Representation Theorem On Γ-Hilbert Space

Amit Ghosh¹, Ashoke Das², and Towhid E Aman³

¹Department of Mathematics, Raiganj University,West Bengal,India ²Department of Mathematics, Raiganj University,West Bengal,India ³Department of Mathematics, Gangarampur College,West Bengal,India

Abstract

In this paper we discuss about the simple properties of Γ -Hilbert space,introduced by D.K.Bhattacharya and T.E.Aman in their paper Γ -Hilbert Space and linear Quadratic Control problem in 2003. We have defined the orthogonality in Γ -Hilbert space and discuss about the closest point property,Unique Decomposition Theorem following the defined orthogonality on that space . Further we discuss the representation of any bounded linear functionals on Γ -Hilbert space in terms of Γ -inner product in that space.

Key word : Hilbert space, $\Gamma\text{-}\textsc{Hilbert}$ Space , Unique Decomposition Theorem , Riesz Representation Theorem.

1 INTRODUCTION:

The definition of Γ -Hilbert space was introduced by Bhattacharya D.K and T.E.Aman in their paper " Γ - Hilbert space and linear quadratic control problem" in 2003[1].But we found no litarature on Γ -Hilbert Space after that. So it is very essential to develop the study on Γ -Hilbert Space, mainly Orthogonality and representation of any bounded linear functional on Γ -Hilbert Space .In his paper we have defined orthogonality of elements of Γ -Hilbert Space and following this definition we have developed the Closest Point Property ([2],[3],[4]), Unique Decomposition Theorem ([2],[3],[4]) and Representation Theorem ([2],[3],[4]) in Γ -Hilbert Space.

2 Γ -Hilbert space[1]:

Definition Let E, Γ be two linear space over the field R. A mapping $\langle ., ., . \rangle$: E x Γ x E \longrightarrow R is called a Γ inner product on E if

1

(i) $\langle .,., \rangle$ is linear in each variable. (ii) $\langle u, \gamma, v \rangle = \langle v, \gamma, u \rangle \forall$ u,v belongs to E and γ belongs to Γ . (iii) $\langle u, \gamma, u \rangle > 0, \forall \gamma \neq 0$ and $u \neq 0$.

 $[(E,\Gamma),\langle.,.,.\rangle]$ is called a Γ -inner product space over R. A complete Γ -inner product space is called Γ -Hilbert space.

It follows that for each $\gamma \in \Gamma$, $+\sqrt{\langle u, \gamma, u \rangle}$ gives the properties of the norm for $u \in$ E. It is called the γ norm of u and is denoted by $||u||_{\gamma}$

We observe that $\inf\{\langle u, \gamma, u \rangle : \gamma \in \Gamma\}$ satisfies all conditions of a norm, we called it the Γ -norm and is denoted by

 $||u||_{\Gamma} = \inf\{\langle u, \gamma, u \rangle: \gamma \in \Gamma\}$.

3 Orthogonality of Γ-Hilbert Spaces

3.1 Definition :(γ -Orthogonal)

Let L be a non-empty subset of a Γ - Hilbert space H_{Γ} . Two elements x and y of H_{Γ} are said to be γ -orthogonal if their inner product $\langle x, \gamma, y \rangle = 0$. In symbol, we write $x \perp_{\gamma} y$. If x is γ -orthogonal to every element of L then we say that x is γ -orthogonal to L and in symbol we write $x \perp_{\gamma} L$.

3.2 Definition: $(\Gamma$ -Orthogonal)

Let L be a non-empty subset of a Γ - Hilbert space H_{Γ} . Two elements x and y of H_{Γ} are said to be Γ -orthogonal or simply orthogonal if $\langle x, \gamma, y \rangle = 0$ for all $\gamma \in \Gamma$. In symbol, we write $x \perp_{\Gamma} y$. If x is Γ -orthogonal to every element of L then we say that x is Γ -orthogonal to L and in symbol we write $x \perp_{\Gamma} L$.

3.3 Theorem:

If x and y are two γ -orthogonal elements of \mathcal{H}_{Γ} , then $\parallel x + y \parallel_{\gamma}^2 = \parallel x \parallel_{\gamma}^2 + \parallel y \parallel_{\gamma}^2$ and $\parallel x - y \parallel_{\gamma}^2 = \parallel x \parallel_{\gamma}^2 + \parallel y \parallel_{\gamma}^2$.

Proof: we have

$$\begin{split} \| x + y \|_{\gamma}^{2} \\ &= \langle x + y, \gamma, x + y \rangle \\ &= \langle x, \gamma, x \rangle + \langle x, \gamma, y \rangle + \langle y, \gamma, x \rangle + \langle y, \gamma, y \rangle \text{ ; by (i) of } 2. \\ &= \langle x, \gamma, x \rangle + \langle y, \gamma, y \rangle \text{ ; as } x \perp_{\gamma} y \text{ , } \langle x, \gamma, y \rangle = 0 \\ &= \| x \|_{\gamma}^{2} + \| y \|_{\gamma}^{2} \\ \text{and} \\ \| x - y \|_{\gamma}^{2} \end{split}$$

$$\begin{split} &= \langle x - y, \gamma, x - y \rangle \\ &= \langle x, \gamma, x \rangle - \langle x, \gamma, y \rangle - \langle y, \gamma, x \rangle + \langle y, \gamma, y \rangle \\ &= \langle x, \gamma, x \rangle + \langle y, \gamma, y \rangle \\ &= \| x \|_{\gamma}^{2} + \| y \|_{\gamma}^{2} \end{split}$$

3.4 Corollary

$$\begin{split} &\| -x \|_{\gamma} = \| x \|_{\gamma} \\ Proof: \\ As \ 0, x \in H_{\Gamma}, \| \ 0 - x \|_{\gamma}^{2} = \| \ 0 \|_{\gamma}^{2} + \| x \|_{\gamma}^{2} = \| x \|_{\gamma}^{2} \,. \end{split}$$

3.5 Theorem:

If x and y are two Γ -orthogonal elements of \mathcal{H}_{Γ} , then $\parallel x + y \parallel_{\Gamma}^2 = \parallel x \parallel_{\Gamma}^2 + \parallel y \parallel_{\Gamma}^2$ and $\parallel x - y \parallel_{\Gamma}^2 = \parallel x \parallel_{\Gamma}^2 + \parallel y \parallel_{\Gamma}^2$.

Proof: we have

$$\begin{split} \| x + y \|_{\Gamma}^{2} \\ &= \inf\{ \langle x + y, \gamma, x + y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x \rangle + \langle x, \gamma, y \rangle + \langle y, \gamma, x \rangle + \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x \rangle + \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x : \rangle : \gamma \in \Gamma \} + \inf\{ \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \| x \|_{\Gamma}^{2} + \| y \|_{\Gamma}^{2} \\ &\text{and} \\ \| x - y \|_{\Gamma}^{2} \\ &= \inf\{ \langle x - y, \gamma, x - y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x \rangle - \langle x, \gamma, y \rangle - \langle y, \gamma, x \rangle + \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x \rangle + \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \inf\{ \langle x, \gamma, x \rangle : \gamma \in \Gamma \} + \inf\{ \langle y, \gamma, y \rangle : \gamma \in \Gamma \} \\ &= \| x \|_{\Gamma}^{2} + \| y \|_{\Gamma}^{2} . \end{split}$$

3.6 Defination:

Let $S \subset H_{\Gamma}$. Then the set of all elements of H_{Γ} , γ -orthogonal to S is called the γ orthogonal complement of S and is denoted by $S^{\perp_{\gamma}}$. The γ - orthogonal compliment of $S^{\perp_{\gamma}}$ is denoted by $S^{\perp_{\gamma}\perp_{\gamma}}$.

3.7 Theorem:

a) $\{\theta\}^{\perp_{\gamma}} = H_{\Gamma}$ and $H_{\Gamma}^{\perp_{\gamma}} = \{\theta\}$ b) if $S \subset H_{\Gamma}$, then $S^{\perp_{\gamma}}$ is a closed subspace of H_{Γ} .

Proof:

a) As $\langle \theta, \gamma, x \rangle = 0$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$. Therefore $\theta \perp_{\gamma} x$; for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$. Hence $\{\theta\}^{\perp_{\gamma}} = H_{\Gamma}$. Again if $x \perp_{\gamma} y$ for every $y \in H_{\Gamma}$ and $\gamma \in \Gamma$, then $x = \theta$ thus $H_{\Gamma}^{\perp_{\gamma}} = \{\theta\}$. (b) Let $x, y \in S^{\perp_{\gamma}}$, then for every $z \in S$ and $\gamma \in \Gamma$, $\langle x, \gamma, z \rangle = 0$; and $\langle y, \gamma, z \rangle = 0$. Now for $\alpha, \beta \in F$ $\langle \alpha x + \beta y, \gamma, z \rangle$ $= \langle \alpha x, \gamma, z \rangle + \langle \beta y, \gamma, z \rangle$ $= \alpha \langle x, \gamma, z \rangle + \beta \langle y, \gamma, z \rangle$ = 0. Thus $\alpha x + \beta y \in S^{\perp_{\gamma}}$. Hence $S^{\perp_{\gamma}}$ is a subspace of H_{Γ} . Next we prove that $S^{\perp_{\gamma}}$ is closed. Let $[\alpha, z] \in S^{\perp_{\gamma}}$ and $x = \beta y$ for some $x \in H_{\Gamma}$. For continuity of the α incomposited

Thus $\alpha x + \beta y \in S^{\perp \gamma}$. Hence $S^{\perp \gamma}$ is a subspace of H_{Γ} . Next we prove that $S^{\perp \gamma}$ is closed. Let $\{x_n\} \in S^{\perp \gamma}$ and $x_n \longrightarrow x$ for some $x \in H_{\Gamma}$. For continuity of the γ -inner product, we have

 $\begin{array}{l} \langle x, \gamma, y \rangle \\ = \left\langle \lim_{n \to \infty} x_n, \gamma, y \right\rangle \\ = \lim_{n \to \infty} \langle x_n, \gamma, y \rangle \\ = 0 \end{array}$

For every y \in S. This shows that x $\in S^{\perp_{\gamma}}$, and thus $S^{\perp_{\gamma}}$ is closed.

3.8 Defination:

Let $S \subset H_{\Gamma}$. Then the set of all elements of H_{Γ} , Γ -orthogonal to S is called the Γ orthogonal complement of S and is denoted by $S^{\perp_{\Gamma}}$. The Γ - orthogonal complement of $S^{\perp_{\Gamma}}$ is denoted by $S^{\perp_{\Gamma}\perp_{\Gamma}}$.

3.9 Theorem:

a) $\{\theta\}^{\perp_{\Gamma}} = H_{\Gamma}$ and $H_{\Gamma}^{\perp_{\Gamma}} = \{\theta\}$ b) if $S \subset H_{\Gamma}$, then $S^{\perp_{\Gamma}}$ is a closed subspace of H_{Γ}

Proof: (a) As $\langle \theta, \gamma, x \rangle = 0$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$. Therefore $\theta \perp_{\Gamma} x$; for all $x \in H_{\Gamma}$. Hence $\{\theta\}^{\perp_{\Gamma}} = H_{\Gamma}$. Again if $x \perp_{\Gamma} y$ for every $y \in H_{\Gamma}$, then $x = \theta$ thus $H_{\Gamma}^{\perp_{\Gamma}} = \{\theta\}$.

(b) Let $\mathbf{x}, \mathbf{y} \in S^{\perp_{\Gamma}}$, then for every $\mathbf{z} \in \mathbf{S} \inf\{\langle x, \gamma, z \rangle : \gamma \in \Gamma\} = 0$; and $\inf\{\langle y, \gamma, z \rangle : \gamma \in \Gamma\} = 0$. Now for $\alpha, \beta \in \mathbf{F}$ $\inf\{\langle \alpha x + \beta y, \gamma, z \rangle : \gamma \in \Gamma\}$ $= \inf\{\langle \alpha x, \gamma, z \rangle : \gamma \in \Gamma\} + \inf\{\langle \beta y, \gamma, z \rangle : \gamma \in \Gamma\}$

$$= \alpha \inf\{\langle x, \gamma, z \rangle : \gamma \in \Gamma \} + \beta \inf\{\langle y, \gamma, z \rangle : \gamma \in \Gamma \} = 0.$$

Thus $\alpha x + \beta y \in S^{\perp_{\Gamma}}$. Hence $S^{\perp_{\Gamma}}$ is a subspace of H_{Γ} . Next we prove that $S^{\perp_{\Gamma}}$ is closed. Let $\{x_n\} \in S^{\perp_{\Gamma}}$ and $x_n \longrightarrow x$ for some $x \in H_{\Gamma}$. For continuity of the Γ -inner product, we have

 $\inf\{\langle x, \gamma, y \rangle : \gamma \in \Gamma \} \\= \inf\{\langle \lim_{n \to \infty} x_n, \gamma, y \rangle : \gamma \in \Gamma \} \\= \lim_{n \to \infty} \inf\{\langle x_n, \gamma, y \rangle : \gamma \in \Gamma \} \\= 0.$

For every y \in S. This shows that x $\in S^{\perp_{\Gamma}}$, and thus $S^{\perp_{\Gamma}}$ is closed.

3.10 Theorem:(The closest point property)

Let S be a closed convex subset of a Γ -Hilbert space H_{Γ} . For every point $x \in H_{\Gamma}$ there exist a unique point $y \in S$ such that

$$||x - y||_{\Gamma} = \inf_{z \in S} ||x - z||_{\Gamma}$$
.

Proof: As $||x||_{\Gamma} \ge 0$, $\forall x \in H_{\Gamma}$, { $||x - z||_{\Gamma} : z \in S$ } is bounded below by 0; and hence $\inf_{z \in S} ||x - z||_{\Gamma}$ is exist.

Let $\{y_n\}$ be a sequence in S such that $\lim_{n \to \infty} ||x - y_n||_{\Gamma} = \inf_{z \in S} ||x - z||_{\Gamma}.$

Let $d = \inf_{z \in S} ||x - z||_{\Gamma}$. Since S is convex $\frac{1}{2} (y_m + y_n) \in S$, we have

 $\| \mathbf{x} - \frac{1}{2}(\mathbf{y}_m + y_n) \|_{\Gamma} \ge \mathbf{d}$ for all $\mathbf{m}, \mathbf{n} \in \mathbf{N}$.

Moreover, by the parallelogram law

$$\begin{split} \| & (\mathbf{y}_m - y_n) \|_{\Gamma}^2 \\ &= 4 \| \mathbf{x} - \frac{1}{2} (\mathbf{y}_m + y_n) \|_{\Gamma}^2 + \| (\mathbf{y}_m - y_n) \|_{\Gamma}^2 - 4 \| \mathbf{x} - \frac{1}{2} (\mathbf{y}_m + y_n) \|_{\Gamma}^2 \\ &= \| (\mathbf{x} - \mathbf{y}_m) + (\mathbf{x} - y_n) \|_{\Gamma}^2 + \| (\mathbf{x} - \mathbf{y}_m) - (\mathbf{x} - y_n) \|_{\Gamma}^2 - 4 \| \mathbf{x} - \frac{1}{2} (\mathbf{y}_m + y_n) \|_{\Gamma}^2 \\ &= 2(\| \mathbf{x} - \mathbf{y}_m \|_{\Gamma}^2 + \| \mathbf{x} - \mathbf{y}_n \|_{\Gamma}^2) - 4 \| \mathbf{x} - \frac{1}{2} (\mathbf{y}_m + y_n) \|_{\Gamma}^2 \\ Since \\ & 2(\| \mathbf{x} - \mathbf{y}_m \|_{\Gamma}^2 + \| \mathbf{x} - \mathbf{y}_n \|_{\Gamma}^2) \longrightarrow 4d^2, \text{ as } \mathbf{m}, \mathbf{n} \longrightarrow \infty, \\ & \text{and} \\ & \| \mathbf{x} - \frac{1}{2} (\mathbf{y}_m + y_n) \|_{\Gamma}^2 \ge d^2, \end{split}$$

we have $\| (y_m - y_n) \|_{\Gamma}^2 \longrightarrow 0$, as m, $n \longrightarrow \infty$. Thus $\{y_n\}$ is a cauchy sequence . Since H_{Γ} is complete and S is closed, the limit $\lim_{n \longrightarrow \infty} y_n = y$ exist and $y \in S$. From the continuity of the Γ -norm , we obtain $\|x - y\|_{\Gamma} = \|x - \lim_{n \to \infty} y_n\|_{\Gamma} = \|x - y_n\|_{\Gamma} = d = \inf_{z \in S} \|x - z\|_{\Gamma}.$

We have proved that there exist point in S satisfying the required condition. It remains to

prove the uniqueness. suppose that there is another point y_1 in S satisfying the required condition. Then since $\frac{1}{2}$ (y + y_1) \in S , we have

 $\| \mathbf{y} \cdot y_1 \|_{\Gamma}^2 = 4d^2 - 4 \| \mathbf{x} - \frac{1}{2}(\mathbf{y} + \mathbf{y}_1) \|_{\Gamma}^2 \leq 0.$ This can only happen if $\mathbf{y} = y_1$.

3.11 Unique Decomposition Theorem :

If H_1 is a closed subspace of a Γ -Hilbert space H_{Γ} , then every element $\mathbf{x} \in H_{\Gamma}$ has a unique decomposition in the form $\mathbf{x} = \mathbf{y} + \mathbf{z}$ where $\mathbf{y} \in H_1$ and $\mathbf{z} \in H_1^{\perp_{\Gamma}}$

Proof :

If $x \in H_1$, then the obvious decomposition is x = x+0 suppose now that $x \notin H_1$. Let y be the unique point of H_1 satisfying $||x - y||_{\Gamma} = \inf_{w \in H_1} ||x - w||_{\Gamma}$, as in closest point Theorem of Γ -Hilbert space. We will show that x = y + (x-y) is the desired decomposition. If w $\in H_1$ and $\lambda > 0$, then y+ λ w $\in H_1$ and thus $||x - y||_{\Gamma}^2$ $\leq \|\mathbf{x}-\mathbf{y}-\mathbf{\lambda}\mathbf{w}\|_{\Gamma}^2$ $= \inf\{\langle x - y - \lambda w, \gamma, x - y - \lambda w \rangle : \gamma \in \Gamma \}$ $= \inf\{\langle x - y, \gamma, x - y \rangle + 2\lambda \langle x - y, \gamma, -w \rangle + \lambda^2 \langle w, \gamma, w \rangle : \gamma \in \Gamma\}$ $= \|x - y\|_{\Gamma}^2 + \lambda^2 \| \le \|_{\Gamma}^2 + 2\lambda \inf\{\langle x - y, \gamma, -w \rangle : \gamma \in \Gamma \}.$ Hence $\lambda^2 \| \le \|_{\Gamma}^2 + 2\lambda \inf\{\langle x - y, \gamma, -w \rangle : \gamma \in \Gamma \} \ge 0 .$ Now dividing λ and letting $\lambda \longrightarrow 0$ we get $\inf\{\langle x - y, \gamma, w \rangle : \gamma \in \Gamma\} \le 0$ Since $w \in H_1$ implies $-w \in H_1$, thus the above inequality is also hold with -w instead of w . i.e $\inf\{\langle x - y, \gamma, w \rangle : \gamma \in \Gamma\} \ge 0$. Therefore $\inf\{\langle x - y, \gamma, w \rangle : \gamma \in \Gamma\} = 0$; Which means $x-y \in H_1^{\perp}_{\Gamma}$.

To prove the uniqueness note that if $\mathbf{x} = \mathbf{y}_1 + z_1, y_1 \in H_1$ and $\mathbf{z}_1 \in H_1^{\perp_{\Gamma}}$, then $\mathbf{y} \cdot \mathbf{y}_1 \in H_1$ and $\mathbf{z} \cdot \mathbf{z}_1 \in H_1^{\perp_{\Gamma}}$. Since $\mathbf{y} \cdot \mathbf{y}_1 = \mathbf{z}_1 \cdot \mathbf{z}$, we must have $\mathbf{y} \cdot \mathbf{y}_1 = z_1 - z = 0$

3.12 Theorem:

If S is a closed subspace of a Γ -Hilbert space H_{Γ} , then $S^{\perp_{\Gamma}\perp_{\Gamma}} = S$.

Proof:

If $\mathbf{x} \in \mathbf{S}$, then for every $\mathbf{z} \in S^{\perp_{\Gamma}}$, we have $\inf\{\langle x, \gamma, z \rangle : \gamma \in \Gamma\} = 0$, which means $\mathbf{x} \in S^{\perp_{\Gamma}\perp_{\Gamma}}$. Thus $\mathbf{S} \subset S^{\perp_{\Gamma}\perp_{\Gamma}}$. To prove $S^{\perp_{\Gamma}\perp_{\Gamma}} \subset \mathbf{S}$ consider an $\mathbf{x} \in S^{\perp_{\Gamma}\perp_{\Gamma}}$. Since \mathbf{S} is closed, by unique decomposition theorem, $\mathbf{x} = \mathbf{y} + \mathbf{z}$ for some $\mathbf{y} \in \mathbf{S}$ and $\mathbf{z} \in S^{\perp_{\Gamma}}$. In view of the inclusion $\mathbf{S} \subset S^{\perp_{\Gamma}\perp_{\Gamma}}$, we have $\mathbf{y} \in S^{\perp_{\Gamma}\perp_{\Gamma}}$ and thus $\mathbf{z} = \mathbf{x} \cdot \mathbf{y} \in S^{\perp_{\Gamma}\perp_{\Gamma}}$, because

 $S^{\perp_{\Gamma}\perp_{\Gamma}}$ is a vector space . but $z \in S^{\perp_{\Gamma}}$, so we must have z = 0, which means $x = y \in S$. this shows that $S^{\perp_{\Gamma}\perp_{\Gamma}} \subset S$. which complites the proof.

3.13 Theorem

:

If f is a non trivial bounded linear functional on a Γ -Hilbert space H_{Γ} then $dim \mathcal{N}(f)^{\perp_{\Gamma}} = 1$ where $\mathcal{N}(f)$ is the null space of f.

Proof:

Since f is continuous, $\mathcal{N}(f)$ is a closed proper subspace of H_{Γ} and thus $\mathcal{N}(f)^{\perp_{\Gamma}}$ is not empty. let $x_1, x_2 \in \mathcal{N}(f)^{\perp_{\Gamma}}$ be nonzero vectors. since $f(x_1) \neq 0$ and $f(x_2) \neq 0$ there exist a scalar $a \neq 0$ sub that $f(x_1) + af(x_1) = f(x_1 + ax_2) = 0$. thus, $x_1 + ax_2 \in \mathcal{N}(f)$. On the other hand since $\mathcal{N}(f)^{\perp_{\Gamma}}$ is a vector space and $x_1, x_2 \in \mathcal{N}(f)^{\perp_{\Gamma}}$, we must have $x_1 + ax_2 \in \mathcal{N}(f)^{\perp_{\Gamma}}$. This is only possible if $x_1 + ax_2 = 0$, which shows that x_1 and x_2 are linearly dependent, because $a \neq 0$. Hence $\dim \mathcal{N}(f)^{\perp_{\Gamma}} = 1$, .

3.14 Representation theorem:

Let f be a bounded linear functional on a Γ -Hilbert space H_{Γ} . Then there exist exactly one $x_0 \in H_{\Gamma}$ such that $f(\mathbf{x}) = \inf\{\langle x, \gamma, x_0 \rangle : \gamma \in \Gamma \text{ for all } \mathbf{x} \in H_{\Gamma}.$ moreover, we have $\| f \|_{\Gamma} = \| x_0 \|_{\Gamma}$.

Proof:

If f(x) = 0 for all $x \in H_{\Gamma}$, then $x_0 = 0$ has the desired properties. Assume now that f is a nontrivial functional. Then $\dim \mathcal{N}(f)^{\perp_{\Gamma}} = 1$, by Theorem 3.13. Let z_0 be a unit vector in $\mathcal{N}(f)^{\perp_{\Gamma}}$. Then, for every $x \in H_{\Gamma}$, we have $x = x - \inf\{\langle x, \gamma, z_0 \rangle: \gamma \in \Gamma \} z_0 + \inf\{\langle x, \gamma, z_0 \rangle: \gamma \in \Gamma \} z_0$. Since $\inf\{\langle x, \gamma, z_0 \rangle: \gamma \in \Gamma \} z_0 \in \mathcal{N}(f)^{\perp_{\Gamma}}$, we must have $x - \inf\{\langle x, \gamma, z_0 \rangle: \gamma \in \Gamma \} z_0 \in \mathcal{N}(f)$, which means that $f(x - \inf\{\langle x, \gamma, z_0 \rangle: \gamma \in \Gamma \} z_0) = 0$. Consequently,

 $\begin{array}{l} \mathrm{f}(\mathbf{x}) = \mathrm{f}(\inf\{\langle x,\gamma,z_0\rangle\colon\gamma\in\Gamma\}z_0) = \inf\{\langle x,\gamma,z_0\rangle\colon\gamma\in\Gamma\}f(z_0) = \inf\{\langle x,\gamma,f(z_0)z_0\rangle\\ :\gamma\in\Gamma\}.\\ \mathrm{Therefore\ if\ we\ put\ }x_0 = f(z_0)z_0\ ,\\ \mathrm{then\ }f(\mathbf{x}) = \inf\{\langle x,\gamma,x_0\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = \inf\{\langle x,\gamma,x_1\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = \inf\{\langle x,\gamma,x_1\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = \inf\{\langle x,\gamma,x_1\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = 0\ ,\\ \mathrm{Suppose\ now\ there\ is\ another\ point\ }x_1\ \mathrm{such\ that\ }f(\mathbf{x}) = \inf\{\langle x,\gamma,x_1\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = 0\ ,\\ \mathrm{H}_{\Gamma}.\ \mathrm{Then\ inf}\{\langle x,\gamma,x_0-x_1\rangle\colon\gamma\in\Gamma\}f(\mathbf{x}) = 0\ ,\\ \mathrm{This\ is\ only\ posssible\ if\ }x_0 = x_1.\\ \mathrm{Finally,\ we\ have} \end{array}$

 $\| f \|_{\Gamma} = \sup_{\|x\|_{\Gamma}=1} | f(x) |$

 $= \sup_{\|x\|_{\Gamma}=1} |\inf\{\langle x, \gamma. x_0 \rangle : \gamma \in \Gamma \} |$ $\leq \sup_{\|x\|_{\Gamma}=1} (\|x\|_{\Gamma} \|x_0\|_{\Gamma})$ $= \|x_0\|_{\Gamma}.$

and

 $|| x_0 ||_{\Gamma}^2 = \inf\{\langle x_0, \gamma, x_0 \rangle : \gamma \in \Gamma \} = | f(x_0) | \le || f ||_{\Gamma} || x_0 ||_{\Gamma}.$

Therefore $|| f ||_{\Gamma} = || x_0 ||_{\Gamma}$.

REFERENCES [1] T.E.Aman and D.K.Bhattacharya : Γ-Hilbert space and linear quadratic control problem. Rev. Acad. Canr. Cienc; xv (Nums. 1-2), 107-114 (2003).

[2]L.Debnath , P.Mikusi \tilde{n} ski, 1980, Introduction to Hilbert Space with applications, Academic Press, INC,
New York, Toronto.

[3] B.K.Lahiri, 1982. Elements Of Functional Analysis. The World Press Private Limited, Kolkata.

 $\left[4\right]$ E.Kreyszig, 1978. Introductory Functional Analysis with applications, John Wiley and sons.

8