Near Skolem Difference Mean Labeling of Special Types of Trees

S. ShenbagaDevi ${ }^{1}$, A. Nagarajan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics
Aditanar College of Arts and Science, Tiruchendur 628 215, Tamil Nadu, India
${ }^{2}$ Associate Professor, Department of Mathematics
V.O.Chidambaram College, Thoothukudi 628 008, Tamil Nadu, India

Abstract

Let G be a (p, q) graph and $f: V(G) \rightarrow\{1,2, \ldots, p+q-1, p+q+2\}$ be an injection. For each edge $e=u v$, the induced edge labeling f^{*} is defined as follows: $$
f^{*}(e)=\left\{\begin{array}{c} \frac{|f(u)-f(v)|}{2} \text { if }|f(u)-f(v)| \text { is even } \\ \left\lvert\, \frac{|f(u)-f(v)|+1}{2}\right. \text { if }|f(u)-f(v)| \text { is odd } \end{array}\right.
$$

Then f is called Near Skolem difference mean labeling if $f^{*}(e)$ are all distinct and from $\{1,2,3, \ldots . q\}$. A graph that admits a Near Skolem difference mean labeling is called a Near Skolem difference mean graph. In this paper, we investigate near Skolem difference mean labelling of some special types of trees like the banana tree, the coconut tree, the $H-$ graph, the lily graph, the jelly fish graph and the graph $T\left\langle K_{1, n_{1}}{ }^{\circ} K_{1, n_{2}}{ }^{\circ \circ \circ} K_{1, n_{m}}\right\rangle$.

Key words: Near Skolem difference mean labeling, Near Skolem difference mean graphs.

I. INTRODUCTION

All graphs in this paper represent finite, undirected and simple one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. Terms and notations not defined here are used in the sense of Harary [1].

A graph labeling is an assignment of integers to the vertices or edges or both vertices and edges subject to certain conditions. There are several types of graph labeling and a detailed survey is found in [2]. The notion of kolem difference mean labeling was due to Murugan and Subramanian [3]. It motivates us to define near skolem difference mean labelling.

In this paper, we define near skolem difference mean labeling and show that the banana tree $\operatorname{Bt}\left(n_{1}, n_{2}, \ldots \ldots \ldots \ldots n_{m}\right)$, the coconut treeT (n, m), the $H-$ graph of a path P_{n}, the $\operatorname{graphT}\left\langle K_{1, n_{1}} \circ K_{1, n_{2}} \circ \circ \circ K_{1, n_{m}}\right\rangle$, the lily graph I_{n} and the Jelly fish graph $\mathbf{J}(m, n)$ are Near skolem difference mean graphs. We use the following definitions in the subsequent section.
Definition 1.1:A lily graph $I_{n}, n \geq 2$ can be constructed by two-star graphs $2 K_{1, n}, n \geq 2$ joining two path graphs $2 P_{n}$,
$n \geq 2$ with sharing a common vertex, that is, $I_{n}=$ $2 K_{1, n}+2 P_{n}$.
Definition 1.2:The Jelly fish graph $J(m, n)$ is obtained from a 4-cycle $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ together with an edge $v_{1} v_{3}$ and appending m pendent edges to v_{2} and n pendent edges to v_{4}.

Definition 1.3: The H-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $\frac{u_{n+1}^{2}}{}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even.
Definition1.4:The Banana tree denoted by $\operatorname{Bt}\left(n_{1}, n_{2}, \ldots, n_{m}\right)(m$ times $n)$ isa graph obtained by connecting a vertex ν_{0} to one leaf of each of m number of stars.
Definition1.5: The graph $\mathrm{T}\left\langle\mathrm{K}_{1, \mathrm{n}_{1}}{ }^{\circ} \mathrm{K}_{1, \mathrm{n}_{2}}{ }^{\circ 0 \circ} \mathrm{~K}_{1, \mathrm{n}_{\mathrm{m}}}\right\rangle$ is obtained from the stars $K_{1, n_{1}}, K_{1 n_{2}}, \ldots, K_{1 n_{m}}$ by joining a leaf of $K_{1, n_{j}}$ and a leaf of $K_{1, n_{j+1}}$ to a new vertex $w_{j}(1 \leq j \leq m-1)$ by an edge.
Definition 1.6:The coconut tree graph $T(n, m)$ is obtained by identifying the central vertex of $K_{1, n}$ with a pendant vertex of the path P_{m}.

II. MAIN RESULT

Definition 2.1:A graph $G=(V, E)$ with $\quad p$ vertices and q edges is said to have Near skolem difference mean labeling if it is possible to label the vertices $\mathrm{x} \in \mathrm{V}$ with distinct elements $f(x)$ from $\{1,2, \ldots, p+$ $q-1, p+q+2\}$ in such a way that each edge $\mathrm{e}=\mathrm{uv}$, is labeled as $f^{*}(\mathrm{e})=\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $f^{*}(\mathrm{e})=\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd. The resulting labels of the edges are distinct and from $\{1,2, \ldots \ldots, q\}$. A graph that admits a Near
skolem difference mean labeling is called a Near skolem difference mean graph.
Theorem 2.2: The Jelly fish $J(m, n)$ is Near skolem difference mean.
Proof: Let G be the graph $J(m, n)$.
Let $V(G)=\left\{u, v, x, y, u_{i}, v_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E(G)=\{x u, x v, y u, y v, x y\} \cup\left\{u u_{i} / 1 \leq i \leq m\right\} \cup$ $\left\{v v_{j} / 1 \leq j \leq n\right\}$.
Then $|V(G)|=m+n+4$ and $|E(G)|=m+n+5$
Define: $f: V(G) \rightarrow\{1,2, \ldots \ldots, 2 m+2 n+8,2 m+$
$2 n+11\}$
as follows:
$f(u)=2 m+2 n+11$
$f(v)=2 m+2 n+7$
$f(x)=2 m+1$
$f(y)=2 m+3$
$f\left(u_{i}\right)=2 i-1, \quad 1 \leq i \leq m$
$f\left(v_{j}\right)=2 m+3+2 j$,
$1 \leq j \leq n$.
Let f^{*} be the induced edge labeling of f. Then,
$f^{*}\left(u u_{i}\right)=m+n+6-i, \quad 1 \leq i \leq m$
$f^{*}\left(v v_{j}\right)=n+2-j, \quad 1 \leq j \leq n$
$f^{*}(x u)=n+5$
$f^{*}(x v)=n+3$
$f^{*}(y u)=n+4$
$f^{*}(y v)=n+2$
$f^{*}(x y)=1$
The induced edge labels are all distinct and are
$f^{*}(E(G))=\{1,2, \ldots, m+n+5\}$.
Hence, from the above labeling pattern, the Jelly fish graph $J(m, n)$ admits Near skolem difference mean labeling.
Example 2.3:The labeling patterns of $J(4,5)$ and $J(5,6)$ are shown in fig 1 and fig 2 respectively

Fig 1

Fig 2
Theorem
2.4:The

Banana
tree
Bt $(n, n, \ldots$
$n),(m$ times $n)$ is a Near skolem
difference mean graph.

Proof: Let the graph be denoted by G
Let $\quad V(G)=\left\{v_{0}, v_{j}, u_{i j} / 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$
and
$E(G)=\left\{v_{0} u_{1 j}, v_{j} u_{i j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$.
Then $|V(G)|=m n+m+1$ and $|E(G)|=m n+m$
Definef: $V(G) \rightarrow\{1,2, \ldots, 2 m n+2 m, 2 m n+2 m+$ 3\} as follows:
$f\left(v_{0}\right)=2 m n+2 m+3$
$f\left(v_{j}\right)=2 m n-2 m+4 j, \quad 1 \leq j \leq m$
$f\left(u_{l j}\right)=2 j+1$,
$1 \leq j \leq m$
$f\left(u_{i j}\right)=(2 i-2) m+2 j+1, \quad 2 \leq i \leq n-1$ and
$1 \leq j \leq m$
$f\left(u_{n j}\right)=2 m n+1+2 j, \quad 1 \leq j \leq m-1$
$f\left(u_{n m}\right)=2 m n+2 m-2$
Let f^{*} be the induced edge labeling of f.Then,
$f^{*}\left(v_{0} u_{1 j}\right)=m(n+1)+1-j, \quad 1 \leq j \leq m$
$f^{*}\left(v_{j} u_{i j}\right)=m(n-i)+j, \quad 1 \leq i$

$$
\leq n-1 \text { and }
$$

$$
1 \leq j \leq m
$$

$f^{*}\left(v_{j} u_{n j}\right)=m+1-j, \quad 1 \leq j \leq m$
Thus, the induced edge labels are all distinct and are $f^{*}(E(G))=\{1,2, \ldots \ldots, m n+m\}$.
Hence, the banana tree $\operatorname{Bt}(n, n, \ldots \ldots \ldots \ldots . n)$ is a Near skolem difference mean graph.
Example 2.5: The labelling pattern of
Bt (4, 4, 4, 4, 4, 4, 4 4) ; in in fig 3

21 heorem 2.6:The lily graph $I_{n}(n \geq 2)$ admits Near skolem difference mean labeling.
Proof: Let G be the lily graph I_{n} with $n \geq 2$.
Let $\quad V(G)=\left\{u_{i}, v_{j} / 1 \leq i \leq 2 n, 1 \leq j \leq 2 n-1\right\}$
and
$E(G)=\left\{v_{n} u_{i}, v_{j} v_{j+1} / 1 \leq i \leq 2 n, 1 \leq j \leq 2 n-2\right\}$
Then $|V(G)|=4 n-1$ and $|E(G)|=4 n-2$.
Define: $f: V(G) \rightarrow\{1,2, . ., 8 n-4,8 n-1\}$ as follows:
Case (i)When n is odd:
$f\left(v_{1}\right)=8 n-1$
$f\left(v_{2 i+1}\right)=8 n-2 i-2, \quad 1 \leq i \leq n-1$
$f\left(v_{2 i}\right)=2 i+1, \quad 1 \leq i \leq n-1$
$f\left(u_{i}\right)=7 n-2 i, \quad 1 \leq i \leq 2 n$.
Case(ii)When n is even:
$f\left(v_{2 i+1}\right)=3+2 i$,
$f\left(v_{2}\right)=8 n-1$
$f\left(v_{2 i}\right)=8 n-2 i$,
$0 \leq i \leq n-1$
$f\left(u_{i}\right)=7 n+1-2 i$,
$1 \leq i \leq n-1$
$1 \leq i \leq 2 n$
Let f^{*} be the induced edge labeling of f. Then,
$f^{*}\left(v_{j} v_{j+1}\right)=4 n-1-i, \quad 1 \leq i \leq 2 n-2$
$f^{*}\left(v_{n} u_{i}\right)=i, \quad 1 \leq i \leq 2 n$.
Thus, the induced edge labels are all distinct and are $f^{*}(E(G))=\{1,2, . ., 4 n-2\}$.
Hence, the lily graph admits Near skolem difference mean labeling for $n \geq 2$.
Example 2.7: The labeling patterns of I_{5} and I_{6} are given in
fig 4 and fig 5 respectively.

Fig 4

Fig 5
Theorem 2.8:The H-graph G is Near skolem difference mean graph.
Proof: Let $V(G)=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$ and
$E(G)$
$=\left\{v_{i} v_{i+1}, u_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$
$\cup\left\{v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right.$ (when n is odd) and $v_{\frac{n}{2}+1} u_{\frac{n}{2}}$ (when n is even) $\}$
Then $|V(G)|=2 n$ and $|E(G)|=2 n-1$
Define $f: V(G) \rightarrow\{1,2, \ldots, 4 n-2,4 n+1\}$ as follows:
Case(i): When n is odd
$f\left(v_{2 i+1}\right)=2 i+3, \quad 0 \leq i \leq \frac{n-1}{2}$.
$f\left(v_{2}\right)=4 n+1$
$f\left(v_{2 i}\right)=4 n+2-2 i, \quad 2 \leq i \leq \frac{n-1}{2}$.
$f\left(u_{2 i+1}\right)=3 n+1-2 i, \quad 0 \leq i \leq \frac{n-1}{2}$.
$f\left(u_{2 i}\right)=n+2+2 i$,
$1 \leq i \leq \frac{n-1}{2}$.
Case(ii):When n is even
$f\left(v_{2 i+1}\right)=2 i+3$,
$0 \leq i \leq \frac{n-2}{2}$.
$f\left(v_{2}\right)=4 n+1$
$f\left(v_{2 i}\right)=4 n+2-2 i, \quad 2 \leq i \leq \frac{n}{2}$.
$f\left(u_{2 i+1}\right)=n+3+2 i, \quad 0 \leq i \leq \frac{n-2}{2}$.
$f\left(u_{2 i}\right)=3 n+2-2 i, \quad 1 \leq i \leq \frac{n}{2}$.
This f^{*} be the induced edge labelling of f. Then,
$f^{*}\left(v_{i} v_{i+1}\right)=2 n-i, \quad 1 \leq i \leq n-1$
$f^{*}\left(v_{\frac{n+1}{2}}^{2} \frac{u_{n+1}^{2}}{2}\right)=n$, when n is odd
$f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n}{2}}\right)=n, \quad$ when n is even
$f^{*}\left(u_{i} u_{i+1}\right)=n-i, \quad 1 \leq i \leq n-1$.
[n both cases, the induced edge labels are all distinct and $f^{*}(E(G))=\{1,2, \ldots, 2 n-1\}$.
Hence, the $H-$ graph G is a Near skolem difference mean graph.
Example 2.9:The Near skolem difference mean labeling of the graph for $n=7$ and $n=6$ are given fig 6 andfig 7 respectively.

Theorem 2.10:The coconut tree $T(n, m)$ is Near skolem difference mean for every $n, m \geq 1$.
Proof: Let G be the coconut tree $T(n, m)$.
Let $V(G)=\left\{v_{i}, u_{j}, 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and
$E(G)=\left\{v_{i} v_{i+1}, v_{1} u_{j}, 1 \leq i \leq n-1,1 \leq j \leq m\right\}$
Then $|V(G)|=n+m$ and $|E(G)|=n+m-1$

Define $f: V(G) \rightarrow\{1,2, \ldots, 2 n+2 m-2,2 n+2 m+$ 1\} as follows:

Case (i) When \boldsymbol{n} is odd:

$f\left(v_{2 i+1}\right)=3+2 i$,

$$
0 \leq i \leq \frac{n-1}{2}
$$

$f\left(v_{2}\right)=2 n+2 m+1$
$f\left(v_{2 i}\right)=2 m+2 n+2-2 i$,
$1 \leq i \leq \frac{n-1}{2}$
$f\left(u_{i}\right)=2+2 i$,
$1 \leq i \leq m$
Case (ii) When n is even:
$f\left(v_{2 i+1}\right)=3+2 i$, $0 \leq i \leq \frac{n-2}{2}$
$f\left(v_{2}\right)=2 n+2 m+1$
$f\left(v_{2 i}\right)=2 m+2 n+2-2 i$,
$1 \leq i \leq \frac{n}{2}$
$f\left(u_{i}\right)=2+2 i$,
$1 \leq i \leq m$
In both cases let f^{*} be the induced edge labeling of f. Then,

$$
\begin{array}{ll}
f^{*}\left(v_{i}, v_{i+1}\right)=n+m-i, & 1 \leq i \leq n-1 \\
f^{*}\left(v_{1} u_{j}\right)=j, & 1 \leq j \leq m
\end{array}
$$

The induced edge labeling are all distinct and are $f^{*}(E(G))=\{1,2, \ldots, n+m-1\}$.
Hence, the coconut tree is Near skolem difference mean for every $n, m \geq 1$.
Example 2.11: The labeling pattern of the coconut trees $T(9,6)$ and $T(8,8)$ are given in fig 8 and fig 9 respectively

Fig 8Fig 9

Theorem 2.12: The graph $T\left\langle K_{1, n_{1}}{ }^{\circ} K_{1, n_{2}}{ }^{\circ \circ \circ} K_{1, n_{m}}\right\rangle$ is a Near skolem difference mean graph for every $m>1$.
Proof: Let G be the graph $\mathrm{T}\left\langle\mathrm{K}_{1, \mathrm{n}_{1}} \circ \mathrm{~K}_{1, \mathrm{n}_{2}}{ }^{\circ \circ \circ} \mathrm{K}_{1, \mathrm{n}_{\mathrm{m}}}\right\rangle$. Let $u_{i}^{j}\left(1 \leq j \leq n_{j}\right)$ be the pendant vertices and v_{j}
$(1 \leq j \leq m)$ be the central vertex of the $\operatorname{star}_{1, \mathrm{n}_{\mathrm{j}}}(1 \leq$ $j \leq m$)
Then G is a graph obtained by joining $u_{n_{j}}^{j}$ and u_{1}^{j+1} to a new vertex $w_{k}(1 \leq k \leq m-1)$ by an edge.
Then $V(G)=\left\{u_{i}^{j}, v_{j}, w_{k} / 1 \leq i \leq n_{j}, 1 \leq j \leq m\right.$,

$$
1 \leq k \leq m-1\}
$$

and $E(G)=\left\{v_{j} u_{i}^{j}, w_{k} u_{n_{j}}^{j}, w_{k} u_{1}^{j+1} / 1 \leq i \leq n_{j}, 1 \leq\right.$ $j \leq m$,

$$
1 \leq k \leq m-1\}
$$

Then $|V(G)|=\sum_{k=1}^{m} n_{k}+2 m-1$ and
$|E(G)|=\sum_{k=1}^{m} n_{k}+2 m-2$
Define $f: V(G) \rightarrow\left\{1,2, \ldots \ldots ., 2 \sum_{k=1}^{m} n_{k}+4 m-4\right.$,
$2 k=1 m n k+4 m-1\}$ as follows:
$f\left(v_{j}\right)=2 \sum_{k=1}^{m} n_{k}+4 m+3-4 j, \quad 1 \leq j \leq m$.
$f\left(w_{j}\right)=2 \sum_{k=1}^{m} n_{k}+4 m-4 j, \quad 1 \leq j \leq m-$ 1.

$$
\begin{array}{ll}
f\left(u_{i}^{1}\right)=2 i+1, & 1 \leq i \leq n_{1} \\
f\left(u_{i}^{j}\right)=u_{n_{j}}^{j-1}+2 i, & 1 \leq i
\end{array}
$$

$$
\leq n_{m} \text { and }
$$

$$
2 \leq j \leq m
$$

Let f^{*} be the induced edge labeling. Then,

$$
\begin{array}{lc}
f^{*}\left(v_{1} u_{i}^{1}\right)=\sum_{k=1}^{m} n_{k}+2 m-1-i, & 1 \leq i \leq n_{1} . \\
f^{*}\left(v_{j} u_{i}^{j}\right)=n_{j}+n_{j+1}+\cdots+n_{m}+2 m-2 j+1 \\
-i, \quad 2 \leq j \leq m \text { and } 1 \leq i \leq n_{j} \\
f^{*}\left(w_{1} u_{n_{1}}^{1}\right)=\sum_{k=1}^{m} n_{k}+2 m-2-n_{1} . \\
f^{*}\left(w_{j} u_{n_{j}}^{j}\right)=n_{j+1}+n_{j+2}+\cdots+n_{m}+2(m-j), \\
m-1 & 2 \leq j \leq \\
f^{*}\left(w_{1} u_{1}^{2}\right)=\sum_{k=2}^{m} n_{k}+2 m-3 . \\
f^{*}\left(w_{j} u_{1}^{j+1}\right)=n_{j+1}+n_{j+2}+\cdots+n_{m}+2 m-2 j \\
-1, \\
2 \leq j \leq
\end{array}
$$

$m-1$.
The induced edge labels are all distinct and are
$f^{*}(E(G))=\left\{1,2, \ldots ., \sum_{k=1}^{m} n_{k}+2 m-2\right\}$.
Hence, the graph $\mathrm{T}\left\langle K_{1, n_{1}}{ }^{\circ} K_{1, n_{2}}{ }^{000} K_{1, n_{m}}\right\rangle$ is Near skolem difference mean for every $m>1$.
Example 2.13: The labeling pattern of $T\left\langle K_{1,5}{ }^{\circ} K_{1,4}{ }^{\circ} K_{1,6}{ }^{\circ} K_{1,3}\right\rangle$ is shown in fig 10

III. CONCLUSION

In this paper, we investigated the Near skolem difference meanlabeling of some special types of trees. We have already investigated graphs which are Near Skolem difference mean only for certain cases [4] and have planned to investigate the Near skolem difference labeling of some special cases of cycle related graphs in our next paper.

Fig 10

REFERENCES

[1] F. Harary(2001), Graph Theory, Narosa Publishing House, New Delhi.
[2] J. A.Gallian(2008), A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 15, \#DS6.
[3] K. Murugan and A. Subramanian (2011)., Skolem difference mean labelling of H-graphs, International Journal of Mathematics and Soft Computing, Vol.1, No. 1, pp. 115-129.
[4] S. Shenbaga Devi and A. Nagarajan, On Near Skolem Difference Mean Graphs (Communicated).

