOS in X, V is a FOS in X. Therefore int(cl(F)) \land cl(int(F)) $\le V$ as F is a F γ *GCS in X. Thus, int_A(cl_A(F)) \land cl_A(int_A(F)) = int(cl(F)) \land cl(int(F)) \land A $\le V \land$ A $\le V$. Hence F is a F γ *GCS in A.

Theorem 3.22: For a F γ *GCS A in a FTS (X, τ), the following condition hold:

- i. A is a FROS then scl(A) is a $F\gamma^*GCS$
- ii. A is a FRCS then sint(A) is a $F\gamma^*GCS$

Proof: (i) Let A be a FROS in (X, τ) . Then int(cl(A)) = A. By the definition of semi closure we have scl(A) = AV int(cl(A)) = A. Since A is a F γ *GCS in X, scl(A) is a F γ *GCS in X.

(ii) Let A be a FRCS in (X, τ) . Then cl(int(A)) = A. By the definition of semi interior we have $sint(A) = A \land cl(int(A)) = A$. Since A is a F γ *GCS in X, sint(A) is a F γ *GCS in X.

Theorem 3.23: If every fuzzy set in (X, τ) is a $F\gamma^*GCS$ then $FO(X) \le F\gamma C(X)$.

Proof: Suppose that every fuzzy set is a $F\gamma^*GCS$ in (X, τ) . Let $U \in FO(X)$ then as $U \leq U$ and by hypothesis, $int(cl(U)) \land cl(int(U)) \leq U$. Therefore $U \in F\gamma C(X)$. Hence $FO(X) \leq F\gamma C(X)$.

Theorem 3.24: A fuzzy set A of X is a $F\gamma^*GCS$ if $int(cl(A)) \land cl(int(A)) \le ker(A)$.

Proof: Let A be any fuzzy set and let U be any FOS in X such that $A \le U$. By hypothesis int(cl(A)) \land cl(int(A)) \le ker(A). Since $A \le U$, ker(A) $\le U$. Therefore int(cl(A)) \land cl(int(A)) $\le U$ and hence A is a $F\gamma^*GCS$ in X.

Theorem 3.25: If a fuzzy set A of a FTS X is nowhere dense, then A is a $F\gamma^*GCS$ in X.

Proof: If A is a fuzzy nowhere dense subset, then by Definition 2.12, $int(cl(A)) = \overline{0}$. Let $A \le U$ where U is a FOS in X. Then $cl(int(A)) \land int(cl(A)) = \overline{0} \le U$ and hence A is a F γ *GCS in X.

Theorem 3.26: Let A be a $F\gamma^*GCS$ in (X, τ) and $\mu_{\tilde{p}}(x)$ be a fuzzy point such that $\mu_{\tilde{p}}(x)_q(cl(int(A)) \land int(cl(A)))$. Then $cl(\mu_{\tilde{p}}(x))_q A$.

Proof: Assume that A is a $F\gamma^*GCS$ in (X, τ) and $\mu_{\widetilde{p}}(x)_q(cl(int(A)) \wedge int(cl(A)).$ Suppose that $cl(\mu_{\widetilde{p}}(x))_{\overline{q}}A$, then $A \leq (cl(\mu_{\widetilde{p}}(x)))^c$ where $(cl(\mu_{\widetilde{p}}(x)))^c$ is a FOS in (X, τ) . Then by hypothesis , $cl(int(A)) \wedge int(cl(A)) \leq (cl(\mu_{\widetilde{p}}(x)))^c = int(\mu_{\widetilde{p}}(x))^c \leq (\mu_{\widetilde{p}}(x))^c$. Therefore($cl(int(A)) \wedge int(cl(A))_{\overline{q}}(\mu_{\widetilde{p}}(x))$, which is a contradiction to the hypothesis. Hence $cl(\mu_{\widetilde{p}}(x))_a A$.

Theorem 3.27: If A is a FOS and a $F\gamma^*GCS$ in (X, τ) , then int(A) is a FROS in X.

Proof: Since A is a FOS and a F γ *GCS in (X, τ), then by Theorem 3.19, A is a F γ CS, which implies int(cl(A)) \land cl(int(A)) \leq A. Therefore int[int(cl(A)) \land cl(int(A))] \leq int(A) which implies int(cl(int(A))) \leq int(A). Since A is a FOS, it is a F α OS. Hence int(A) \leq int(cl(int(A)). Therefore int(A) = int(cl(int(A))). Thus int(A) is a FROS.

IV.FUZZY γ^* GENERALIZED OPEN SETS

In this section we have introduced a new type of fuzzy open set called fuzzy γ^* generalized open set and studied some of its properties.

Definition 4.1: The complement A^c of a F γ *GCS A in a FTS (X, τ) is called a fuzzy γ * generalized open set (F γ *GOS in short) in X.

Example 4.2: In Example 3.2, $A = \langle x, (0.5_a, 0.5_b) \rangle$ is a $F\gamma^*GOS$ in X.

Theorem 4.3: Every FOS, FSOS, FPOS, FROS, F α OS, F γ OS, FGOS are F γ *GOS but not conversely in general.

Proof: Straight forward.

Example 4.4: Obvious from Example 3.4, Example 3.6, Example 3.8, Example 3.10, Example 3.12, Example 3.14, Example 3.16 by taking complement of A in the respective examples.

Theorem 4.5: Let (X, τ) be a FTS. Then for every $A \in F\gamma^*GO(X)$ and for every $B \in FS(X)$, $int(cl(A)) \le B \le A \Rightarrow B \in F\gamma^*GO(X)$.

Proof: Let A be a $F\gamma^*GOS$ of X. Let $B \le U$ and U be a FOS in X. As A^c is a $F\gamma^*GCS$ and $A^c \le B^c \le cl(int(A^c))$ from the hypothesis, B^c is a $F\gamma^*GCS$, by Theorem 3.17. This implies B is a $F\gamma^*GOS$ in X. Hence $B \in F\gamma^*GO(X)$.

Theorem 4.6: If A is a F γ CS and a F γ *GOS in (X, τ), then A is a F γ OS in (X, τ).

Proof: Obvious from the Theorem 3.19 by taking complement.

Theorem 4.7: A fuzzy set A of a FTS (X, τ) is a $F\gamma^*GOS$ if and only if $F \leq cl(int(A)) \lor int(cl(A))$ whenever F is a FCS and $F \leq A$.

Proof: Necessity: Suppose A is a $F\gamma^*GOS$ in X. Let F be a FCS, such that $F \le A$. Then F^c is a FOS and $A^c \le F^c$, by hypothesis A^c is a $F\gamma^*GCS$. We have $int(cl(A^c)) \land cl(int(A^c)) \le F^c$. Therefore $F \le cl(int(A)) \lor int(cl(A))$.

Sufficiency: Let U be a FOS, such that $A^c \leq U$. Now $U^c \leq A$ and U^c is a FCS in X. Then by hypothesis, $U^c \leq cl(int(A)) \lor int(cl(A))$. Therefore $int(cl(A^c)) \land cl(int(A^c)) \leq U$ and A^c is a $F\gamma^*GCS$. Hence A is a $F\gamma^*GOS$ in X.

Theorem 4.8: A fuzzy set A of a FTS (X,τ) is a $F\gamma^*GOS$, then $F \le cl(int(cl(A)))$ whenever F is FCS and $F \le A$.

Proof: Suppose A is a $F\gamma^*GOS$ in X. Let F be a FCS such that $F \le A$. Then F^c is a FOS and $A^c \le F^c$. By hypothesis A^c is a $F\gamma^*GCS$, we have $cl(int(A^c)) \land int(cl(A^c)) \le F^c$. Now $int(cl(int(A^c))) = cl(int(A^c)) \land int(cl(A^c))) \le cl(int(A^c)) \land int(cl(A^c)) \le F^c$. Therefore $F \le cl(int(cl(A)))$.

REFERENCES

- [1] K.K.Azad, On fuzzy semi-continuity, Fuzzy Almost continuity and Fuzzy weakly continuity, J. Math. Anal. Appl, 14-32, 1981.
- [2] C.L.Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis Appl, 182-190, 1968.
- [3] LuayA. Al. Swidi, and AmedS. A. Oon, *Fuzzy γ open sets and fuzzy γ closed sets*, Americal Journal of scientific research, 62-67, 2011.
- [4] N.Palaniappan, Fuzzy topology, Narosa Publications, 2002.
- [5] Pao-Ming Pu, and Ying Ming Liu, Fuzzy Topology-I, Neighbourhood structure of fuzzy point and Moore-smith Convergence,
- J. Math. Anal. Appl. 571-599 1980.
 [6] Qays Hatem Imran, and Basim Mohammed Melgatm, New Characterization of Kernel Set in Fuzzy Topological Spaces, 165-174,
- 2014.
- [7] Rekhasrivastava, S. N. L. and Arun. K. Srivastasva, Fuzzy Hausdorff Topological Spaces, Math. Anal. Appl., 497-506, 1981.
- [8] G.Thangaraj, and S.Anjalmose, On fuzzy Baire spaces, J. Fuzzy Math, 667-676, 2013.
- [9] S.S.Thakur, and R.Malviya., Generalized closed sets in fuzzy topological spaces, Math Note, 137-140, 1995.
- [10] S.S.Thakur, Surendra Singh, On fuzzy semi pre open sets and fuzzy semi-semi Precontinuity, Fuzzy sets and systems, 383-391
- 1998.
- [11] L.A.Zadeh, Fuzzy sets, Information and Control, 338-353, 1965.