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Abstract: Hypermetric Topology inequalities have many applications in the planar graphs and  most recently 

in the approximate solution to the graphs by linear and semi definite programming. However, not much is 

known about the separation problem for these inequalities. In this paper we show that similar results holds for 

inequalities of negative type, even though the separation problem for negative type inequalities is well known to 

be solvable in polynomial time. We also show similar results hold for the more general k-konal and gap 

inequalities. 
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Introduction 

Graph hypermetric topology is an active area of research in the fast growing field of topology. The 

motivation for this study comes from a variety of practical problems such as k-konal graph inequalities and 

hypermetric topology. 

Let b = (b1 , ..., bn ) be an integer vector, let k =  Σ1≤i≤n |bi | and s =  Σ 1≤i≤ n bi . 

Let x = (xij ), 1 ≤ i < j ≤ n be a vector in R
 

n
2
 
 .  

We say that b defines a k-konal 

Q(b,x) =  𝑏𝑖𝑏𝑗𝑥𝑖𝑗 ≤  
𝑆2

4
 1 ≤ i < 𝑗  ≤ 𝑛                                     -----------------------(1) 

Since the vector −b generates the same inequality as the vector b, we will assume 

throughout the paper that s ≥ 0. The inequality (1) is called hypermetric if s = 1, in which case k is necessarily 

odd. It is called negative type if s = 0, in which case k is even. It is called pure if bi ∈ {±1, 0}. Inequalities of 

type (1) have been well studied and rediscovered many times. The hypermetric inequalities appear in Deza [3], 

and the negative type inequalities in the work of Cayley. The book of Deza and Laurent [5] collects a wealth of 

information about them and their applications. 

For fixed n, it is easy to show that the cone formed by the negative type inequalities is not polyhedral. 

However, Deza, Grishukhin and Laurent [4] showed that the hypermetric inequalities do form a polyhedral 

cone. Furthermore, each 2k + 2-gonal inequality can be obtained by a non-negative combination of 2k + 1- 

konal inequalities. This was proved by Deza [3] for negative type inequalities, and for the general k-gonal 

inequalities by Avis and Umemoto [2]. 

Results 1.1: Laurent and Poljak [8] introduced a set of inequalities, called gapinequalities, that can be stronger 

than the k-konal inequalities when s ≥ 2. The gap g = g(b) of an integer sequence b1 , . . . , bn is defined by 

g = g(b) = minS⊆{1,2,...,n} | 𝑏𝑖𝑖∈𝑆 −  𝑏𝑖𝑖∉𝑆 |                ------------(2) 

It is easy to see that for a negative type inequality, the b vector has gap zero and for a hypermetric inequality it 

has gap one. A gap inequality if formed by modifying the right hand side of (1): 

Q(b, x) =  𝑏𝑖𝑏𝑗𝑥𝑖𝑗 ≤ 
1

41 ≤ i < 𝑗  ≤ 𝑛 (𝑠2 − 𝑔2)                      ------------(3) 

 

Since s and g have the same parity, the right hand side is always integral.  

We call a gap inequality k-konal If k =   |bi |𝑛
𝑖=1      

we call (3) a k − konal gap inequality. 

Result 1.2: Let G be an undirected graph with vertices V = V (G) and edges E = E(G). 

Construct the edge weights 
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𝑥𝑖𝑗
𝑖  𝐺 =   

1
1 + 𝑡

     
𝑖𝑓  𝑖𝑗 ∈ 𝐸

𝑖𝑓 (𝑖𝑗) ∉ 𝐸
                                            ------------(4) 

Result 1.3: Let b be an integer vector of length n and define 

  𝑘 = 𝑘 𝑏 =   |𝑏𝑖
𝑛
𝑖=1 |     ,      𝑠 = 𝑠 𝑏 =   |𝑏𝑖

𝑛
𝑖=1 |          ------------(5)      

Which implies that 

 𝑏𝑖 =  
(𝑠+𝑘)

2𝑖∈𝑉+(𝑏)  ,     𝑏𝑖 =  
(𝑠−𝑘)

2𝑖∈𝑉−(𝑏)           ------------(6) 

Let QG (b, x
t
) be the left hand side of the inequality (1) with xt = x

t
(G).  

We calculate QG (b, x
t
) . 

We set 

V+(b) = {i : bi > 0},        V−(b) = {i : bi < 0},     V(b) = V+(b) ∪ V−(b) 

n+ = | V+(b)| ,   n− = |V−(b)|,         nb = n+ + n− . 

Result 1.4:  We denote by G(b) the subgraph of G induced on the set V(b). Let Kn+ ,n− be the complete bipartite 

graph on the set V(b) with the partition  

                                             (V+ (b), V− (b)). Let  Eb(G) = E(G(b)) E(Kn+ ,n− ), 

Theorem 1.5 : G be a graph and let b and Eb(G) be defined as above. Then 

QG (b, x
t
) = 

𝑠2

2
+  

𝑡

4
 𝑠2 + 𝑘2 − 

1+𝑡

2
 𝑏𝑖

2 −  𝑡  |𝑏𝑖 |(𝑖,𝑗 )∈𝐸𝑏 (𝐺)
𝑛
𝑖=1 |𝑏𝑗 |      ------------(7) 

Proof: Suppose at first that Eb(G) = ∅, i.e. the set V(b) induces a complete bipartite graph K(b). From the 

definitions we have QG(b,x
t
) = 𝑄𝐾𝑛+,𝑛−

(𝑏, 𝑥𝑡) =  𝑏𝑖𝑏𝑗 +  1 + 𝑡  (  𝑏𝑖𝑏𝑗 +  𝑏𝑖𝑏𝑗 )𝑖,𝑗 ∈𝑉−,𝑖<𝑗𝑖,𝑗∈𝑉+,𝑖<𝑗𝑖∈𝑉+,𝑗∈𝑉−
 

Since for any set X  

 𝑏𝑖𝑏𝑗 =
1

2
 (𝑖,𝑗 ∈𝑋,𝑖<𝑗    𝑏𝑖𝑖∈𝑋  2 −  𝑏𝑖

2
𝑖∈𝑋  

Using (6) we obtain 

𝑄𝐾𝑛+,𝑛−
 𝑏, 𝑥𝑡 =  

𝑠2

2
+ 

1+𝑡

4
( 

(𝑠+𝑘)2

4
+

 𝑠−𝑘 2

4
−   𝑏𝑖

2𝑛
𝑖=1  ) 

After simplification, we obtain 

𝑄𝐾𝑛+,𝑛−
 𝑏, 𝑥𝑡 =  

𝑠2

2
+ 

𝑡

4
( 𝑠2 + 𝑘2) − 

(1+𝑡)

2
   𝑏𝑖

2𝑛
𝑖=1   

which are the first 3 terms of (7). 

If Eb(G) ≠ ∅, then it may contain two types of edges: those in G between  vertices both in either V+ or 

V− , or edges in Kn+ ,n− not in G. In both cases, the right hand side of the equality (2) obtains additional 

negative summand 

−𝑡  |𝑏𝑖||𝑏𝑗 |

(𝑖,𝑗 )∈𝐸𝑏 (𝐺)

 

This completes the proof of the theorem 

Remark 1.6: Let vector b , with k  n , the equality(7) takes the simple form  

 𝑄𝐺 𝑏, 𝑥𝑡 =  
𝑠2

2
+ 

𝑡

4
  𝑠2 + 𝑘2 − 

 1+𝑡 

2
𝑘 − 𝑡 |𝐸𝑏 𝐺 |                                 ------------(8) 

Result 1.7: Le b be an integer vector of length n , and let k and s be defined as in (5).  

Then 𝑄𝐺 𝑏, 𝑥𝑡 =  
𝑠2

2
+  

𝑡

4
  𝑠2 + 𝑘2 −  

 1+𝑡 

2
𝑘                                            ------------(9) 

Theorem 1.8: Let n ≥ 2m ≥ 6. Set x
t
 = x

t
(G), where t =  

𝑚2+1

𝑚2(𝑚−1)
. Then   𝑄𝐺  𝑏,

𝑥 𝑡

𝑛2 ≤   
𝑠2

4
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 Proof : Let  x
t
 satisfies all k-konal negative type inequalities with k < 2m.  Let x

t
 satisfies all 2m – konal 

negative type inequalities, except when G contains Km,m as an induced subgraph. In this case only the pure 2m-

konal negative type inequality is violated. 

Let  
𝑥 𝑡

𝑛2  satisfies all k-konal inequalities with k ≤ n and s ≥ 2. 

If k < 2m, then it is easy to verify that k ≤ 2 , hence 
𝑘2𝑡

4
≤

𝑘

2
. Using Result 1.7  with s = 0, we see that QG(b, x

t
 ) 

≤ 0. First consider the case where G = G(b) = Km,m ,  k = 2m,  s = 0,and b is a pure 2m-konal inequality. From 

Result 1.7 

 we have that 

𝑄𝐺 𝑏, 𝑥𝑡 =  𝑚2𝑡 − 𝑚𝑡 =  𝑚2 −  𝑚 
𝑚2+ 1

𝑚2 𝑚−1 
−  𝑚 =  

1

𝑚
> 0               ------------(10) 

Therefore this pure negative type inequality is violated by x
t
 . It is easy to check 

           that t > 
1

𝑚
 . If G is not Km,m , then |E(b)| ≥ 1, and as we saw in the proof of  theorem 1.1, QG(b, x

t
 ) will be 

reduced by at least t so it becomes negative. Therefore the inequality holds in this case. 

  Now let G = Km,m , and assume b is 2m-konal but not pure. In this case  |bi | ≥ 2 for some i, and so 

 𝑏𝑖
2 𝑛

𝑖=1 ≥  2𝑚 +  2.  

Now from (7) with s = 0 and k = 2m  

we obtain 

𝑄𝐺 𝑏, 𝑥𝑡 ≤  𝑚2𝑡 − 
1 + 𝑡

2
 2𝑚 + 2 =  𝑚2𝑡 − 𝑚 − 𝑡 − 1 < 0 

Therefore x
t
  satisfies all 2m-konal negative type inequalities that are not pure. 

  we observe that when k ≤ n 

  𝑏𝑖  𝑏𝑗  ≤  
1

2
  |𝑏𝑖|

𝑛
𝑖=1  2 =  

𝑘2

2
≤

𝑛2

21≤𝑖<𝑗≤𝑛  , 

Now s 2, and since  m 3, x
t
  2, So,  

𝑄𝐺  𝑏,
𝑥 𝑡

𝑛2 =   𝑏𝑖𝑏𝑗

𝑥𝑖𝑗
𝑡

𝑛21≤𝑖<𝑗≤𝑛 ≤   𝑏𝑖  𝑏𝑗  
2

𝑛2 ≤ 1 ≤ 1≤𝑖<𝑗≤𝑛  
𝑠2

4
  

This completes the proof of the theorem. 

 

Theorem 1.9:. Let b, k and s be defined as in (5), such that g = s ≥ 2. Then  𝑏𝑖
2 ≥ 𝑘 +  𝑠2𝑛

𝑖=1  

 

Proof :  Assume b1 ≥ b2 are the two largest integers in b. We may also assume without loss in generality that no 

integer bi is zero.  

Since g = s we observe that the set S = {1, 2, ..., n} realizes the minimum gap. Assume first that b2 > 0. It is 

easily seen that 

 b1 ≥ b2 ≥ g = s ≥ 2, since otherwise a smaller gap could be 

formed by removing b2 from S. Therefore 

 𝑏𝑖
2 ≥  𝑏1

2 + 𝑏2
2 +

𝑛

𝑖=1

 |𝑏𝑖|

𝑛

𝑖=1

=  𝑏1
2 + 𝑏2

2 + 𝑘 − 𝑏1 − 𝑏2 ≥ 2𝑠2 − 2𝑠 + 𝑘 ≥ 𝑘 + 𝑠2 

   Otherwise, suppose b2 < 0. From (1), b1 = (k + s)/2. Furthermore, since b has positive and negative 

components, k = s + u, for some u ≥ 2. Therefore  

 𝑏𝑖
2 ≥

 𝑘 + 𝑠 2

4

𝑛

𝑖=1

+
𝑘 − 𝑠

2
≥

 2𝑠 + 𝑢 2

4
+

𝑢

2
= 𝑠2 + 𝑠𝑢 +

𝑢2

4
+

𝑢

2
≥ 𝑠2 + 𝑠 + 𝑢 = 𝑘 + 𝑠2 

Conclusion 

We proved several results for finding hypermetric topology in graph theory. Here we have of course assumed 

that solutions to the subsidiary problems discussed at the beginning of the paper require constant time. The 

challenge is to find a nice solution and improve to the result of k-konal inequalities. 
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