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ABSTRACT :  A pseudo-complete coloring of a graph 

G is an assignment of colors to the vertices of G 

such that for any two distinct colors, there 

existadjacent vertices having those colors. The 

maximum number of colors used in a pseudo-

complete coloring of G is called the pseudo-

achromatic number of G and is denoted by𝜓𝑠(𝐺). 

A graph G is called edge critical if 𝜓𝑠(𝐺 −
𝑒)<𝜓𝑠(𝐺)for any edge e of G. A graph G is called 

vertex critical if 𝜓𝑠 𝐺 − 𝑣 <. 𝜓𝑠(𝐺)for every vertex 

v of G. These graphs are generally called as pseudo-

achromatic number critical graphs (shortly as PAN 

Critical graphs). In this paper, we investigate the 

properties of these critical graphs. 
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1 .  I n t r o d u c t i o n  

By a graph we mean a finite undirected 

graph without loops, multiple edges and 

isolated vertices. 

An assignment of colors to the vertices 

of a graph G = (V, E) is cal led a proper 

coloring, if any two adjacent vertices receive 

distinct colors and is called a pseudo--complete 

coloring if for any two distinct colors, there 

exist adjacent vertices having those colors. A 

pseudo-complete proper coloring of G is called 

a complete coloring of G.  

The minimum number of colors used in a 

proper coloring of G is called the chromatic 

number of G and is denoted by x(G). The 

maximum number of colors used in a 

completecoloring of G is called the achromatic 

number of G and is denoted by(G)) [6]. The 

maximum number of colors used in a pseudo-

complete coloring of G is called the achromatic 

number of G and is denoted by 𝜓𝑠(𝐺).[4]. Several 

bounds for these coloring parameters were 

obtained in [4, 5, 6, 7]. A graph which admits a 

pseudo-complete coloring by k colors is called a 

k-pseudo complete colorable graph.  

The concept of critical graphs with respect 

to chromatic number, was introduced by Dirac 

[2, 3] in a bid to settle the four color 

conjecture. In [1], Sureshkumar introduced the 

concepts of criticality in graphs with respect to 

pseudo-achromatic number and obtained 

characterizations of edge critical graphs, 

critical cycles and critical paths. In this paper, 

we further investigate theproperties of these 

critical graphs such as degrees, degree 

sequences, diameter and traversibility. 

2 .  P A N  C r i t i c a l  G r a p h s  

 The graphs which are critical with 

respect to Pseudo-achromatic number are 

generally called as PAN-critical graphs. Formal 

definitions are as follows: 

Definition 2.1. A graph G is called k-edge 

critical if ψs(G)=k and ψs(G − e)<k for any 

edge e of G. A graph G is called k-vertex 

critical if ψs(G)=k and ψs(G − v)<k for any 

vertex v of G. 

Definition 2.2 . Let G be a graph and v ∈
V(G)be a vertex of degree d. Let n be a positive 

integer less than d. Then an n-splitting of v is 

the replacement of v by a set of n new pairwise 

independent vertices  ui i=1
n  withdegui> 1, for  al l  

i ,  1<i<n,   deg ui = dn
i=1  and N  ui i=1

n  =
N(v),  where for  any subset S of V(G), N(S) 

means the set of all neighbors of vertices in S.  

The following simple observations, which 

are quite useful later, follow directly from the 

definitions of critical graphs. 

Proposition 2.3. A graph G is k-edge critical if 

and only if G is k-pseudo-complete colorable 

and  E G  =  
n
2
  

Proposition 2.4.  Any k-edge critical graph is 

k-vertex critical.  

Proposit ion 2.5. I f  G is  a  k-edge cri t ical  

graph and II  is  the graph obtained from G by 

n-splitting a vertex of G. Then H is k -edge 

critical. 

Proposition 2.6.  Let G be a k-edge critical  

graph and H be the graph obtained from G by 

identifying a pair of vertices, having same 

color with respect to a k-pseudo-complete 

coloring of G. Then H is k-edge critical. 

Proposi t ion 2 .7 . I fG i s  k-edge critical, then 

G + Kn , is (n+ k)-vertex critical 

Proposition 2.8 . Let k be an odd integer. 

Then, the cycle of order 
k
2
 ) is k--edge critical. 

3 .  D ia meter  a nd  Tra v ers ib i l i t y  
Theorem 3 .1 .  Le t  G b e  a  k -ed ge  cr i t ica l  

grap h wi th  𝐺 ≠ 𝐾𝑘 , 𝑘 ≥ 3.  Then, 3 ≤ 𝑑(𝐺) ≤

 
𝑘
2
 and when k is even, 3 ≤ 𝑑 𝐺 ≤  

𝑘
2
 −
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 𝑘 2  + 1, where d(G) denotes the diameter of 

G. 

Proof.Suppose d(G) = 2. Then any two vertices 

of G are either adjacent or having a common 

neighbor. Since G is k-edge critical, it follows 

that any k-pseudo-complete coloring of G is a 

proper coloring of G. Thus, G = Kkwhich is a 

contradiction. Henced(G) > 3. Also, 𝑑 𝐺 ≤

|𝐸(𝐺)| ≤  
𝑘
2
 .  

Suppose k is even. Since G is k-edge 

critical, it follows from Proposi tion 2.6 that the 

graph obtained from G by identifying all pairs 

of vertices having same color, with respect to 

any k-pseudo-complete coloring of G, is 

isomorphic to K k and a path in G corresponds 

to a trail of same length in Kk .  Since the 

maximum length of a trail in K k is k—

(k/2)+1,  𝑑 𝐺 ≤  
𝑘
2
 −  𝑘/2 + 1 

Theorem 3.2.  Let m and n be two positive 

integers such that 3 ≤ 𝑚 ≤  
𝑛
2
 when n is odd 

and 3 ≤ 𝑚 ≤  
𝑛
2
 −  𝑛 2  + 1, when n is even. 

Thenthere exists n-edge critical graph G with 

d(G) = m. 

Proof .Case  1 . 3 ≤ 𝑚 ≤ 𝑛 

Consider a path Pn= (u1, u2,…,u„) on n vertices. 

For 1 ≤ i ≤ n − 2, take aset of n—i—1pairwise 

independent vertices, wi,j j=1

n−i−1
 and join each 

wi,j  with uj . Call the resulting graph as Gn.  

Then, f: V(Gn) →  1,2, …n defined byf ui =

i, f wi,j = i + j + 1 assigns an n-pseudo-complete 

coloring for Gn.Since |𝐸(𝐺𝑛)| =  
𝑛
2
 ,  Gn is n-

edge critical and d(Gn)= n 

Now, for 2 ≤ 𝑖 ≤ 𝑛 − 2and 1 ≤ 𝑗 ≤ 𝑛 − 𝑖 +
1,  remove each pendant vertex of the form 

𝑤𝑖 ,𝑗 from Gn and join 𝑤1,𝑖−2  𝑤𝑖𝑡𝑕 𝑤1,𝑖+𝑗+1by an 

edge, remove each pendant vertex of the form 

𝑤2,𝑗 from Gn and join u2 with 𝑤1,𝑗+1by an edge and 

remove un and join 𝑤1,𝑛−3 with 𝑤1,𝑛−2 by an edge. 

Call the resulting graph as𝐺𝑛−1Also, for 1 ≤ 𝑘 ≤
𝑛 − 4, let 𝐺𝑛−1−𝑘  be the graph obtained from 

𝐺𝑛−𝑘by removing the vertex 𝑢𝑛−𝑘  and joining 

𝑤1,𝑛−𝑘−2 with 𝑤1,𝑛−𝑘−3 by an edge. 

Clearly,𝐺𝑛−1−𝑘  is n-edge critical and d(𝐺𝑛−1−𝑘 ) 

= n - 1 - k for each k, 0 ≤ 𝑘 ≤ 𝑛 − 4 

Case  2 .𝑛 < 𝑚 ≤  
𝑛
2
 andn i s  odd .  

Consider  a  pa th 𝑃𝑁+1 =  𝑢1, 𝑢2, … 𝑢𝑁+1 ,  where  

𝑁 =  
𝑛
2
 .  Def ine  a  function𝑓: 𝑉 𝑃𝑁 →  1,2, …𝑛  

by 
𝑓 𝑢𝑖 

=  

𝑛                                            𝑖𝑓 𝑖 ≡ 1(𝑚𝑜𝑑 𝑛)

  
𝑖

𝑛
 +  −1 1+𝑔(𝑖)  

𝑔(𝑖)

2
   𝑚𝑜𝑑 𝑛 − 1        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Where g is a function𝑔:  1,2, …𝑁 + 1 →  1,2, … 𝑛  
defined by 𝑔 𝑖 = (𝑖 − 1)(𝑚𝑜𝑑 𝑛) 

It can be easily verified that f assigns an n-

pseudo-complete coloring for PN+1Hence, by 

Proposition 2.3 PN+1is n-edge critical and 

d(PN+1) = N. 

Now, for each i with 𝑁 − 1 ≥ 𝑖 ≥ 𝑛 + 1, 

consider the edges 𝑢𝑗𝑢𝑗+1 𝑗 =𝑖+1

𝑁
and let 𝑐𝑗 =

𝑚𝑖𝑛 𝑓 𝑢𝑗  , 𝑓 𝑢𝑗+1   and 𝑐𝑗
′ =

𝑚𝑎𝑥 𝑓 𝑢𝑗  , 𝑓 𝑢𝑗+1  .Then, for each j,  𝑖 + 1 ≤ 𝑗 ≤

𝑁, remove the vertex 𝑢𝑗+1 from PN+1 and add a 

vertex, with 𝑐𝑗
′  as its f-value, and join it to 𝑢𝑐𝑗 . 

The resulting graph G i is n-edge critical and 

d(Gi)=i. 

Case  3 .𝑛 < 𝑚 ≤  
𝑛
2
 − (𝑛/2) + 1and n i s  even.  

Consider the complete graph Km with vertex set 

 𝑣1 , 𝑣2 , … 𝑣𝑛  . Let 𝐹 =  𝑣𝑖𝑣 𝑛/2 +𝑖 ∈ 𝐸 𝐾𝑛 : 1 ≤ 𝑖 ≤

𝑛/2  

and𝐶 =  𝑣𝑖𝑣 𝑛/2 +𝑖 ∈ 𝐸 𝐾𝑛 : 1 ≤ 𝑖 ≤ 𝑛/2 ∪  𝑣𝑛𝑣1  

Then 𝐾𝑛 = 𝐹 ⊔ 𝐶is Eulerian and has an Euler tour 

say𝑇 =  𝑣𝑘1
, 𝑣𝑘2

, … 𝑣𝑘𝑁−𝑛+1
 ,where𝑣𝑘1

= 𝑣𝑘𝑁−𝑛+1
=

𝑣1 and 𝑁 =  
𝑛
2
 − 𝑛/2. Now let 𝐺𝑁the graph 

obtained from the path  𝑣1 , 𝑣2, … 𝑣𝑁+1 ,by 

adding n/2 vertices 

w1, w2,….wn/2 and joining wi with ui. Now 

define 𝑓: 𝑉 𝐺𝑁 →  1,2, … 𝑛 by 

𝑓 𝑢𝑖 = 𝑖;      1 ≤ 𝑖 ≤ 𝑛 

𝑓 𝑤𝑖 =  /2 + 𝑖 ;      1 ≤ 𝑖 ≤ 𝑛/2 

𝑓 𝑢𝑛+𝑗 = 𝑘𝑗 ;    1 ≤ 𝑗 ≤ 𝑁 − 𝑛 + 1 

Then f Is an n-pseudo-complete coloring of GN. 

Since |𝐸 𝐺𝑁 | =  
𝑛
2
 ,GN is n-edge critical and 

d(GN) = N. 

Now for each i with 𝑛 = 1 ≤ 𝐼 ≤ 𝑁 −

1,consider the edges 𝑢𝑗𝑢𝑗+1 𝑗=𝑖+1

𝑁
and let 𝑐𝑗 =

𝑚𝑖𝑛 𝑓 𝑢𝑗  , 𝑓 𝑢𝑗+1   and 𝑐𝑗
′ =

𝑚𝑎𝑥 𝑓 𝑢𝑗  , 𝑓 𝑢𝑗+1  .Then, for each j,  𝑖 + 1 ≤ 𝑗 ≤

𝑁, remove the vertex 𝑢𝑗+1 from PN+1 and add a 

vertex, with 𝑐𝑗
′  as its f-value, and join it to 𝑢𝑐𝑗 . 

The resulting graph G i is n-edge critical and 

d(Gi)=i. 

Theorem 3.3.  Let k > 3 be any odd integer 

and let G be a k-edge criticalEulerian graph. 

Then,𝑘 ≤ |𝑉 𝐺 | ≤  
𝑘
2
 . Also, given any integer n 

suchthat 𝑘 ≤ 𝑛 ≤  
𝑘
2
 , there exists a k-edge 

critical Eulerian graph with exactly n vertices. 

Proof. Since  𝐸 𝐺  =  
𝑘
2
 and G is not a tree, it 

follows that 𝑘 ≤ |𝑉 𝐺 | ≤  
𝑘
2
 .Now, the cycle 

𝐶
 𝑘

2
 
is k-edge critical, by Proposition 2.8. If n 

is any integer  such that  𝑘 ≤ 𝑛 ≤  
𝑘
2
 ,  then by 

Proposit ion 2.6 ,  a  k -edge cr i t icalEulerian 

graph on n vertices can be obtained from 𝐶
 𝑘

2
 
,  

by a sequence ofidentifications of vertices of 
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same color, with respect to any k-pseudo-complete 

coloring of 𝐶
 𝑘

2
 
 

Remark 3.4. Since in any n-pseudo-complete 

coloring of an n-edge critical graph, the sum 

of the degrees of all the vertices having same 

color is n—1, it follows thatthere is no n-edge 

critical, Eulerian graph when n is an even 

integer. 

Theorem 3.5 .Let G be a k-edge critical 

Hamiltonian graph where k ≥ 3.Then (i)  

k ≤ |V G | ≤  
k
2
  and ( i i)  when k is even, 

k ≤  V G  ≤  
k
2
 − (k/2).Moreover, |V(G)|=k if 

and only if G=Kk and |V (G)| =  
k
2
  with o d d  k  

i f  a n d  o n l y  i f  𝐺 = 𝐶
 𝑘

2
 
.  A l s o ,  w h e n  k  

i s  e v e n ,  V G  =  
k
2
 − (k/2) iff G is a 

cycle,𝐶
 𝑘

2
 −(𝑘/2)

=  𝑣1 , 𝑣2 , … 𝑣
 𝑘

2
 − 𝑘/2 

, 𝑣1 withk/2 

chords  𝑣𝑛+𝑖𝑣𝑛+𝑖+ 𝑘/2  i where n is some integer 

such that 0 < n < 
k
2
 − (k/2). 

Proof.Since  𝐸 𝐺  =  
𝑘
2
 and G is not a tree, it 

follows that 𝑘 ≤ |𝑉 𝐺 | ≤  
𝑘
2
  and |V(G)|=k if 

and only if G=Kk. Also, when k is odd, |V (G)| = 

 
k
2
 implies i f  𝐺 = 𝐶

 𝑘
2
 
 and the converse follows 

from Proposition 2.8. 

Now, suppose k is even. Let G be a k-edge 

critical Hamiltonian graph. Then it follows 

from Proposition 2.6 that the graph obtained 

from G by identifying all pairs of vertices 

having same color, with respect to any k-

pseudo-complete coloring of G, is isomorphic to 

Kk and a cycle in G corresponds to a closed 

trail of the same length in Kk. Since the 

maximum length ofa closed trail in K k is 

 
k
2
 − (k/2) , we have |𝑉 𝐺 | ≤  

k
2
 − (k/

2) Also, if 𝑉 𝐺  =  
k
2
 − (k/2)  then G is a cycle 

on  
k
2
 − (k/2) verticeswith exactly k/2 chords 

and this cycle must correspond to a maximal 

Eulerian subgraph of Kk so that the chords are 

as required. Converse is obvious. 
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