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Abstract. We introduce the concept of (EA) property and occasionally
w�compatibility for hybrid pair g : X ! X and F : X � X � X ! 2X : We
establish some common tripled �xed point theorems for hybrid pair of mappings
satisfying, (EA) property and occasionally w�compatibility conditions, under
weak  �' contraction. It is to be noted that to �nd tripled coincidence point,
we do not employ completeness on space and not partially orderdness. Also the
condition of continuity is not necessary for any mapping involved therein. An
example is also given to validate our results. We extend and generalize several
known results.
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1. Introduction and Preliminaries

The study of �xed points for multivalued contraction mappings using the
Hausdor¤ metric was initiated by Nadler [23] : The theory of multivalued map-
pings has wide range of applications. It is applied in control theory, convex
optimization, di¤erential inclusions, and economics.
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Let (X; d) be a metric space and CB(X) be the set of all nonempty closed
bounded subsets of X: Let D(x; A) denote the distance from x to A � X and
H denote the Hausdor¤ metric induced by d; that is,

D(x; A) = inf
a2A

d(x; a)

and H(A; B) = max

�
sup
a2A

D(a; B); sup
b2B

D(b; A)

�
; for all A; B 2 CB(X):

The existence of �xed points for various multivalued contractive mappings
has been studied by many authors under di¤erent conditions and a signi�cant
number of papers have been reported. For details, we refer to [4; 22; 23; 25; 27]
and the references therein.
Samet and Vetro [26] introduced the concept of coupled �xed point for mul-

tivalued mapping and later several authors proved existence of coupled �xed
points for multivalued mappings under di¤erent conditions. Subsequently, many
results in this direction were given (see, e.g., [14; 15; 16; 18; 21; 26])
Berinde and Borcut [9] ; introduced the concept of triple �xed points. In

[9] ; Berinde and Borcut established the existence of tripled �xed point of single
valued mappings in partially ordered metric spaces. For more details on tripled
�xed point theory, we also refer the reader to [3; 5; 6; 7; 8; 10; 12; 24] :
Deshpande et al. in [17] introduced Triple �xed, Triple coincidence and

Triple common �xed points for multivalued maps.

De�nition 1.1. [17] Let X be a non empty set, F : X � X � X !
2X(Collection of all non empty subsets of X). g : X ! X:
(i) The point (x; y; z) 2 X �X �X is called a tripled �xed point of F if
x 2 F (x; y; z) ; y 2 F (y; z; x) and z 2 F (z; x; y) :
(ii) The point (x; y; z) 2 X �X �X is called a tripled coincident point of

F and g if
gx 2 F (x; y; z) ; gy 2 F (y; z; x) and gz 2 F (z; x; y) :
(iii) The point (x; y; z) 2 X �X �X is called a tripled common �xed point

of F and g if
x = gx 2 F (x; y; z) ; y = gy 2 F (y; z; x) and z = gz 2 F (z; x; y) :
We denote the set of tripled coincidence points of mappings F and g by

C (F; g) :
Note that if (x; y; z) 2 C (F; g) ; then (y; z; x) and (z; x; y) are also in C (F; g) :

De�nition 1.2. [17] Let F : X � X � X ! 2X be a multivalued map
and g be a self map on X. The Hybrid pair fF; gg is called w - compatible if
g (F (x; y; z)) � F (gx; gy; gz) whenever (x; y; z) is a tripled coincidence point of
F and g:

De�nition 1.3.[17] Let F : X � X � X ! 2X be a multivalued mapping
and g be a self-map on X. The mapping g is called F -weakly commuting at
some point (x; y; z) 2 X � X � X if g2x 2 F (gx; gy; gz) ; g2y 2 F (gy; gz; gx)
and g2z 2 F (gz; gx; gy) :
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Aamri and ElMoutawakil [1] de�ned (EA) property for self-mappings which
contained the class of non-compatible mappings. Kamran [20] extended the
(EA) property for hybrid pair g : X ! X and F : X ! 2X : Abbas and Rhoades
[2] extended the concept of occasionally weakly compatible mappings for hybrid
pair g : X ! X and F : X ! 2X : Deshpande and Handa [15] introduced
the concept of (EA) property and occasionally w�compatibility for hybrid pair
g : X ! X and F : X �X ! 2X :

In this paper, we introduce the concept of (EA) property and occasionally
w�compatibility for hybrid pair g : X ! X and F : X � X � X ! 2X : We
establish some common tripled �xed point theorems for hybrid pair of mappings
satisfying, (EA) property and occasionally w�compatibility conditions, under
weak  �' contraction. It is to be noted that to �nd tripled coincidence point,
we do not employ completeness on space and not partially orderdness. Also the
condition of continuity is not necessary for any mapping involved therein. An
example is also given to validate our results. We improve, extend and generalize
the results of Bhaskar and Lakshmikantham [11]; Ciric et al. [13]; Ding et al.
[18]; Gordji et al. [19]; Deshpande and Handa [15] and Lakshmikantham and
Ciric [21]: The e¤ectiveness of our generalization demonstrated with the help of
an example.

2. Main results

First we introduce the following
De�nition 2.1. Mappings g : X ! X and F : X �X �X ! CB(X) are

said to satisfy the (EA) property if there exist sequences fxng; fyng and fzng
in X; some r; s; t in X and A;B;C in CB(X) such that

lim
n!1

gxn = r 2 A = lim
n!1

F (xn; yn; zn);

lim
n!1

gyn = s 2 B = lim
n!1

F (yn; zn; xn);

lim
n!1

gzn = t 2 C = lim
n!1

F (zn; xn; yn):

Example 2.1. Let X = [1;+1) with the usual metric. De�ne g : X ! X
and F : X �X �X ! CB (X) by

gx = 2 + x and

F (x; y; z) = [2; 3 + 2x+ y + z] for all x; y; z 2 X:

Consider the sequences

fxng = f2 +
1

n
g; fyng = f4 +

1

n
g and fzng = f6 +

1

n
g:
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Clearly,

lim
n!1

gxn = 4 2 A = lim
n!1

F (xn; yn; zn) = [2; 17] ;

lim
n!1

gyn = 6 2 B = lim
n!1

F (yn; zn; xn) = [2; 19] ;

lim
n!1

gzn = 8 2 C = lim
n!1

F (zn; xn; yn) = [2; 21] :

Hence g and F satisfy (EA) property.

De�nition 2.2. Mappings F : X � X � X ! 2X and g : X ! X are
said to be occasionally w�compatible if and only if there exists some point
(x; y; z) 2 X �X �X such that gx 2 F (x; y; z); gy 2 F (y; z; x); gz 2 F (z; x; y);
and gF (x; y; z) � F (gx; gy; gz):

Following example shows that, occasionally w�compatibility is weaker con-
dition than w�compatibility.
Example 2.2. Let X = [0;+1) with usual metric. De�ne g : X ! X;

F : X �X �X ! CB (X) ; for all x; y; z 2 X; by

gx =

�
0; 0 � x � 1;
4x; 1 � x <1;

F (x; y; z) =

�
[0; 1 + 2x+ y + z] ; (x; y; z) 6= (0; 0; 0) ;
fxg; (x; y; z) = (0; 0; 0) :

It can be easily veri�ed that (0; 0; 0) and (1; 1; 1) are tripled coincidence
points of g and F , but gF (0; 0; 0) � F (g0; g0; g0) and gF (1; 1; 1)  F (g1; g1; g1)
So g and F are not w-compatible. However, the pair fF; gg is occasionally w-
compatible.

Let 	 denote the set of all functions  : [0; +1)! [0; +1) satisfying
(i )  is continuous and non-decreasing,
(ii )  (t) = 0, t = 0;
(iii ) lim sups!0+

s
 (s) <1;

and � denote the set of all functions ' : [0; +1)! [0; +1) satisfying
(i') ' is lower semi-continuous and non-decreasing,
(ii') '(t) = 0, t = 0;
(iii') for any sequence ftng with limn!1 tn = 0; there exist k 2 (0; 1)
and n0 2 N; such that '(tn) � ktn for each n � n0;
and � denote the set of all functions � : [0; +1)! [0; +1) satisfying
(i�) � is continuous,
(ii�) �(t) = 0, t = 0:
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For simplicity, we de�ne

(I) M(x; y; z; u; v; w)

= max

8>>>>>>><>>>>>>>:

d(gx; gu); D(gx; F (x; y; z)); D(gu; F (u; v; w));
d(gy; gv); D(gy; F (y; z; x)); D(gv; F (v; w; u));
d(gz; gw); D(gz; F (z; x; y)); D(gw; F (w; u; v));

D(gx; F (u;v;w))+D(gu; F (x;y;z))
2 ;

D(gy;F (v;w;u))+D(gv;F (y;z;x))
2 ;

D(gz;F (w;u;v))+D(gw;F (z;x;y))
2 :

9>>>>>>>=>>>>>>>;
;

(II) N(x; y; z; u; v; w)

= min

8>>>>>><>>>>>>:

D(gx; F (x; y; z)); D(gu; F (u; v; w));
D(gx; F (u; v; w)); D(gu; F (x; y; z));
D(gy; F (y; z; x)); D(gv; F (v; w; u));
D(gy; F (v; w; u)); D(gv; F (y; z; x));
D(gz; F (z; x; y)); D(gw; F (w; u; v));
D(gz; F (w; u; v)); D(gw; F (z; x; y)):

9>>>>>>=>>>>>>;
:

Theorem 2.1. Let (X; d) be a metric space, F : X � X � X ! CB(X)
and g : X ! X be two mappings. Suppose that there exist some  2 	; ' 2 �
and � 2 � such that

 (H(F (x; y; z); F (u; v; w))) (2:1)

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) + � (N(x; y; z; u; v; w)) ;

for all x; y; z; u; v; w 2 X: Furthermore, assume that fF; gg satis�es the (EA)
property. Then F and g have a tripled coincidence point. Moreover, F and g
have a common tripled �xed point, if one of the following conditions holds:

(a) F and g are w�compatible. limn!1 gnx = u; limn!1 gny = v and
limn!1 gnz = w for some (x; y; z) 2 CfF; gg and for some u; v; w 2 X and g is
continuous at u; v and w:
(b) g is F�weakly commuting for some (x; y; z) 2 CfF; gg and gx; gy and

gz are �xed points of g; that is, g2x = gx; g2y = gy and g2z = gz:
(c) g is continuous at x; y and z: limn!1 gnu = x; limn!1 gnv = y and

limn!1 gnw = z for some (x; y; z) 2 CfF; gg and for some u; v; w 2 X:
(d) g(CfF; gg) is a singleton subset of CfF; gg:

Proof. Since fF; gg satis�es the (EA) property, therefore there exist se-
quences fxng , fyngand fzng in X; some r; s; t; in X and A;B;C in CB(X)
such that

lim
n!1

gxn = r 2 A = lim
n!1

F (xn; yn; zn);

lim
n!1

gyn = s 2 B = lim
n!1

F (yn; zn; xn);

lim
n!1

gzn = t 2 B = lim
n!1

F (zn; xn; yn): (2:2)
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Since g(X) is a subset of X; then there exist x; y; z 2 X; we have

r = gx; s = gy and t = gz (2:3)

Now, by using condition (2:1) and (i ); we get

 (H(F (xn; yn; zn); F (x; y; z)))

�  (M(xn; yn; zn; x; y; z))� ' ( (M(xn; yn; zn; x; y; z)))
+� (N(xn; yn; zn; x; y; z)) ;

where

M(xn; yn; zn; x; y; z)

= max

8>>>>>>><>>>>>>>:

d(gxn; gx); D(gxn; F (xn; yn; zn)); D(gx; F (x; y; z));
d(gyn; gy); D(gyn; F (yn; zn; xn)); D(gy; F (y; z; x));
d(gzn; gz); D(gzn; F (zn; xn; yn)); D(gz; F (z; x; y));

D(gxn;F (x;y;z))+D(gx;F (xn;yn;zn))
2 ;

D(gyn;F (y;z;x))+D(gy;F (yn;zn;xn))
2 ;

D(gzn;F (z;x;y))+D(gz;F (zn;xn;yn))
2 :

9>>>>>>>=>>>>>>>;
and

N(xn; yn; zn; x; y; z)

= min

8>>>>>><>>>>>>:

D(gxn; F (xn; yn; zn)); D(gx; F (x; y; z));
D(gxn; F (x; y; z)); D(gx; F (xn; yn; zn));
D(gyn; F (yn; zn; xn)); D(gy; F (y; z; x));
D(gyn; F (y; z; x)); D(gy; F (yn; zn; xn));
D(gzn; F (zn; xn; yn)); D(gz; F (z; x; y));
D(gzn; F (z; x; y)); D(gz; F (zn; xn; yn)):

9>>>>>>=>>>>>>;
:

Letting n ! 1 in the above inequality, by using (i ); (i'); (i�); (ii�); (2:2);
(2:3); gx 2 A; gy 2 B and gz 2 C;we get

 (D(gx; F (x; y; z)))

�  (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)
�' ( (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)) :

Similarly, we can obtain that

 (D(gy; F (y; z; x)))

�  (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)
�' ( (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)) ;

and

 (D(gz; F (z; x; y)))

�  (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)
�' ( (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)) :

6
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Combining them, we get

max ( (D(gx; F (x; y; z))) ;  (D(gy; F (y; z; x))) ;  (D(gz; F (z; x; y))))

�  (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)
�' ( (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)) :

Since  is non-decreasing, therefore,

 (max fD(gx; F (x; y; z)); (D(gy; F (y; z; x))) ; (D(gz; F (z; x; y)))g)
�  (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)

�' ( (max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y)g)) :

which, by (ii') and (ii ); implies that

max fD(gx; F (x; y; z)); D(gy; F (y; z; x)); D(gz; F (z; x; y))g = 0;

it follows that

gx 2 F (x; y; z); gy 2 F (y; z; x) and gz 2 F (z; x; y)

that is, (x; y; z) is a tripled coincidence point of F and g: That is CfF; gg is
non empty.
Suppose now that (a) holds. Assume that for some (x; y; z) 2 CfF; gg;

lim
n!1

gnx = u; lim
n!1

gny = v and lim
n!1

gnz = w; (2:4)

where u; v; w 2 X: Since g is continuous at u; v and w: We have, by (2:4); that
u; v and w are �xed points of g; that is,

gu = u; gv = v and gw = w: (2:5)

As F and g are w�compatible, so

(gnx; gny; gnz) 2 CfF; gg; for all n � 1;

that is,

gnx 2 F (gn�1x; gn�1y; gn�1z);

gny 2 F (gn�1y; gn�1z; gn�1x) and

gnz 2 F (gn�1z; gn�1x; gn�1y); for all n � 1: (2:6)

Now, by using (2:1); (2:6) and (i ); we obtain

 (D(gnx; F (u; v; w)))

�  
�
H(F (gn�1x; gn�1y; gn�1z); F (u; v; w))

�
�  

�
M(gn�1x; gn�1y; gn�1z; u; v; w)

�
� '

�
 
�
M(gn�1x; gn�1y; gn�1z; u; v; w)

��
+�
�
N(gn�1x; gn�1y; gn�1z; u; v; w)

�
;

7
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where

M(gn�1x; gn�1y; gn�1z; u; v; w)

= max

8>>>>>>><>>>>>>>:

d(gnx; gu); D(gnx; F (gn�1x; gn�1y; gn�1z)); D(gu; F (u; v; w));
d(gny; gv); D(gny; F (gn�1y; gn�1z; gn�1x)); D(gv; F (v; w; u));
d(gnz; gw); D(gnz; F (gn�1z; gn�1x; gn�1y)); D(gw; F (w; u; v));

D(gnx;F (u;v;w))+D(gu;F (gn�1x;gn�1y;gn�1z))
2 ;

D(gny;F (v;w;u))+D(gv;F (gn�1y;gn�1z;gn�1x))
2 ;

D(gnz;F (w;u;v))+D(gw;F (gn�1z;gn�1x;gn�1y))
2 :

9>>>>>>>=>>>>>>>;

� max

8>>>>>>><>>>>>>>:

d(gnx; gu); d(gnx; gnx); D(gu; F (u; v; w));
d(gny; gv); d(gny; gny); D(gv; F (v; w; u));
d(gnz; gw); d(gnz; gnz); D(gw; F (w; u; v));

D(gnx;F (u;v;w))+d(gu;gnx)
2 ;

D(gny;F (v;w;u))+D(gv;gny)
2 ;

D(gnz;F (w;u;v))+D(gw;gnz)
2 :

9>>>>>>>=>>>>>>>;
;

and

N(gn�1x; gn�1y; gn�1z; u; v; w)

= min

8>>>>>><>>>>>>:

D(gnx; F (gn�1x; gn�1y; gn�1z)); D(gu; F (u; v; w));
D(gnx; F (u; v; w)); D(gu; F (gn�1x; gn�1y; gn�1z));
D(gny; F (gn�1y; gn�1z; gn�1x)); D(gv; F (v; w; u));
D(gny; F (v; w; u)); D(gv; F (gn�1y; gn�1z; gn�1x));
D(gnz; F (gn�1z; gn�1x; gn�1y)); D(gw; F (w; u; v));
D(gnz; F (w; u; v)); D(gw; F (gn�1z; gn�1x; gn�1y)):

9>>>>>>=>>>>>>;
= 0:

On taking limit as n ! 1 in the above inequality, by using (i ); (i'); (ii�);
(2:4); (2:5) and (2:6); we get

 (D(gu; F (u; v; w)))

�  (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)
�' ( (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)) :

Similarly

 (D(gv; F (v; w; u)))

�  (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)
�' ( (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)) :

and

 (D(gw; F (w; u; v)))

�  (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)
�' ( (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)) :

8
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Combining them, we get

max f (D(gu; F (u; v; w))) ;  (D(gv; F (v; w; u))) ;  (D(gw; F (w; u; v)))g
�  (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)

�' ( (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)) :

Since  is non-decreasing, therefore

 (max fD(gu; F (u; v; w)); (D(gv; F (v; w; u))) ; (D(gw; F (w; u; v)))g)
�  (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)

�' ( (max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g)) ;

which, by (ii') and (ii ); implies that

max fD(gu; F (u; v; w)); D(gv; F (v; w; u)); D(gw; F (w; u; v))g = 0;

it follows that

gu 2 F (u; v; w); gv 2 F (v; w; u) and gw 2 F (w; u; v): (2:7)

Now, from (2:5) and (2:7); we have

u = gu 2 F (u; v; w); v = gv 2 F (v; w; u) and w = gw 2 F (w; u; v);

that is, (u; v; w) is a common tripled �xed point of F and g:
Suppose now that (b) holds. Assume that for some (x; y; z) 2 CfF; gg; g is

F�weakly commuting, that is g2x 2 F (gx; gy; gz); g2y 2 F (gy; gz; gx); g2z 2
F (gz; gx; gy) and g2x = gx; g2y = gy; g2z = gz: Thus gx = g2x 2 F (gx; gy; gz); gy =
g2y 2 F (gy; gz; gx) and gz = g2z 2 F (gz; gy; gx); that is, (gx; gy; gz) is a com-
mon tripled �xed point of F and g:
Suppose now that (c) holds. Assume that for some (x; y; z) 2 CfF; gg and

for some u; v; w 2 X;

lim
n!1

gnu = x; lim
n!1

gnv = y and lim
n!1

gnw = z: (2:8)

Since g is continuous at x; y and z: Therefore, by (2:8); we obtain that x; y and
z are �xed points of g; that is,

gx = x; gy = y and gz = z: (2:9)

Since (x; y; z) 2 CfF; gg: Therefore, by (2:9); we obtain

x = gx 2 F (x; y; z); y = gy 2 F (y; z; x) and z = gz 2 F (z; x; y);

that is, (x; y; z) is a common tripled �xed point of F and g:
Finally, suppose that (d) holds. Let g(CfF; gg) = f(x; x; x)g: Then fxg =

fgxg = F (x; x; x): Hence (x; x; x) is a common tripled �xed point of F and g:
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If we put �(t) = 0 in the Theorem 2.1, we get the following result:
Corollary 2.2. Let (X; d) be a metric space, F : X �X �X ! CB(X)

and g : X ! X be two mappings. Suppose that there exist some  2 	 and
' 2 � such that

 (H(F (x; y; z); F (u; v; w))) (2:10)

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) ;

for all x; y; z; u; v; w 2 X: Furthermore, assume that fF; gg satis�es the (EA)
property. Then F and g have a tripled coincidence point. Moreover, F and g
have a common tripled �xed point, if one of the conditions (a) to (d) of Theorem
2.1 holds.

If we put '(t) = t � te'(t) for all t � 0 in Corollary 2.2, then we get the
following result:
Corollary 2.3. Let (X; d) be a metric space, F : X �X �X ! CB(X)

and g : X ! X be two mappings. Suppose that there exist some  2 	 ande' 2 � such that
 (H(F (x; y; z); F (u; v; w))) � e' ( (M(x; y; z; u; v; w))) (M(x; y; z; u; v; w)) ;

(2:11)
for all x; y; z; u; v; w 2 X: Furthermore, assume that fF; gg satis�es the (EA)
property. Then F and g have a tripled coincidence point. Moreover, F and g
have a common tripled �xed point, if one of the conditions (a) to (d) of Theorem
2.1 holds.

If we put  (t) = 2t for all t � 0 in Corollary 2.3, then we get the following
result:
Corollary 2.4. Let (X; d) be a metric space, F : X �X �X ! CB(X)

and g : X ! X be two mappings. Suppose that there exists some e' 2 � such
that

H(F (x; y; z); F (u; v; w)) � e' (2M(x; y; z; u; v; w)) 2M(x; y; z; u; v; w); (2:12)

for all x; y; z; u; v; w 2 X: Furthermore, assume that fF; gg satis�es the (EA)
property. Then F and g have a tripled coincidence point. Moreover, F and g
have a common tripled �xed point, if one of the conditions (a) to (d) of Theorem
2.1 holds.

If we put e'(t) = k
2 where 0 < k < 1; for all t � 0 in Corollary 2.4, then we

get the following result:
Corollary 2.5. Let (X; d) be a metric space. Assume F : X �X �X !

CB(X) and g : X ! X be two mappings satisfying

H(F (x; y; z); F (u; v; w)) � kM(x; y; z; u; v; w); (2:13)

for all x; y; z; u; v; w 2 X; where 0 < k < 1: Furthermore, assume that fF; gg
satis�es the (EA) property. Then F and g have a tripled coincidence point.
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Moreover, F and g have a common tripled �xed point, if one of the conditions
(a) to (d) of Theorem 2.1 holds.

Theorem 2.6. Let (X; d) be a metric space, F : X � X � X ! CB(X)
and g : X ! X be two mappings. Suppose that there exist some  2 	; ' 2 �
and � 2 � satisfying (2:1) and fF; gg is occasionally w�compatible. Then F
and g have a common tripled �xed point.

Proof. Since the pair fF; gg is occasionally w�compatible, therefore there
exists some point (x; y; z) 2 X �X �X such that

gx 2 F (x; y; z); gy 2 F (y; z; x); gz 2 F (z; x; y) and gF (x; y; z) � F (gx; gy; gz):
(2:14)

It follows that

g2x 2 F (gx; gy; gz); g2y 2 F (gy; gz; gx) and g2z 2 F (gz; gx; gy): (2:15)

Now, suppose u = gx; v = gy and w = gz; then by (2:15); we get

gu 2 F (u; v; w); gv 2 F (v; w; u) and gw 2 F (w; u; v): (2:16)

Thus, by condition (2:1); we have

 (H(F (x; y; z); F (u; v; w)))

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) + � (N(x; y; z; u; v; w)) :

which, by (2:14); (2:16); (i ); (i'); (i�); (ii�); and triangle inequality, implies

 (d(gx; gu))

�  (max fd(gx; gu); d(gy; gv); d (gz; gw)g)� ' ( (max fd(gx; gu); d(gy; gv); d (gz; gw)g)) :

Similarly, we can obtain that

 (d(gy; gv))

�  (max fd(gx; gu); d(gy; gv); d (gz; gw)g)� ' ( (max fd(gx; gu); d(gy; gv); d (gz; gw)g)) :

and

 (d(gz; gw))

�  (max fd(gx; gu); d(gy; gv); d (gz; gw)g)� ' ( (max fd(gx; gu); d(gy; gv); d (gz; gw)g)) :

Combining them, we get

max f (d(gx; gu)) ;  (d(gy; gv)) ;  (d(gz; gw))g
�  (max fd(gx; gu); d(gy; gv); d (gz; gw)g)� ' ( (max fd(gx; gu); d(gy; gv); d (gz; gw)g)) :

Since  is non-decreasing, therefore

 (max fd(gx; gu); (gy; gv); (gz; gw)g)
�  (max fd(gx; gu); d(gy; gv); d (gz; gw)g)� ' ( (max fd(gx; gu); d(gy; gv); d (gz; gw)g)) ;
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which, by (ii') and (ii ); implies that

max fd(gx; gu); d(gy; gv); d (gz; gw)g = 0;
it follows that d(gx; gu) = d(gy; gv) = d (gz; gw) = 0: Hence

u = gx = gu; v = gy = gv and w = gz = gw: (2:17)

Thus, by (2:16) and (2:17); we get

u = gu 2 F (u; v; w); v = gv 2 F (v; w; u) and w = gw 2 F (w; u; v);
that is, (u; v; w) is a common tripled �xed point of F and g:

Example 2.3. Suppose that X = [0; 1]; equipped with the metric d :
X � X ! [0; +1) de�ned as d(x; y) = maxfx; yg and d(x; x) = 0 for all
x; y;2 X: Let F : X �X �X ! CB(X) be de�ned as

F (x; y; z) =

�
f0g; for x; y; z = 1;�
0; x+y+z

6

�
; for x; y; z 2 [0; 1):

and g : X ! X be de�ned as

gx =
x

2
for all x 2 X:

De�ne  : [0; +1)! [0; +1) by

 (t) =
t

2
; for all t � 0;

and ' : [0; +1)! [0; +1) by

'(t) =
t

3
; for all t � 0;

and � : [0; +1)! [0; +1) by

�(t) =
t

4
; for all t � 0:

Now, for all x; y; z; u; v; w 2 X with x; y; z; u; v; w 2 [0; 1); we have
Case (a): If x+ y + z = u+ v + w; then

 (H(F (x; y; z); F (u; v; w)))

=
1

2
H(F (x; y; z); F (u; v; w))

=
1

12
(u+ v + w)

� 1

6
max

nx
2
;
u

2

o
+
1

6
max

ny
2
;
v

2

o
+
1

6
max

nz
2
;
w

2

o
� 1

6
d(gx; gu) +

1

6
d(gy; gv) +

1

6
d(gz; gw)

� 1

3
M(x; y; z; u; v; w)

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w)))
�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) + � (N(x; y; z; u; v; w)) :
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Case (b): If x+ y + z 6= u+ v + w with x+ y + z < u+ v + w; then

 (H(F (x; y; z); F (u; v; w)))

=
1

2
H(F (x; y; z); F (u; v; w))

=
1

12
(u+ v + w)

� 1

6
max

nx
2
;
u

2

o
+
1

6
max

ny
2
;
v

2

o
+
1

6
max

nz
2
;
w

2

o
� 1

6
d(gx; gu) +

1

6
d(gy; gv) +

1

6
d(gz; gw)

� 1

3
M(x; y; z; u; v; w)

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w)))
�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) + � (N(x; y; z; u; v; w)) :

Similarly, we obtain the same result for u+v+w < x+y+z: Thus the contractive
condition (2:1) is satis�ed for all x; y; z; u; v; w 2 X with x; y; z; u; v; w 2 [0; 1):
Again, for all x; y; z; u; v; w 2 X with x; y; z 2 [0; 1) and u; v; w = 1; we have

 (H(F (x; y; z); F (u; v; w)))

=
1

2
H(F (x; y; z); F (u; v; w))

=
1

12
(x+ y + z)

� 1

6
max

nx
2
;
u

2

o
+
1

6
max

ny
2
;
v

2

o
+
1

6
max

nz
2
;
w

2

o
� 1

6
d(gx; gu) +

1

6
d(gy; gv) +

1

6
d(gz; gw)

� 1

3
M(x; y; z; u; v; w)

�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w)))
�  (M(x; y; z; u; v; w))� ' ( (M(x; y; z; u; v; w))) + � (N(x; y; z; u; v; w)) :

Thus the contractive condition (2:1) is satis�ed for all x; y; z; u; v; w 2 X with
x; y; z 2 [0; 1) and u; v; w = 1: Similarly, we can see that the contractive
condition (2:1) is satis�ed for all x; y; z; u; v; w 2 X with x; y; z; u; v; w = 1:
Hence, the hybrid pair fF; gg satis�es the contractive condition (2:1); for all
x; y; z; u; v; w 2 X: In addition, all the other conditions of Theorem 2.1 and
Theorem 2.6 are satis�ed and z = (0; 0; 0) is a common tripled �xed point of
hybrid pair fF; gg: The function F : X�X ! CB(X) involved in this example
is not continuous at the point (1; 1; 1) 2 X �X �X:
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