Representation Theorem On Γ-Hilbert Space

Amit Ghosh ${ }^{1}$, Ashoke Das ${ }^{2}$, and Towhid E Aman ${ }^{3}$
${ }^{1}$ Department of Mathematics, Raiganj University,West Bengal,India
${ }^{2}$ Department of Mathematics, Raiganj University,West Bengal,India
${ }^{3}$ Department of Mathematics, Gangarampur College,West Bengal,India

Abstract

In this paper we discuss about the simple properties of Γ-Hilbert space, introduced by D.K.Bhattacharya and T.E.Aman in their paper Γ-Hilbert Space and linear Quadratic Control problem in 2003. We have defined the orthogonality in Γ-Hilbert space and discuss about the closest point property,Unique Decomposition Theorem following the defined orthogonality on that space. Further we discuss the representation of any bounded linear functionals on Γ-Hilbert space in terms of Γ-inner product in that space.

Key word : Hilbert space, Γ-Hilbert Space, Unique Decomposition Theorem, Riesz Representation Theorem.

1 INTRODUCTION:

The definition of Γ-Hilbert space was introduced by Bhattacharya D.K and T.E.Aman in their paper " Γ - Hilbert space and linear quadratic control problem" in 2003[1].But we found no litarature on Γ-Hilbert Space after that. So it is very essential to develop the study on Γ-Hilbert Space, mainly Orthogonality and representation of any bounded linear functional on Γ-Hilbert Space .In his paper we have defined orthogonality of elements of Γ-Hilbert Space and following this definition we have developed the Closest Point Property ([2],[3],[4]) , Unique Decomposition Theorem ([2],[3],[4]) and Representation Theorem ([2],[3],[4]) in Γ-Hilbert Space .

2 Г-Hilbert space[1]:

Definition Let E, Γ be two linear space over the field R. A mapping $\langle., .,\rangle:. \mathrm{E} \times \Gamma \mathrm{x}$ $\mathrm{E} \longrightarrow \mathrm{R}$ is called a Γ inner product on E if
(i) $\langle.$, ,. . \rangle is linear in each variable.
(ii) $\langle u, \gamma, v\rangle=\langle v, \gamma, u\rangle \forall \mathrm{u}, \mathrm{v}$ belongs to E and γ belongs to Γ.
(iii) $\langle u, \gamma, u\rangle>0, \forall \gamma \neq 0$ and $\mathrm{u} \neq 0$.
$[(\mathrm{E}, \Gamma),\langle., .,\rangle$.$] is called a \Gamma$-inner product space over R .
A complete Γ-inner product space is called Γ-Hilbert space.
It follows that for each $\gamma \in \Gamma,+\sqrt{ }\langle u, \gamma, u\rangle$ gives the properties of the norm for $\mathrm{u} \in$ E. It is called the γ norm of u and is denoted by $\|u\|_{\gamma}$

We observe that $\inf \{\langle u, \gamma, u\rangle: \gamma \in \Gamma\}$ satisfies all conditions of a norm, we called it the Γ-norm and is denoted by
$\|u\|_{\Gamma}=\inf \{\langle u, \gamma, u\rangle: \gamma \in \Gamma\}$.

3 Orthogonality of Γ-Hilbert Spaces

3.1 Definition :(γ-Orthogonal)

Let L be a non-empty subset of a Γ - Hilbert space H_{Γ}. Two elements x and y of H_{Γ} are said to be γ-orthogonal if their inner product $\langle x, \gamma, y\rangle=0$. In symbol, we write $x \perp_{\gamma} y$.If x is γ-orthogonal to every element of L then we say that x is γ-orthogonal to L and in symbol we write $x \perp_{\gamma} L$.

3.2 Definition:(Г-Orthogonal)

Let L be a non-empty subset of a Γ - Hilbert space H_{Γ}. Two elements x and y of H_{Γ} are said to be Γ-orthogonal or simply orthogonal if $\langle x, \gamma, y\rangle=0$ for all $\gamma \in \Gamma$. In symbol, we write $x \perp_{\Gamma} y$.If x is Γ-orthogonal to every element of L then we say that x is Γ-orthogonal to L and in symbol we write $x \perp_{\Gamma} L$.

3.3 Theorem:

If x and y are two γ-orthogonal elements of H_{Γ}, then
$\|x+y\|_{\gamma}^{2}=\|x\|_{\gamma}^{2}+\|y\|_{\gamma}^{2}$
and
$\|x-y\|_{\gamma}^{2}=\|x\|_{\gamma}^{2}+\|y\|_{\gamma}^{2}$.
Proof: we have
$\|x+y\|_{\gamma}^{2}$
$=\langle x+y, \gamma, x+y\rangle$
$=\langle x, \gamma, x\rangle+\langle x, \gamma, y\rangle+\langle y, \gamma, x\rangle+\langle y, \gamma, y\rangle$; by (i) of 2 .
$=\langle x, \gamma, x\rangle+\langle y, \gamma, y\rangle ;$ as $x \perp_{\gamma} y,\langle x, \gamma, y\rangle=0$
$=\|x\|_{\gamma}^{2}+\|y\|_{\gamma}^{2}$
and
$\|x-y\|_{\gamma}^{2}$
$=\langle x-y, \gamma, x-y\rangle$
$=\langle x, \gamma, x\rangle-\langle x, \gamma, y\rangle-\langle y, \gamma, x\rangle+\langle y, \gamma, y\rangle$
$=\langle x, \gamma, x\rangle+\langle y, \gamma, y\rangle$
$=\|x\|_{\gamma}^{2}+\|y\|_{\gamma}^{2}$

3.4 Corollary

$\|-x\|_{\gamma}=\|x\|_{\gamma}$
Proof:
As $0, x \in H_{\Gamma},\|0-x\|_{\gamma}^{2}=\|0\|_{\gamma}^{2}+\|x\|_{\gamma}^{2}=\|x\|_{\gamma}^{2}$.

3.5 Theorem:

If x and y are two Γ-orthogonal elements of H_{Γ}, then
$\|x+y\|_{\Gamma}^{2}=\|x\|_{\Gamma}^{2}+\|y\|_{\Gamma}^{2}$
and
$\|x-y\|_{\Gamma}^{2}=\|x\|_{\Gamma}^{2}+\|y\|_{\Gamma}^{2}$.
Proof: we have
$\|x+y\|_{\Gamma}^{2}$
$=\inf \{\langle x+y, \gamma, x+y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x\rangle+\langle x, \gamma, y\rangle+\langle y, \gamma, x\rangle+\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x\rangle+\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x:\rangle: \gamma \in \Gamma\}+\inf \{\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\|x\|_{\Gamma}^{2}+\|y\|_{\Gamma}^{2}$
and
$\|x-y\|_{\Gamma}^{2}$
$=\inf \{\langle x-y, \gamma, x-y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x\rangle-\langle x, \gamma, y\rangle-\langle y, \gamma, x\rangle+\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x\rangle+\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle x, \gamma, x\rangle: \gamma \in \Gamma\}+\inf \{\langle y, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\|x\|_{\Gamma}^{2}+\|y\|_{\Gamma}^{2}$.

3.6 Defination:

Let $S \subset H_{\Gamma}$. Then the set of all elements of H_{Γ}, γ-orthogonal to S is called the γ orthogonal complement of S and is denoted by $S^{\perp_{\gamma}}$.
The γ - orthogonal compliment of $S^{\perp_{\gamma}}$ is denoted by $S^{\perp_{\gamma} \perp_{\gamma}}$.

3.7 Theorem:

a) $\{\theta\}^{\perp_{\gamma}}=H_{\Gamma}$
and $H_{\Gamma}^{\perp \gamma}=\{\theta\}$
b) if $S \subset H_{\Gamma}$, then $S^{\perp_{\gamma}}$ is a closed subspace of of H_{Γ}.

Proof:
a)

As $\langle\theta, \gamma, x\rangle=0$ for all $\mathrm{x} \in H_{\Gamma}$ and $\gamma \in \Gamma$.
Therefore $\theta \perp_{\gamma} x$; for all $\mathrm{x} \in H_{\Gamma}$ and $\gamma \in \Gamma$. Hence $\{\theta\}^{\perp_{\gamma}}=H_{\Gamma}$.
Again if $x \perp_{\gamma} y$ for every $\mathrm{y} \in H_{\Gamma}$ and $\gamma \in \Gamma$, then $\mathrm{x}=\theta$ thus $H_{\Gamma}^{\perp_{\gamma}}=\{\theta\}$.
(b)

Let $\mathrm{x}, \mathrm{y} \in S^{\perp_{\gamma}}$, then for every $\mathrm{z} \in \mathrm{S}$ and $\gamma \in \Gamma,\langle x, \gamma, z\rangle=0$; and $\langle y, \gamma, z\rangle=0$. . Now for $\alpha, \beta \in \mathrm{F}$
$\langle\alpha x+\beta y, \gamma, z\rangle$
$=\langle\alpha x, \gamma, z\rangle+\langle\beta y, \gamma, z\rangle$
$=\alpha\langle x, \gamma, z\rangle+\beta\langle y, \gamma, z\rangle$
$=0$.
Thus $\alpha \mathrm{x}+\beta \mathrm{y} \in S^{\perp_{\gamma}}$. Hence $S^{\perp_{\gamma}}$ is a subspace of H_{Γ}. Next we prove that $S^{\perp_{\gamma}}$ is closed.
Let $\left\{x_{n}\right\} \in S^{\perp_{\gamma}}$ and $\mathrm{x}_{n} \longrightarrow \mathrm{x}$ for some $\mathrm{x} \in H_{\Gamma}$. For continuity of the γ-inner product, we have
$\langle x, \gamma, y\rangle$
$=\left\langle\lim _{n \rightarrow \infty} x_{n}, \gamma, y\right\rangle$
$=\lim _{n \rightarrow \infty}\left\langle x_{n}, \gamma, y\right\rangle$
$=0$.
For every $\mathrm{y} \in \mathrm{S}$. This shows that $\mathrm{x} \in S^{\perp_{\gamma}}$, and thus $S^{\perp_{\gamma}}$ is closed.

3.8 Defination:

Let $S \subset H_{\Gamma}$. Then the set of all elements of H_{Γ}, Γ-orthogonal to S is called the Γ orthogonal complement of S and is denoted by $S^{\perp_{\Gamma}}$.
The Γ - orthogonal compliment of $S^{\perp_{\Gamma}}$ is denoted by $S^{\perp_{\Gamma} \perp_{\Gamma}}$.

3.9 Theorem:

a) $\{\theta\}^{\perp_{\Gamma}}=H_{\Gamma}$
and $H_{\Gamma}^{\perp_{\Gamma}}=\{\theta\}$
b) if $S \subset H_{\Gamma}$, then $S^{\perp_{\Gamma}}$ is a closed subspace of of H_{Γ}

Proof: (a) As $\langle\theta, \gamma, x\rangle=0$ for all $\mathbf{x} \in H_{\Gamma}$ and $\gamma \in \Gamma$.
Therefore $\theta \perp_{\Gamma} x$; for all $\mathrm{x} \in H_{\Gamma}$. Hence $\{\theta\}^{\perp_{\Gamma}}=H_{\Gamma}$.
Again if $x \perp_{\Gamma} y$ for every $\mathrm{y} \in H_{\Gamma}$, then $\mathrm{x}=\theta$ thus $H_{\Gamma}^{\perp_{\Gamma}}=\{\theta\}$.
(b) Let $\mathrm{x}, \mathrm{y} \in S^{\perp_{\Gamma}}$, then for every $\mathrm{z} \in \mathrm{S} \inf \{\langle x, \gamma, z\rangle: \gamma \in \Gamma\}=0$; and $\inf \{\langle y, \gamma, z\rangle: \gamma$ $\in \Gamma\}=0$.. Now for $\alpha, \beta \in \mathrm{F}$
$\inf \{\langle\alpha x+\beta y, \gamma, z\rangle: \gamma \in \Gamma\}$
$=\inf \{\langle\alpha x, \gamma, z\rangle: \gamma \in \Gamma\}+\inf \{\langle\beta y, \gamma, z\rangle: \gamma \in \Gamma\}$
$=\alpha \inf \{\langle x, \gamma, z\rangle: \gamma \in \Gamma\}+\beta \inf \{\langle y, \gamma, z\rangle: \gamma \in \Gamma\}$
$=0$.
Thus $\alpha \mathrm{x}+\beta \mathrm{y} \in S^{\perp_{\Gamma}}$. Hence $S^{\perp_{\Gamma}}$ is a subspace of H_{Γ}. Next we prove that $S^{\perp_{\Gamma}}$ is closed.
Let $\left\{x_{n}\right\} \in S^{\perp_{\Gamma}}$ and $\mathrm{x}_{n} \longrightarrow \mathrm{x}$ for some $\mathrm{x} \in H_{\Gamma}$. For continuity of the Γ-inner product, we have
$\inf \{\langle x, \gamma, y\rangle: \gamma \in \Gamma\}$
$=\inf \left\{\left\langle\lim _{n \rightarrow \infty} x_{n}, \gamma, y\right\rangle: \gamma \in \Gamma\right\}$
$=\lim _{n \rightarrow \infty} \inf \left\{\left\langle x_{n}, \gamma, y\right\rangle: \gamma \in \Gamma\right\}$
$=0$.
For every $\mathrm{y} \in \mathrm{S}$. This shows that $\mathrm{x} \in S^{\perp_{\Gamma}}$, and thus $S^{\perp_{\Gamma}}$ is closed.

3.10 Theorem:(The closest point property)

Let S be a closed convex subset of a Γ-Hilbert space H_{Γ}. For every point $\mathrm{x} \in H_{\Gamma}$ there exist a unique point $y \in S$ such that
$\|x-y\|_{\Gamma}=\inf _{z \in S}\|x-z\|_{\Gamma}$.
Proof: As $\|x\|_{\Gamma} \geq 0, \forall \mathrm{x} \in \mathrm{H}_{\Gamma},\left\{\|x-z\|_{\Gamma}: \mathrm{z} \in \mathrm{S}\right\}$ is bounded below by 0 ; and hence $\inf _{z \in S}\|x-z\|_{\Gamma}$ is exist.
Let $\left\{y_{n}\right\}$ be a sequence in S such that
$\lim _{n \rightarrow \infty}\left\|x-y_{n}\right\|_{\Gamma}=\inf _{z \in S}\|x-z\|_{\Gamma}$.
Let $d=\inf _{z \in S}\|x-z\|_{\Gamma}$. Since S is convex $\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right) \in \mathrm{S}$, we have
$\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma} \geq \mathrm{d}$ for all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$.
Moreover, by the parallelogram law
$\left\|\left(\mathrm{y}_{m}-y_{n}\right)\right\|_{\Gamma}^{2}$
$=4\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma}^{2}+\left\|\left(\mathrm{y}_{m}-y_{n}\right)\right\|_{\Gamma}^{2}-4\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma}^{2}$
$=\left\|\left(\mathrm{x}-\mathrm{y}_{m}\right)+\left(x-y_{n}\right)\right\|_{\Gamma}^{2}+\left\|\left(\mathrm{x}-\mathrm{y}_{m}\right)-\left(x-y_{n}\right)\right\|_{\Gamma}^{2}-4\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma}^{2}$
$=2\left(\left\|\mathrm{x}-\mathrm{y}_{m}\right\|_{\Gamma}^{2}+\left\|\mathrm{x}-\mathrm{y}_{n}\right\|_{\Gamma}^{2}\right)-4\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma}^{2}$
Since
$2\left(\left\|\mathrm{x}-\mathrm{y}_{m}\right\|_{\Gamma}^{2}+\left\|\mathrm{x}-\mathrm{y}_{n}\right\|_{\Gamma}^{2}\right) \longrightarrow 4 d^{2}$, as $\mathrm{m}, \mathrm{n} \longrightarrow \infty$,
and
$\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}_{m}+y_{n}\right)\right\|_{\Gamma}^{2} \geq d^{2}$,
we have $\left\|\left(\mathrm{y}_{m}-y_{n}\right)\right\|_{\Gamma}^{2} \longrightarrow 0$, as $\mathrm{m}, \mathrm{n} \longrightarrow \infty$. Thus $\left\{y_{n}\right\}$ is a cauchy sequence . Since H_{Γ} is complete and S is closed, the $\operatorname{limit}^{\lim }{ }_{n} \longrightarrow \infty \mathrm{y}_{n}=\mathrm{y}$ exist and $\mathrm{y} \in \mathrm{S}$. From the continuity of the Γ-norm, we obtain
$\|x-y\|_{\Gamma}=\left\|x-\lim _{n \rightarrow \infty} y_{n}\right\|_{\Gamma}=\left\|x-y_{n}\right\|_{\Gamma}=\mathrm{d}=\inf _{z \in S}\|x-z\|_{\Gamma}$.
We have proved that there exist point in S satisfying the required condition.It remains to
prove the uniqueness.suppose that there is another point y_{1} in S satisfying the required condition. Then since $\frac{1}{2}\left(\mathrm{y}+y_{1}\right) \in \mathrm{S}$, we have

$$
\left\|\mathrm{y}-y_{1}\right\|_{\Gamma}^{2}=4 \mathrm{~d}^{2}-4\left\|\mathrm{x}-\frac{1}{2}\left(\mathrm{y}+\mathrm{y}_{1}\right)\right\|_{\Gamma}^{2} \leq 0
$$

This can only happen if $\mathrm{y}=y_{1}$.

3.11 Unique Decomposition Theorem :

If H_{1} is a closed subspace of a Γ-Hilbert space H_{Γ}, then every element $\mathrm{x} \in H_{\Gamma}$ has a unique decomposition in the form $\mathrm{x}=\mathrm{y}+\mathrm{z}$ where $\mathrm{y} \in H_{1}$ and $\mathrm{z} \in H_{1}^{\perp_{\Gamma}}$

Proof:
If $\mathrm{x} \in H_{1}$, then the obvious decomposition is $\mathrm{x}=\mathrm{x}+0$.suppose now that $\mathrm{x} \notin H_{1}$. Let y be the unique point of H_{1} satisfying $\|x-y\|_{\Gamma}=\inf _{w \in H_{1}}\|x-w\|_{\Gamma}$, as in closest point Theorem of Γ-Hilbert space. We will show that $\mathrm{x}=\mathrm{y}+(\mathrm{x}-\mathrm{y})$ is the desired decomposition. If $\mathrm{w} \in H_{1}$ and $\lambda>0$, then $\mathrm{y}+\lambda \mathrm{w} \in H_{1}$ and thus
$\|x-y\|_{\Gamma}^{2}$
$\leq\|\mathrm{x}-\mathrm{y}-\lambda \mathrm{w}\|_{\Gamma}^{2}$
$=\inf \{\langle x-y-\lambda w, \gamma, x-y-\lambda w\rangle: \gamma \in \Gamma\}$
$=\inf \left\{\langle x-y, \gamma, x-y\rangle+2 \lambda\langle x-y, \gamma,-w\rangle+\lambda^{2}\langle w, \gamma, w\rangle: \gamma \in \Gamma\right\}$
$=\|x-y\|_{\Gamma}^{2}+\lambda^{2}\|\mathrm{w}\|_{\Gamma}^{2}+2 \lambda \inf \{\langle x-y, \gamma,-w\rangle: \gamma \in \Gamma\}$.
Hence
$\lambda^{2}\|\mathrm{w}\|_{\Gamma}^{2}+2 \lambda \inf \{\langle x-y, \gamma,-w\rangle: \gamma \in \Gamma\} \geq 0$.
Now dividing λ and leeting $\lambda \longrightarrow 0$ we get
$\inf \{\langle x-y, \gamma, w\rangle: \gamma \in \Gamma\} \leq 0$
Since $\mathrm{w} \in \mathrm{H}_{1}$ implies $-\mathrm{w} \in H_{1}$, thus the above inequality is also hold with -w instead of w .
i.e $\inf \{\langle x-y, \gamma, w\rangle: \gamma \in \Gamma\} \geq 0$.

Therefore $\inf \{\langle x-y, \gamma, w\rangle: \gamma \in \Gamma\}=0$;
Which means x-y $\in H_{1}^{\perp} \Gamma$.
To prove the uniqueness note that if $\mathrm{x}=\mathrm{y}_{1}+z_{1}, y_{1} \in H_{1}$ and $\mathrm{z}_{1} \in H_{1}^{\perp_{\Gamma}}$, then $\mathrm{y}-\mathrm{y}_{1} \in H_{1}$ and $\mathrm{z}-\mathrm{z}_{1} \in H_{1}^{\perp_{\Gamma}}$. Since $\mathrm{y}-\mathrm{y}_{1}=\mathrm{z}_{1}-\mathrm{z}$, we must have $\mathrm{y}-\mathrm{y}_{1}=z_{1}-z=0$

3.12 Theorem:

If S is a closed subspace of a Γ-Hilbert space H_{Γ}, then $S^{\perp_{\Gamma} \perp_{\Gamma}}=\mathrm{S}$.

Proof:
If $\mathrm{x} \in \mathrm{S}$, then for every $\mathrm{z} \in S^{\perp_{\Gamma}}$, we have $\inf \{\langle x, \gamma, z\rangle: \gamma \in \Gamma\}=0$, which means $\mathrm{x} \in$ $S^{\perp_{\Gamma} \perp_{\Gamma}}$. Thus $S \subset S^{\perp_{\Gamma} \perp_{\Gamma}}$. To prove $S^{\perp_{\Gamma} \perp_{\Gamma}} \subset S$ consider an $\mathrm{x} \in S^{\perp_{\Gamma} \perp_{\Gamma}}$. Since S is closed, by unique decomposition theorem, $x=y+z$ for some $y \in S$ and $z \in S^{\perp_{\Gamma}}$. In view of the inclusion $\mathrm{S} \subset S^{\perp_{\Gamma} \perp_{\Gamma}}$, we have $\mathrm{y} \in S^{\perp_{\Gamma} \perp_{\Gamma}}$ and thus $\mathrm{z}=\mathrm{x}$-y $\in S^{\perp_{\Gamma} \perp_{\Gamma}}$, because
$S^{\perp_{\Gamma} \perp_{\Gamma}}$ is a vector space. but $\mathrm{z} \in S^{\perp_{\Gamma}}$, so we must have $\mathrm{z}=0$, which means $\mathrm{x}=\mathrm{y} \in$ S. this shows that $S^{\perp_{\Gamma} \perp_{\Gamma}} \subset$ S. which complites the proof.

3.13 Theorem

:
If f is a non trivial bounded linear functional on a Γ-Hilbert space H_{Γ} then $\operatorname{dim\mathcal {N}}(f)^{\perp_{\Gamma}}$ $=1$ where $\mathcal{N}(f)$ is the null space of f.

Proof:
Since f is continuous, $\mathcal{N}(\mathrm{f})$ is a closed proper subspace of H_{Γ} and thus $\mathcal{N}(f)^{\perp_{\Gamma}}$ is not empty. let $x_{1}, x_{2} \in \mathcal{N}(f)^{\perp_{\Gamma}}$ be nonzero vectors. since $f\left(x_{1}\right) \neq 0$ and $f\left(x_{2}\right) \neq 0$ there exist a scalar $\mathrm{a} \neq 0$ suh that $f\left(x_{1}\right)+\mathrm{a} f\left(x_{1}\right)=f\left(x_{1}+a x_{2}\right)=0$. thus, $x_{1}+a x_{2} \in \mathcal{N}(\mathrm{f})$. On the other hand since $\mathcal{N}(f)^{\perp_{\Gamma}}$ is a vector space and $x_{1}, x_{2} \in \mathcal{N}(f)^{\perp_{\Gamma}}$, we must have $x_{1}+a x_{2} \in \mathcal{N}(f)^{\perp_{\Gamma}}$. This is only possible if $x_{1}+a x_{2}=0$, which shows that x_{1} and x_{2} are linearly dependent, because $\mathrm{a} \neq 0$. Hence $\operatorname{dim\mathcal {N}}(f)^{\perp_{\Gamma}}=1$,

3.14 Representation theorem:

Let f be a bounded linear functional on a Γ-Hilbert space H_{Γ}. Then there exist exactly one $x_{0} \in H_{\Gamma}$ such that $\mathrm{f}(\mathrm{x})=\inf \left\{\left\langle x, \gamma, x_{0}\right\rangle: \gamma \in \Gamma\right.$ for all $\mathrm{x} \in H_{\Gamma}$. moreover, we have $\|f\|_{\Gamma}=\left\|x_{0}\right\|_{\Gamma}$.

Proof:
If $\mathrm{f}(\mathrm{x})=0$ for all $\mathrm{x} \in H_{\Gamma}$, then $x_{0}=0$ has the desired properties. Assume now that f is a nontrivial functional. Then $\operatorname{dim\mathcal {N}}(f)^{\perp_{\Gamma}}=1$, by Theorem 3.13. Let z_{0} be a unit vector in $\mathcal{N}(f)^{\perp_{\Gamma}}$. Then, for every $\mathrm{x} \in H_{\Gamma}$, we have
$\mathrm{x}=\mathrm{x}-\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0}+\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0}$.
Since $\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0} \in \mathcal{N}(f)^{\perp_{\Gamma}}$, we must have $\mathrm{x}-\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0} \in$ $\mathcal{N}(\mathrm{f})$, which means that
$\mathrm{f}\left(\mathrm{x}-\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0}\right)=0$.
Consequently,
$\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} z_{0}\right)=\inf \left\{\left\langle x, \gamma, z_{0}\right\rangle: \gamma \in \Gamma\right\} f\left(z_{0}\right)=\inf \left\{\left\langle x, \gamma, f\left(z_{0}\right) z_{0}\right\rangle\right.$ $: \gamma \in \Gamma\}$.
Therefore if we put $x_{0}=f\left(z_{0}\right) z_{0}$,
then $\mathrm{f}(\mathrm{x})=\inf \left\{\left\langle x, \gamma, x_{0}\right\rangle: \gamma \in \Gamma\right\}$ for all $\mathrm{x} \in H_{\Gamma}$.
Suppose now there is another point x_{1} such that $\mathrm{f}(\mathrm{x})=\inf \left\{\left\langle x, \gamma, x_{1}\right\rangle: \gamma \in \Gamma\right\}$ for all $\mathrm{x} \in$ H_{Γ}. Then $\inf \left\{\left\langle x, \gamma, x_{0}-x_{1}\right\rangle: \gamma \in \Gamma\right\}=0$ for all $\mathrm{x} \in H_{\Gamma}$, and thus $\left\langle x_{0}-x_{1}, \gamma, x_{0}-x_{1}\right\rangle$ $=0$. This is only posssible if $x_{0}=x_{1}$.
Finally, we have
$\|f\|_{\Gamma}$
$=\sup _{\|x\|_{\Gamma}=1}|f(x)|$

```
\(=\sup _{\|x\|_{\Gamma}=1}\left|\inf \left\{\left\langle x, \gamma \cdot x_{0}\right\rangle: \gamma \in \Gamma\right\}\right|\)
\(\leq \sup _{\|x\|_{\Gamma}=1}\left(\|x\|_{\Gamma}\left\|x_{0}\right\|_{\Gamma}\right)\)
\(=\left\|x_{0}\right\|_{\Gamma}\).
```

and
$\left\|x_{0}\right\|_{\Gamma}^{2}=\inf \left\{\left\langle x_{0}, \gamma, x_{0}\right\rangle: \gamma \in \Gamma\right\}=\left|f\left(x_{0}\right)\right| \leq\|f\|_{\Gamma}\left\|x_{0}\right\|_{\Gamma}$.
Therefore $\|f\|_{\Gamma}=\left\|x_{0}\right\|_{\Gamma}$.
REFERENCES [1] T.E.Aman and D.K.Bhattacharya: Γ-Hilbert space and linear quadratic control problem. Rev. Acad. Canr. Cienc; xv (Nums. 1-2), 107-114 (2003).
[2] L.Debnath , P.Mikusiñski, 1980,Introduction to Hilbert Space with applications,Academic Press, INC,New York, Toronto.
[3] B.K.Lahiri, 1982. Elements Of Functional Analysis. The World Press Private Limited, Kolkata.
[4] E.Kreyszig,1978.Introductory Functional Analysis with applications, John Wiley and sons.

