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Abstract-In this paper, acceleration motion of a single vertically falling non-spherically particle in 

incompressible Newtonian fluid is investigated. The acceleration motion of vertically falling non-spherical 

particles in the fluid such as water can be described by the force balance equation (Basset-Boussinesq-Ossen 

equation).The main difficulty in the solution of this equation lies in the nonlinear term due to the nonlinearity 

nature of the drag coefficient. The settling velocity was calculated by using the Diagonal Pade’ Approximant 

method and Varinational Iteration method (VIM). The results were also compared with fourth order Runge-

Kutta method(R-K 4
th

 order) to verify the accuracy of the above methods. It was shown that the velocity results 

are same when t∈[0,1] and from t>1, Diagonal Pade’ approximation method can lead more accurate results as 

compared to VIM. Acceleration motion of single particle is shown in fig.4. In short time particle changing its 

velocity by a varying amount but t>3 sec. particle does not change its velocity (acceleration is zero)i.e. after 3 

sec particle is not accelerating . it attains its highest velocity.   To obtain the results for all different methods, 

the symbolic calculus software MATLAB is used. 
Keywords-Acceleration motion, Diagonal Pade’ approximation method,  non-spherical particle and 

Varinational Iteration method (VIM). 

I. INTRODUCTION 

The problem of acceleration motion of vertically falling spherical and non-spherical particle in Newtonian and 

Non-Newtonian fluids is relevant to many situations of practical interest. It is necessary to know the detailed 

trajectories of the accelerating particles for the purposes of design or improved operation. For example, the 

measurements of terminal velocity of raindrop in Newtonian fluids using the falling ball method. It is also 

necessary to know the time and distance required to reach the particle at terminal point to determine the reliable 

results for design models. In present, the non-spherical particle are considered. It is clear from previous 

literature the motion of particle is affected by particle shapes. Considerable attentions have been devoted to the 

study of the acceleration motion of spherical and non-spherical particles in fluids and an excellent account of 

theoretical development in this area has been given by Clift et al. [1] for spherical bodies. Less information is 

available in the previous literature for the case of motion of non-spherical particles. Many correlation for the 

drag coefficient in terms of the Reynolds number for motion of non-spherical particles were given in the 

literature [2],[3]. From all these, one of the well-known analytical correlation between Reynolds numbers and 

drag coefficient for non-spherical particles is presented by Chien [4] 

𝐶𝐷 =
30

𝑅𝑒
+ 67.289𝑒(−5.03𝜑)  Where Re=  

𝜌𝐷𝑢

µ
       (1)                                                                                                

Where 𝐶𝐷drag coefficient and Re is Reynolds numbers. These are based on the equal volume sphere diameter 

[5]. Eq. (1) was stated to be valid in the ranges of 0.2<𝜑<1 and 0.001<Re<10000 for the different shapes of 

partical [4]. The analysis derived by Diagonal Pade’ approximant and Varinational iteration method (VIM). The 

results of current methods are compared with the well-known R-K 4
th

 order method in order to verify the 

accuracy of the proposed methods. 

Nomenclature Greek symbols 

Acc                     acceleration, m/s
2
 

𝐶𝐷                       Drag coefficient  

D                         Particle diameter, m 

g                         acc. due to gravity, m/s
2
 

m                        particle mass,kg 

Re                       Reynolds number 

t                          time,s 

u                         Velocity,m/s      

𝛼1, 𝛼2, 𝛼3 , 𝛼4   constants 

𝜑                     Sphericity  

µ                     Dynamic viscosity,kg/ms 

ρ                     Fluid density,kg/m
3  

ρ𝑠Spherical partical density, kg/m
3 

∈                   Element of 
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II. PROBLEM STSTEMENT 

Consider a rigid body, non-spherical particle with Sphericity 𝜑, equivalent volume diameter D, mass m and 

particle density ρ𝑠is falling in an infinite extent of incompressible Newtonian fluid of density ρand viscosity µ , 

u represents the velocity of the non-spherical particle at any instant time t, and g is the acceleration due to 

gravity a [ 6],[19]. Thus, the equation of the partical motion is given by  

m
𝑑𝑢

𝑑𝑡
=mg (1- 

ρ   

ρ𝑠
) -

1

8
 πD

2 
ρ𝐶𝐷u

2 
-

1

12
 πD

3 
ρ
𝑑𝑢

𝑑𝑡
        

 (2) 

Where 𝐶𝐷the drag coefficient. In right hand side of the eq.(2), the 1
st
 term represent the buoyancy effect, the 2

nd
 

term corresponds to drag resistance, 3
rd

  term is associated with the added mass effect which is due to acc. of 

fluid around the particle. 

The non-linear terms due to non-linearity nature of the drag coefficient 𝐶𝐷 is the main difficulty in solving eq. 

(2) could be re-written as follows: 

(m+
1

12
 πD

3 
ρ)

𝑑𝑢

𝑑𝑡
  =mg (1- 

ρ   

ρ𝑠
 ) -

1

8
 πD

2 
ρ𝐶𝐷u

2 
 

𝛼1
𝑑𝑢

𝑑𝑡
+𝛼2u+𝛼3u

2 
–𝛼4=0         (3) 

Where  

𝛼1= (m+
1

12
 πD

3 
ρ)         (3a) 

𝛼2=3.75πDµ          (3b) 

𝛼3=
67.289𝑒 (−5.03𝜑 )

8
 πD

2 
ρ         (3c) 

𝛼4= mg (1- 
ρ   

ρ𝑠
 )          (3d) 

III. DIAGONAL PADE’ APPROXIMANTS 

A Pade’ approximant is the ratio of two polynomials constructed from the coefficients of the Taylor series 

expansion of a function u (t). The technique was developed around 1890 by Henri Pade’, but goes back to Georg 

Frobenius who introduced the idea and investigated the features of rational approximations of power series. The 

Padé approximant often gives better approximation of the function and it may still work where the Taylor series 

does not converge. For these reasons Padé approximants are used extensively in computer calculation.. They 

have also been used as in Diophantine approximation and transcendental number theory. The [L/M] Pade’ 

approximants to a function u (t) are given by [6],[ 7],[20]. 

[
𝐿

𝑀
] =

𝑃𝐿(𝑡)

𝑞𝑀 (𝑡)
, where L=M (for diagonal pade’ approximants)     (4) 

Where𝑃𝐿(𝑡) is a polynomial of the degree of at most L and 𝑞𝑀(t) is a polynomial of the degree of at most M. 

The formal power series is given 

u (t) = 𝑎𝑖
∞
𝑖=1 𝑡𝑖  

i.e. u(t)=𝑎0+𝑎1𝑡
1 + 𝑎2𝑡

2 + 𝑎3𝑡
3+…………..      (5) 

Find the coefficients 𝑎0 , 𝑎1 , 𝑎2 , 𝑎3, …with help of Taylor’s expansion for 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 

The given equation (3) becomes 

𝑢′ (t)=1-u
2 
–u , with initial condition u(0)=0 

Solve the above equation by Taylor’s series about zero is given by 

u(t)=𝑢0 + 𝑡𝑢′0 +
𝑡2

2!
𝑢′′0 +

𝑡3

3!
𝑢′′′0+

𝑡4

4!
𝑢𝑖𝑣

0 +
𝑡5

5!
𝑢𝑣

0 +
𝑡6

6!
𝑢𝑣𝑖

0+
𝑡7

7!
𝑢𝑣𝑖𝑖

0+
𝑡8

8!
𝑢𝑣𝑖𝑖𝑖

0+……  (6)                                                                                               

Solution is u(t)=𝑡 −
𝑡2

2!
−

𝑡3

3!
+ 7

𝑡4

4!
-5

𝑡5

5!
-85

𝑡6

6!
+335

𝑡7

7!
+1135 

𝑡8

8!
 +………    (6a)                                      
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Now compare equ. (6a) with equ. (5), So𝑎0 =0,  𝑎1 =1, 𝑎2 = −
1

2 !
,  𝑎3 = −

1

3!
, 𝑎4 =

7

4!
, 

𝑎5 = −
5

5!
, 𝑎6 = −

85

6!
, 𝑎7 =

335

7!
, 𝑎8 =

1135

8!
and  so on      (6b)     

From eq.(4), u (t)-
𝑃𝐿(𝑡)

𝑞𝑀 (𝑡)
=0(t

L+M+1 
)        (7) 

Determine the coefficient of pL(t) and 𝑞𝑀(t) by the help of eq.(6a) and take normalization condition 𝑞𝑀  (0)=1

 (8) 

From eq.(7),  u(t)-
𝑃𝐿(𝑡)

𝑄𝑀 (𝑡)
=0         (9)   

pL(t)=𝑝0+𝑝1𝑡
1 + 𝑝2𝑡

2 + 𝑝3𝑡
3+…………..   +𝑝𝐿𝑡

𝐿      (9a) 

𝑞𝑀(t)=𝑞0+𝑞1𝑡
1 + 𝑞2𝑡

2 + 𝑞3𝑡
3+………….. +  𝑞𝑀𝑡𝑀       (9b)  

To obtain a diagonal pade’ approximants of a different order such as [1/1], [2/2], [3/3], the symbolic calculus 

software MATLAB is used. 

III.A. For pade’ [1/1] 

u (t)-
𝑃1(𝑡)

𝑄1(𝑡)
=0, where  u (t)=𝑎0+𝑎1𝑡

1 + 𝑎2𝑡
2 + 𝑎3𝑡

3+……..     (10) 

from eq.(10) 𝑎0+𝑎1𝑡
1 + 𝑎2𝑡

2 + 𝑎3𝑡
3+………=

𝑝0+𝑝1𝑡1

𝑞0+𝑞1𝑡1     (10a)    

So diagonal pade’ [1/1]=
𝑡

1+
1

2
𝑡
        (10c) 

III.B. For pade’ [2/2] 

u (t)-
𝑃2(𝑡)

𝑄2(𝑡)
=0           

 (11𝑎0+𝑎1𝑡
1 + 𝑎2𝑡

2 + 𝑎3𝑡
3+………=

𝑝0+𝑝1𝑡
1+𝑝2𝑡

2

𝑞0+𝑞1𝑡
1+𝑞2𝑡

2     (11a) 

So diagonal Pade’ [2/2] =
𝑡

1+
1

2
𝑡+

5

12
𝑡2

        (11b) 

III.C. For pade’ [3/3] 

u (t)-
𝑃3(𝑡)

𝑄3(𝑡)
=0 where u (t)=𝑎0+𝑎1𝑡

1 + 𝑎2𝑡
2 + 𝑎3𝑡

3+……..     (12) 

𝑎0+𝑎1𝑡
1 + 𝑎2𝑡

2 + 𝑎3𝑡
3+………=

𝑝0+𝑝1𝑡1+𝑝2𝑡2+𝑝3𝑡
3

𝑞0+𝑞1𝑡1+𝑞2𝑡2+𝑞3𝑡
3       (12a) 

Generally, 𝑝𝐿 = 𝑎𝐿+  𝑞𝑖𝑎𝐿−𝑖
𝑚𝑖𝑛 .(𝐿,𝑀)
𝑖=1        (12b)  

So, diagonal Pade’ [3/3]=
𝑡+

1

12
𝑡3

1+
1

2
𝑡+

1

2
𝑡2+

1

24
𝑡3

      (12c) 

III.Table 1.The results of diagonal Pade’ [1/1], diagonal Pade’ [2/2] and diagonal Pade’ [3/3] for 𝜶𝟏 =
𝜶𝟐 = 𝜶𝟑 = 𝜶𝟒 = 𝟏 

t pade’ [1/1] pade’ [2/2] pade’[3/3] 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

0 

0.181818181818182 

0.333333333333333 

0.461538461538462 

0.571428571428571 

0.666666666666667 

0.750000000000000 

0.823529411764706 

0 

0.179104477611940 

0.315789473684211 

0.413793103448276 

0.480000000000000 

0.521739130434783 

0.545454545454545 

0.556291390728477 

0 

0.179113359119310 

0.316008316008316 

0.415043653458697 

0.483920367534456 

0.530612244897959 

0.561872909698997 

0.582846236430872 
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In fig.1, u (vertically) denotes the velocity of particle w.r.t. time t (horizontally).Solution for velocity of the non-

spherical particle during the acceleration motion is obtain by diagonal pade’ approximants of a different order 

such as [1/1],[2/2], [3/3], the symbolic calculus software MATLAB is used. From Fig.1.the diagonal pade’ [3/3] 

gives the more accurate results as compared to other. i.e.  the graph of pade’ [3/3] and R-K 4
th

 order (numerical 

method) are approximately coincide. So from pade’ diagonal ([1/1],[2/2],[3/3]), we will chose diagonal 

pade’[3/3] for further investigation which  is more  accurate as compared  to other order.    

IV. VARINATIONAL ITERATION METHOD (VIM) 

Jihuan He in 1997, was introduced Varinational iteration Method (VIM)[8] to solve the several nonlinear 

ordinary and partial differential equations. He’s Varinational iteration method (VIM) has been extensively 

applied as a power tool for solving various kinds of problems [9],[10],[11]. Using VIM, Liu and Gurram have 

solved the problems of free vibration involving an Euler-Bernoulli beam and obtained accurate results and 

compare the result with ADM [12]. Slota obtained results for the Heat equation by VIM which were same as the 

exact solution [13],[14].To clarify the VIM, we consider the following differential  

Lu (t)+Nu(t)=g(t)          (13) 

Where L is a linear operator, N is a nonlinear operator and g(t) is a non-homogeneous term.  By using the 

Varinational iteration method, a correction functional can be constructed as  

𝑢𝑛+1(t)=𝑢𝑛 𝑡 +  ʎ{𝐿𝑢𝑛 𝜁 + 𝑁ũ(
𝑡

0
𝜁) − 𝑔(𝜁)}𝑑𝜁      (13a) 

Where ʎ is a general Lagrange multiplier, which can be determined by the help of Varinational theory., the 

subscript n means the nth approximation; 𝑢𝑛  is restricted variation and δũ𝑛=0.[16],[17] 

According to VIM , firstly we will  find Lagrange multiplier and then trial function 𝑢0 to get the successive 

iterations    𝑢𝑛+1, n≥0 which converge to the exact solution . The solution is u=lim𝑛→∞ 𝑢𝑛  

To solve eq. (3) using VIM [15], the correction functional can be constructed as follows: 

𝑢𝑛+1(t)=𝑢𝑛 𝑡 +  ʎ{𝛼1
𝑑𝑢𝑛  𝑠 

𝑑𝑠
+ 𝛼2

𝑡

0
𝑢𝑛 𝑠 + 𝛼3𝑢

2
𝑛 𝑠 − 𝛼4}𝑑𝑠     (14) 

For 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1, eq.(14) becomes  

𝑢𝑛+1(t)=𝑢𝑛 𝑡 +  ʎ{
𝑑𝑢𝑛  𝑠 

𝑑𝑠
+

𝑡

0
𝑢𝑛 𝑠 + 𝑢2

𝑛 𝑠 − 1}𝑑𝑠     (14a) 

The stationary condition can be obtained as follows: 

ʎ𝑠=𝑡  – ʎ′𝑠=𝑡=0   

1+ʎ(𝑡)𝑠=𝑡=0          (14b) 

Subsequently, the Lagrangian multiplier is obtained as: 

ʎ= -𝑒𝑠−𝑡    [9]          (14c) 

Substituting eq. (14c) in eq. (14a) and assuming𝑢0 𝑡 = 0, solution will be gained for velocity variation w.r.t. 

time and for 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 

𝑢𝑛+1(t)=𝑢𝑛 𝑡 −  𝑒𝑠−𝑡{
𝑑𝑢𝑛  𝑠 

𝑑𝑠
+

𝑡

0
𝑢𝑛 𝑠 + 𝑢2

𝑛 𝑠 − 1}𝑑𝑠 , with condition𝑢0 𝑡 = 0,  (14d) 

Solve (14d) for different iterations with the help of MATLAB softerware   

𝑢0=0 

𝑢1=1 - 1/exp (t) 

𝑢2= (2*t*exp(t) - exp(t) + 1)/exp(2*t) 

 𝑢3=5/exp(2*t) - 19/(3*exp(t)) + 1/(3*exp(4*t)) + (4*t)/exp(2*t) + (2*t)/exp(3*t) + (4*t^2)/exp(2*t) + 1 

𝑢4=667/(9*exp(2*t)) - 4354267/(113400*exp(t)) - 56/exp(3*t) + 1481/(81*exp(4*t)) + 77/(72*exp(5*t)) + 

22/(25*exp(6*t)) + 1/(27*exp(7*t)) + 1/(63*exp(8*t)) + (38*t)/(3*exp(t)) + (24*t)/exp(2*t) - 

(146*t)/(3*exp(3*t)) + (788*t)/(27*exp(4*t)) + (17*t)/(2*exp(5*t)) + (16*t)/(15*exp(6*t)) + (2*t)/(9*exp(7*t)) 
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+ (8*t^2)/exp(2*t) - (76*t^2)/(3*exp(3*t)) + (328*t^2)/(9*exp(4*t)) + (7*t^2)/exp(5*t) + 

(160*t^3)/(9*exp(4*t)) + (4*t^2)/(3*exp(6*t)) + (4*t^3)/exp(5*t) + (16*t^4)/(3*exp(4*t)) (15) 

VI. Table 2. The results of VIM 1
st
, 2

nd
, 3

rd
 and 4

th
 iteration for 𝜶𝟏 = 𝜶𝟐 = 𝜶𝟑 = 𝜶𝟒 = 𝟏 

t VIM 1st iteration VIM 2nd  iteration VIM 3rd  iteration VIM 4th  iteration 

0 

0.2 
0.4 

0.6 

0.8 
1.0 

1.2 

1.4 

0 

0.181269246922018 
0.329679953964361 

0.451188363905974 

0.550671035882778 
0.632120558828558 

0.698805788087798 

0.753403036058394 

0 

0.179081594188850 
0.315264954910094 

0.410956539131007 

0.471493896464988 
0.503214724408055 

0.512389849966495 

0.504684597720110 

0 

0.179113680688544 
0.316035617510949 

0.415347788337407 

0.485392554135938 
0.535134904355470 

0.572328193962487 

0.602777019515010 

0 

0.179113343756190 
0.316006232438869 

0.415008507960582 

0.483681024791490 
0.529638091578952 

0.559019698064430 

0.576176937572276 

 

In Table 2, Solution for velocity of the non-spherical particle during the acceleration motion is obtain by 

Varinational Iteration Method (VIM) of different iterations and compare with R-K 4
th

 order( numerical solution 

of the same problem) to choose accurate iteration which gives the more accurate results. From fig.2. , we obvers 

that 4
th

 iteration of   Varinational Iteration Method (VIM) is more close to numerical method as comparative to 

other iterations. So we will choose 4
th

 iteration of VIM for comparison with other proposed method (Diagonal 

pade ’method). 

V. RUNGE-KUTTA 4
th

ORDER METHOD (NUMERICALMETHOD) 

It is clear that the type of current problem is initial value problem (IVP) of 1
st
 order. So far a solution, we can 

apply numerical methods like trapezoidal method, Euler’s method (1
st
 order R-K method), and mid-point 

method. Trapezoidal method is generally used for typical problems. Mid-point method is the modification of 

Euler’s method. Thus the mid-point method is as a suitable numerical technique in present problem which is 

also called R-K 4
th

 order method (numerical method)[18] 

𝑢′ (t)=1-u
2 
–u ,is a 1

st
 order differential equation with initial condition u(0)=0 

so f is a function of time and velocity  

i.e. f (t,u)= 1-u
2 
–u ,u(0)=0         (16) 

Matlab code for R-K 4
th 

order 

f=@(t,u)(1-u^2-u); 

t=0; 

u=0; 

h=0.2; 

t= 0:h:1.4 ;    

for i=1:(length(t)-1) 

    k1=f(t(i),u(i)); 

    k2=f(t(i)+0.5*h,u(i)+0.5*h*k1); 

    k3=f(t(i)+0.5*h,u(i)+0.5*h*k2); 

    k4=f(t(i)+h,u(i)+h*k3); 

u(i+1)=u(i)+1/6*(k1+2*k2+2*k3+k4)*h; 

end 

u(:) 
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VI. RESULTS AND DISCUSSION 

Table 3. Compare results of Pade’ [3/3], VIM (4
th

 iteration) with Runge-kutta 4
th

 order method for 

𝜶𝟏 = 𝜶𝟐 = 𝜶𝟑 = 𝜶𝟒 = 𝟏 

t u(t)pade’[3/3] u(t)VIM u(t)R-K Error(pade’[3/3]% Error(VIM)% 

0 

0.2 

0.4 
0.6 

0.8 
1.0 

1.2 

1.4 

0 

0.179113359119310 

0.316008316008316 
0.415043653458697 

0.483920367534456 
0.530612244897959 

0.561872909698997 

0.582846236430872 

0 

0.179113343756190 

0.316006232438869 
0.415008507960582 

0.483681024791490 
0.529638091578952 

0.559019698064430 

0.576176937572276 

0 

0.179097337759679 

0.315975074554605 
0.414985258839976 

0.483790347421919 
0.530284478652893 

0.561110909911462 

0.581292773696110 

 0 

0.008945414934921 

0.010520133604480 
0.014071584172227 

0.026875277833232 
0.061810219456668  

0.135802028893040 

0.275248561895327                                         

0 

0.008937039601045 

0.316008316008316           
0.005602367675659 

0.022596564934079 
0.121894949978935 

0.374257559941467 

0.877354791041355 
 

In table 3, the velocity results of vertically falling non-spherical particle in Newtonian fluid was investigated by 

different methods at different time. So we select the more accurate results from every methods. i.e. Pade’[3/3], 

VIM(4
th 

iteration) and compared these methods with Numerical Method(R-k 4
th

 order method). The absolute 

error % of Pade’ [3/3] is less as compared to VIM (4
th

 iteration).  
 

 

Fig. 1. Comparison between Pade’ [1/1], Pade’ 

[2/2], Pade’ [3/3] with R-K 4
th

 order method
 

Fig.3.Pade’[3/3], VIM (4
th

 iteration) and R-K 4
th

 

order (numerical solution) of eq.(3) 

 
Fig.2. Comparison between VIM (1

st
, 2

nd
, 3

rd
and 

4
th

 iterations) with R-K 4
th

 order 

Fig.4. Acceleration variation of the particle 

obtained by Diagonal Pade’ [3/3] and R-K 4
th

 

order of eq.(3

Fig.3. depict the velocity versus time for the three methods. It observe that diagonal Pade’ approximate of order 

[3/3] gives more accurate results as compared to VIM. In this study, a reliable combination of diagonal pade’ 

approximate and VIM was applied to obtain approximate solution of the acceleration motion of single non-

spherical particle moving in a continuous Newtonian fluid phase. Velocity was obtained at different time 

interval [0, 1.4] and was compared the results of present method (diagonal pade’ approximate [3/3] and VIM (4
th
 

iteration)) with numerical solutions of Runge-Kutta 4
th

 order method. From the above fig., it is clear that the 

results of VIM, diagonal Pade’ and R-K method are almost same from time t=0 to t=1.0. Fromtime t>1.0 the 

graphs of all three methods are different but pade’ [3/3] gives more closer results to numerical solution than 

VIM. So Pade’ [3/3] ismore accurate than VIM. In all above discussion, it is clear velocity of particle increasing 

until it reaches at terminal velocity. 
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Fig.4. In this study, R-K 4
th

 order and Diagonal Pade’[3/3] was applied for solution of acceleration 

motion of vertically falling  non-spherical particle in incompressible Newtonian fluid. Acceleration decreasing 

as time increasing. After time 3 seconds particle is not accelerating. Results obtained with pade’ approximant 

method and compared with numerical method. In short time Diagonal Pade’ approximant method gives the 

accurate results 

VII. CONCLUSION 

The achievement of this work is to apply the current methods diagonal pade’ and VIM in order to study the 

nonlinear differential equation of 1
st
 order with initial condition that governed from the   acceleration motion of 

vertically falling non-spherically particle in incompressible Newtonian fluid. The current methods are applied 

without using any linearization, discretization, restrictions or transformations. From above discussion, it is clear 

that the diagonal pade’ method [3/3] has a good agreement with numerical method and provides highly reliable 

results. In addition, this method does not require many iterations like VIM to reach accurate results. Both 

methods gives the accurate results in short time, but pade’ methods is also suitable for long time. Also, the 

current method (diagonal pade’) can be used to develop the valid solution of other nonlinear differential 

equation of order more than one.  
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