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Abstract

In this paper we discuss about the simple properties of I'-Hilbert space,introduced
by D.K.Bhattacharya and T.E.Aman in their paper I'-Hilbert Space and linear
Quadratic Control problem in 2003. We have defined the orthogonality in I'-Hilbert
space and discuss about the closest point property,Unique Decomposition Theorem
following the defined orthogonality on that space . Further we discuss the repre-
sentation of any bounded linear functionals on I'-Hilbert space in terms of I'-inner
product in that space.
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1 INTRODUCTION:

The definition of I'-Hilbert space was introduced by Bhattacharya D.K and T.E.Aman
in their paper ” T'- Hilbert space and linear quadratic control problem” in 2003[1].But
we found no litarature on I'-Hilbert Space after that. So it is very essential to develop
the study on I'-Hilbert Space, mainly Orthogonality and representation of any bounded
linear functional on I'-Hilbert Space .In his paper we have defined orthogonality of el-
ements of I'-Hilbert Space and following this definition we have developed the Closest
Point Property ([2],[3],[4]) , Unique Decomposition Theorem ([2],[3],[4]) and Represen-
tation Theorem ([2],[3],[4]) in I-Hilbert Space .

2 [-Hilbert space[l]:

Definition Let E, I" be two linear space over the field R. A mapping (.,.,.) : ExT' x
E — R is called a I" inner product on E if
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(i) {.,.,.) is linear in each variable.
(ii)(u, v, v)= (v,v,u) ¥ u,v belongs to E and v belongs to I'.
(iil)(u,y,u) > 0,Vy #0and u # 0 .

[(EJ]),(.,.,.)] is called a I'-inner product space over R .
A complete I'-inner product space is called I'-Hilbert space.

It follows that for each v € T, +\/<u,'y, u) gives the properties of the norm for ue
E. It is called the v norm of u and is denoted by ||u]|,

We observe that inf{(u,~,u)y € I'} satisfies all conditions of a norm, we called it the
I'-norm and is denoted by

Jullr = inf{{u,v,u): v € T} .

3 Orthogonality of I'-Hilbert Spaces

3.1 Definition :(7-Orthogonal)

Let L be a non-empty subset of a I' - Hilbert space Hr.Two elements x and y of Hp
are said to be 7-orthogonal if their inner product (z,7,y) = 0. In symbol, we write
x L y.If x is y-orthogonal to every element of L then we say that x is v-orthogonal to
L and in symbol we write x L, L.

3.2 Definition:(I'-Orthogonal)

Let L be a non-empty subset of a I' - Hilbert space Hr.Two elements x and y of Hr are
said to be I'-orthogonal or simply orthogonal if (z,~,y) = 0 for all v € T". In symbol, we
write  Lp y.If x is [*-orthogonal to every element of L then we say that x is I'-orthogonal
to L and in symbol we write x Lp L.

3.3 Theorem:

If x and y are two ~y-orthogonal elements of Hr, then
Iz +y 3=l =3+ 1yl3

and

le =y 3=l 3+yl -

Proof: we have

lz+yl?

= (z,v,2) + (z,7,9) + (¥,7.2) + (y.7,y) ; by (i) of 2.
= (z,v,2) + (y,7,y) sasx Lyy, (z,7v,y)=0

=z Z+1yl?

and

z—yl?
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:<:C—y,’y,:c—y>

= (z,7,7) - (,7,9) - ¥V + (¥7Y)
= (z,77) + (¥,7,9)

=lz|Z+lyl?

3.4 Corollary

| = [l =[l 2 [ly
Proof :
As 0, € Hp, [|0—= [3=] 0[5 + [l = [3=] = II3 -

3.5 Theorem:

If x and y are two I'-orthogonal elements of Hr, then

lz+y 2=l 2+ yl?
and

I —ylE=ll=If+1ylf.

Proof: we have

|z +y i}

=inf{ (z+y,v,x+y): vy}

= inf{ (z,v,2) + (z,7y) + v,7,2) + (y,7,y) : v €T}
= inf{ (z,7,2) + (¥, 7,y v €T}

=inf{ (x,y,xz:) : vy €T } +inf{ (y,7,y) vy €'}
=z + 1yl

and

|z—ylt

=inf{ (z —y,v,2 -y yeTl}

= inf{ (z,7,2) - (.79 - ¥,7.2) + (¥,7,y) v}
= inf{ (z,7,2) +{y,7,y): v €T}

= inf{ (z,7,z) ry € I'} +inf{ (y,7,y): y €T}

=zl +ylf-

3.6 Defination:

Let S C Hr. Then the set of all elements of Hr, y-orthogonal to S is called the ~-

orthogonal complement of S and is denoted by S+ .

The 7- orthogonal compliment of S+ is denoted by S+v1+

3.7 Theorem:

a){0} = Hr
and HFLW = {6}
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b) if S C Hr, then S+ is a closed subspace of of Hy .

Proof:
a)
As (,v,xz) =0 for all x¢ Hr and y € T".
Therefore 6 L, x ; for all x€ Hp and v € I' . Hence {6} = Hr.
Again if 1 y for every y € Hp and v € I, then x= 6 thus HFL” = {6}.
(b)
Let x,y € S, then for every z € S and v € T ,(x,7,2) = 0; and (y,~,2) =0. . Now
fora ,p € F
(ax + By,7,2)
= (ax,7,2) + (BY, 7, 2)
= (z,7,2) + B (y,7:2)
=0.
Thus ax + By € S+7. Hence S is a subspace of Hp. Next we prove that S+ is closed.
Let {z,} € S*» and x,— x for some x € Hr. For continuity of the y-inner product,
we have
(z,7,9)
= ( lim z,,7,y
n—oo
= 7}1_{{;0(%, Y, y>
=0.
For every y € S. This shows that x € S | and thus S is closed.

3.8 Defination:

Let S C Hr. Then the set of all elements of Hr, I'-orthogonal to S is called the T'-
orthogonal complement of S and is denoted by S+T .
The I'- orthogonal compliment of S-T is denoted by S+r-T,

3.9 Theorem:

a){H}LF = Hp
and Hy" = {6}
b) if S C Hr, then S1T is a closed subspace of of Hp

Proof: (a) As (0,v,z) =0 for all x¢ Hpr and y € T".
Therefore @ Lp z ; for all x€ Hr . Hence {#}1T = Hp.
Again if L y for every y € Hr , then x= 6 thus HFLF = {6}.

(b) Let x,y € S*T | then for every z € S inf{(x,v,2) : ¥ € ' } = 0; and inf{{y,7, 2) : 7
€I' } =0.. Now for a ,5 € F

inf{(ax + By,v,2): ye '}

= inf{(ax,v,2) vy € ' } + inf{(By,v,2) : vy €T}
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= ainf{(z,7,2) : y € } + Binf{{y,7,2) : y €T}

=0.

Thus ax + By € ST, Hence ST is a subspace of Hp. Next we prove that S*T is closed.
Let {z,} € ST and x,— x for some x € Hr. For continuity of the I'-inner product,
we have

inf{(z,v,y): v €}
= inf{< lim a:n,'y,y> cyel }
n—oo
= lim inf{{(z,,v,y): vy}
. 8—)00
For every y € S. This shows that x € ST | and thus S*T is closed.

3.10 Theorem:(The closest point property)
Let S be a closed convex subset of a I'-Hilbert space Hr . For every point x € Hr there
exist a unique point y € S such that

[z = yllr = infeeslle — 2 -

Proof: As|z|r >0,Vx € Hr,{||lx —z|r: z €S } is bounded below by 0; and hence
inf.cg|lz — 2[|r is exist.

Let {yn} be a sequence in S such that

Jim [z — yn[lr = infeesfz — 2[|r -

Let d =inf,egllz — 2||r. Since S is convex 1 (v, + yn)€ S , we have
| x- 3(ym +yn)|lr>d forallm, n € N .

Moreover, by the parallelogram law

| (ym — yn) I3

= 4] x- 2m + ya) |2 G — yn) |2 — 4] X - 2(m +ya) |2

= (x - ym) + @ = yn) |34+ - ym) — (@ = y) 2 — 4l x - 5(ym + yn) |1}
= 2(|Ix - ymllf + lIx - yall?) — 4l x - 5(ym + yn) I}

Since

2 - yomll2 + 1 - yal2)—> 4%, a5 mn —> o0,

and

” X - %(ym +yn)H12“2 d27
we have || (ym — yn)|Z—> 0, as m, n — oo . Thus {y,} is a cauchy sequence .

Since Hr is complete and S is closed, the limit lim,,_ .y, = y exist and y € S . From
the continuity of the I'-norm , we obtain

|z —yllr=llz — lim yulr = |2 — yullr = d = inf.esllz — 2|
n—oo

We have proved that there exist point in S satisfying the required condition.It remains to
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prove the uniqueness.suppose that there is another point y; in S satisfying the required
condition. Then since % (y+y1) €S, we have

I'y- g1l =4d? - 4| x - 3(y+y1)[< 0.
This can only happen if y = ;.

3.11 Unique Decomposition Theorem :

If H; is a closed subspace of a I'-Hilbert space Hr, then every element x € Hr has a
unique decomposition in the form x=y + z where y € Hy and z € Hf‘r

Proof :

If x € H; , then the obvious decomposition is x= x+0 .suppose now that x ¢ H; . Let
y be the unique point of H; satisfying ||« — y||r = infyen, ||z — w||r , as in closest point
Theorem of I'-Hilbert space . We will show that x=y + (x-y) is the desired decompo-
sition. If w € Hy and A > 0, then y+ Aw € H; and thus

o — yl2

< | xey - Aw 2

=inf{(z —y—Aw,v,z—y—w) : yeTI'}

= inf{(z —y,v, 2 —y) + 2\ (z —y,7, —w) + \(w,y,w) : y € T}

[l — Il +A2 w 2 +2X inf{(z —y,7,~w): v € T }.

Hence

M| w2 +2)inf{{(z —y,y,~w) : yeT } >0.

Now dividing A and leeting A — 0 we get

inf{(x —y,v,w): y€I'} <0

Since w €H; implies -w € H; , thus the above inequality is also hold with -w instead of
w .

ieinf{(z —y,y,w): y€T}>0.

Therefore inf{(z — y,v,w) : y €'} =0

Which means x-y € Hir.

To prove the uniqueness note that if x=y; 4+ z1,y1€ H; and z,€ Hfr, then y-y1€ H;
and z-z1 € Hf‘r. Since y-y1 =z1-z , we must have y-y; =21 — 2 =0

3.12 Theorem:

If S is a closed subspace of a I-Hilbert space Hr , then Strir =S,

Proof:

If x € S, then for every z € ST, we have inf{(x,v,2):y € T' } = 0, which means x€
Strlr  Thus S ¢ S*trtr. To prove S*r+r C S consider an x € Strtr. Since S is
closed , by unique decomposition theorem , x = y+ z for some y € S and z € S*r. In
view of the inclusion S € ST+ | we have y € S0 and thus z= x-y € S0 because
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SIrlr is a vector space . but z € ST, so we must have z = 0 , which means x =y €
S. this shows that S+rLr C S. which complites the proof.

3.13 Theorem

If f is a non trivial bounded linear functional on a I'-Hilbert space Hr then dimN (f)*"
= 1 where N(f) is the null space of f.

Proof:

Since f is continuous , N(f) is a closed proper subspace of Hr and thus N'(f)*T is not
empty. let z1,20 € N(f)*" be nonzero vectors. since f(z1) # 0 and f(x3) # 0 there
exist a scalar a # 0 suh that f(x1) + af(z1) = f(x1 +azxa) = 0. thus, 1 + axe € N ().
On the other hand since N'(f)*T is a vector space and 1,22 € N(f)'T, we must have
x1 + axy € N(f)1r.This is only possible if 1 4+ azy = 0 , which shows that x; and x5
are linearly dependent , because a # 0. Hence dimN(f)*T =1, .

3.14 Representation theorem:

Let f be a bounded linear functional on a I'-Hilbert space Hr. Then there exist exactly
one xog € Hr such that f(x)= inf{(z,v,z0) : v € I for all x € Hr. moreover, we have

I e =1l zo -

Proof:

If f(x) = 0 for all x € Hr , then xy = 0 has the desired properties. Assume now that f
is a nontrivial functional. Then dimN(f)*T = 1, by Theorem 3.13 . Let 2o be a unit
vector in N'(f)*T . Then , for every x € Hr , we have

x = x - inf{(z,7,20): v € T }20 + inf{(x,v,20): v €T }z0.

Since inf{(z,7, 20): v € T Y20 € N(f)*", we must have x - inf{(z,7,20): v € T }20 €
N (f), which means that

f( x -inf{(z,v,20) vy € T }209) = 0.

Consequently,

f(x) = f( inf{(z,v,20): v € T }20) = inf{(x,7v,20) : v € ' } f(20) = inf{(z,7, f(20)20)
yel}.

Therefore if we put xg = f(z0)z20 ,

then f(x)= inf{(z,~v,29) : v € T } for all x € Hp.

Suppose now there is another point z; such that f(x)= inf{(x,y,z1):y € T } for all x €
Hrp. Then inf{(x,v,z0 — x1) :y € I' } =0 for all x € Hr , and thus (z¢ — 1,7, 20 — 1)
= 0. This is only posssible if zg = ;.

Finally, we have

| f e
= sup|yp=1 | f(2) |
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= sup|pp=1 | nf{(2,y.20) v €T } |
< supjg =1l # [l o lIr)
=l wo |Ir .

and
| o || = inf{(xo,v, o) : vy €T } = | f(wo) | < || £ lIr]l 2o |Ir-

Therefore || f ||[r = || zo ||r.
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