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Abstract — A simple connected graph G is Hamiltonian laceable if there is a Hamiltonian path connecting each 

pair of distinct vertices at an odd distance. In this, we discuss the Hamiltonian laceability of some regular 

product graphs. 
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I. INTRODUCTION  

A Hamilton cycle of a graph is a cycle which passes through each vertex of the graph exactly once and the graph 

is Hamiltonian, if it contains a Hamilton cycle. A graph G  is Hamiltonian laceable if there is a u-v Hamiltonian 

path for all pair of vertices u and v where d(u,v) is odd. Let G be a finite, simple, connected undirected graph. 

The graph G is Hamiltonian - k - laceable if there is a u-v Hamiltonian path for all pair of vertices u and v  and 

Hamiltonian – k* - laceable, if there is a u-v Hamiltonian path for at least one pair of distinct vertices u and v 

with d(u,v) = k, 1 ≤ k ≤ diamG. Let 𝐸′  be a set of minimum number of edges to be added to G such that 

'EP   is a u-v Hamiltonian path in G  where P is a path in G   with d(u,v)= k,  then  𝐸′
 is denoted by )(k is 

called the laceability number of G and the edges belong to 𝐸′   are called laceability edges with respect to u and 

v 

Product Graph: 

Definition: For two graphs G and H , if (a,b)∈G and (𝑎,𝑏,)∈H such that there exists adjacency between 

*(a~𝑎′,) and (b~𝑏′
′
 ), then it is  AND product(∧) 

*(a~𝑎′,) or  (b~𝑏′
′
 ), then it is OR product (∨) 

*(a~𝑎′,) or (b~𝑏′
′
 ), but not both ,then it is EX OR product (∨).  

 

Lemma 1: Graph G= K2∧Cn ( n≥ 3), for odd n is Hamiltonian-1- laceable . 

Proof: Let G=K2∧Cn and U={𝑢1, 𝑢2, … . 𝑢𝑛} and V={𝑣1 , 𝑣2, … . 𝑣𝑛 } be the two parties of vertex set of G .By 

induction on  𝑉 = p(say), 

Step i: G is Hamiltonian laceable for p=6. 

Step ii : For p = k where k is any arbitrary constant, following are the possible cases and  there is  a u-v 

Hamiltonian path for any pair of adjacent vertices u and v. 

  

                                                Fig.1. 
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Step iii: using step (ii) the path can be extended to the graph G for integer n≥ 3. 

Lemma 2: Graph G= K2∧Cn ( n≥ 3) for an odd n,  is Hamiltonian-d- laceable for distance 3 ≤ d ≤(n-2) with 

⋋(𝑑)= 2  

Proof: Let G= K2∧Cn,  and  U={𝑢1, 𝑢2, … . 𝑢𝑛} and V={𝑣1, 𝑣2 , … . 𝑣𝑛} be the two parties of vertex set of G .  

We prove the result by induction on   𝑉 = p(say), 

Case I : G is Hamiltonian -3- laceable. 

Step i: G is Hamiltonian laceable for p=10  

Step ii : For p = k  where k is any arbitrary constant, following are the possible cases and there is a  Hamiltonian 

path between every pair of vertices. 

Case i:                         

Case ii:   

 

Fig.2.   

Step iii: using step (ii) the path can be extended to a graph G for   n≥ 3.Therefore G is Hamiltonian -3- laceable. 

Case II :   G is Ham iltonian -5- laceable. 

Step i: G is Hamiltonian laceable for p=14. 

Step ii : For p = k where k is any arbitrary costant, following are the possible cases and there is a Hamiltonian 

path between every pair of vertices. 

 

Case i:  

 

 
Case ii:  
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                                     Fig.3. 

Step iii: using step (ii) the path can be extended to a graph G for  ( n≥ 3).Therefore G is Hamiltonian -5- 

laceable.  

Hence for  𝑢𝑖 , 𝑣𝑖+(𝑛−2) , the Hamiltonian path exists with laceabilty edges 

(𝑢𝑖+(𝑛−3), 𝑢𝑖+(𝑛−1)) 𝑎𝑛𝑑(𝑣𝑖+1, 𝑣𝑖+(𝑛−2)) . 

 

Lemma 3: Graph G= K2∧Cn ( n≥ 3) for an odd n, is Hamiltonian-n- laceable  with ⋋(𝑛)= 1  

Proof: Let G= K2∧Cn,   and U={𝑢1, 𝑢2, … . 𝑢𝑛} and V={𝑣1, 𝑣2 , … . 𝑣𝑛} be the two parties of vertex set of G . For 

any two vertices (u,v) at odd distance n, there is a Hamiltonian path with a laceability edge. Following are the 

two possible cases. 

 

Case i:  

 

 
Fig.4. 

Case ii:  

 

Fig.5. 

Hence the result. 

Theorem 1: The graph  K2∧Cn( n ≥ 3) for odd n is  

i. Hamiltonian-1- laceable,  

ii. Hamiltonian-d- laceable with ⋋(𝑑)= 2  

iii. Hamiltonian-n- laceable with ⋋(𝑛)= 1  
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The proof follows from lemma 1,2 and 3. 

Lemma 4: A graph G= K2∧Cn ( n≥ 4), for an even n, is Hamiltonian-1- laceable with ⋋(1)= 2. 

Proof: Let  G= K2∧Cn , and U={𝑢1, 𝑢2, … . 𝑢𝑛} and V={𝑣1 , 𝑣2, … . 𝑣𝑛 } be the two parties of vertex set of G . By 

induction on   𝑉 = p(say), 

Step i: G is Hamiltonian laceable for p=8. 

Step ii : For p = k where k is any arbitrary constant,  following are the possible cases and  there is a u-v 

Hamiltonian path for any pair of adjacent vertices u and v. 

                               

   

Fig.6. 

Step iii: using step (ii) the path can be extended to a graph G for   n≥ 4.  

Lemma 5: Graph G= K2∧Cn ( n≥ 4) for an even n, is Hamiltonian-d- laceable for distance 3 ≤ d ≤ n/2 with 

⋋(𝑑)= 2. 

Proof: Let G= K2∧Cn and U={𝑢1 , 𝑢2, … . 𝑢𝑛} and V={𝑣1 , 𝑣2 , … . 𝑣𝑛 } be the two parties of vertex set of G .We 

prove the result by induction on  𝑉 = p(say),  

Case I : G is Hamiltonian -3- laceable. 

Step i: G is Hamiltonian laceable for p=12. 

Step ii : For p = k  where k is any arbitrary constant, following are the possible cases and there is a Hamiltonian 

path between every pair of vertices . 

 

Case i: 

 
 

Fig.7. 

Case ii: 

 
Fig.8. 
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Step iii: using step (ii) the path can be extended to a graph G for n≥ 3. 

  

Case II :   G is Hamiltonian -5- laceable. 

Step i: G is Hamiltonian laceable for p=16. 

Step ii : For p = k the following are the possible cases and there is a Hamiltonian path between every pair of 

vertices.  

 

Case i:  

 
Fig .9. 

 

case ii:  

 

 
Fig.10. 

 

Step iii: using step (ii) the path can be extended to a graph G for n≥ 4. 

 Hence for   𝑢1, 𝑣1+𝑛/2 , the Hamiltonian path exists with laceabilty edges (𝑢𝑖+𝑛/2−1, 𝑢𝑖+𝑛/2) 𝑎𝑛𝑑(𝑣𝑖+𝑛/2−1, 𝑣𝑛 ) 

and for  𝑢𝑖 , 𝑣𝑖+𝑛/2 , where 𝑖 ≥ 2 , the Hamiltonian path exists with laceabilty edges 

(𝑢𝑖+𝑛/2−1, 𝑢𝑖+𝑛/2) 𝑎𝑛𝑑(𝑣𝑖+𝑛/2−1 , 𝑣𝑖−1). 

 

Theorem 2: The graph  K2∧Cn( n ≥ 4), for even n is Hamiltonian laceable with ⋋(𝑑)= 2 for .1 Gdiamd   

The proof follows from lemma 4 and 5. 

Theorem 3 : The graph  K2∨Cn( n≥ 3) is Hamiltonian laceable. 

Proof: Let G= K2 ∨ Cn ( n ≥ 3 ) , with vertex set V={ 𝑢1, 𝑢2, … . 𝑢𝑛 , 𝑣1, 𝑣2 , … . 𝑣𝑛 } and an edge set 

E=  𝑢1𝑣2 ,  𝑢2𝑣3  ,  𝑢3𝑣4 , … .  𝑢1𝑣𝑛  ,  𝑣1𝑢𝑛 … … . .  . We prove the result by induction on  𝑉 =p(say). 

 Step i: G is Hamiltonian laceable for p=6. 

Step ii : For p = k, the following are the possible cases and  there is a u-v Hamiltonian path for any pair of 

vertices at odd distance. 

   

Fig.11. 

Step iii: using step (ii) the path can be extended to a graph G for   n≥ 3. 

Hence the theorem. 
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Theorem 4: The graph Kn⋁Cn(n ≥ 3) is Hamiltonian laceable . 

 Proof: Let G = Kn⋁Cn  ( n≥ 3). The graph G (V,E) has a  

Vertex 

Set  

V= {𝑢1, 𝑢2, … 𝑢𝑛 ,𝑣1 , 𝑣2 , … . 𝑣𝑛 , 𝑤1 , 𝑤2 , … . 𝑤𝑛 , … … . 𝑛1, 𝑛2, … . 𝑛𝑛} 

 And an 

Edgeset E=  𝑢1𝑣2 ,  𝑢2𝑣3  ,  𝑢3𝑣4 , … .  𝑢1𝑣𝑛  ,  𝑣1𝑢𝑛 … … (𝑛1𝑛2)(𝑛2𝑛3). .   

We prove the result by induction on  𝑉 =p(say). 

Step i: G is Hamiltonian laceable for p=9. 

Step ii : For p = k where k is any arbitrary constant, following are the possible cases and  there is a u-v 

Hamiltonian path for any pair of vertices u and v.  

Case I: For odd n 

 

        

Fig.12. 

Case II: For an even n. 

             

               Fig.13. 

 

Step iii: using step (ii) the path can be extended to a graph G for   n≥ 3. 

Hence the theorem. 

Theorem 5: The graph  K2⋁Cn( n≥ 3) is Hamiltonian laceable. 

Proof: Let G = K2 ⋁ C, with vertex set  V={ 𝑢1, 𝑢2, … . 𝑢𝑛 , 𝑣1 , 𝑣2 , … . 𝑣𝑛 } and an edge set 

E=  𝑢1𝑣2 ,  𝑢2𝑣3  ,  𝑢3𝑣4 , … .  𝑢1𝑣𝑛  ,  𝑣1𝑢𝑛 … … . .  . We prove the result by induction on  𝑉 =p(say).  

Step i: G is Hamiltonian laceable for p=6. 

Step ii : For p = k where k is any arbitrary constant, following are the possible cases and  there is a u-v 

Hamiltonian path for any pair of vertices u and v. 

              

   Fig.14. 

Step iii: using step (ii) the path can be extended to a graph G for  n≥ 3. 

Hence the thorem. 
 

Theorem 6: The graph  Kn⋁Cn(𝑛 ≥ 3) is Hamiltonian laceable . 

Proof: Consider a graph G =Kn ⋁ Cn (𝑛 ≥ 3 ) , here the graph G (V,E) has a vertex set V= 

{𝑢1, 𝑢2, … 𝑢𝑛 ,𝑣1 , 𝑣2 , … . 𝑣𝑛 , 𝑤1 , 𝑤2 , … . 𝑤𝑛 , … … . 𝑛1, 𝑛2, … . 𝑛𝑛}  and an edge set 

E=  𝑢1𝑣2 ,  𝑢2𝑣3  ,  𝑢3𝑣4 , … .  𝑢1𝑣𝑛  ,  𝑣1𝑢𝑛 … … (𝑛1𝑛2)(𝑛2𝑛3). .   
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We prove the result by induction on  𝑉 =p(say). 

Step i: G is Hamiltonian laceable for p=9.  

Step ii : For p = k where k is any arbitrary constant, following are the possible cases and  there is a u-v 

Hamiltonian path for any pair of vertices. 

Case I: For odd n 

            
                          Fig.15. 

 

Case II: For even n 

      

Fig.16. 

          Step iii: using step (ii) the path can be extended to a graph G for   n≥ 3. 

Hence the thorem. 

 

CONCLUSIONS: 

In this paper we have proved that the graph K2∧Cn( n ≥ 3) is Hamiltonian-k- laceable, where 1 ≤ k ≤ diamG 

with )(k
 
=1,2 for odd n. The graph  K2∧Cn( n ≥ 4) is Hamiltonian laceable for even n with ⋋(𝑑)= 2 for 

.1 Gdiamd  The graphs  K2∨Cn( n≥ 3), Kn∨Cn( n≥ 3), K2⋁Cn( n≥ 3) and Kn⋁Cn( n≥ 3) are Hamiltonian 

laceable.  
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