4-Difference Cordial Labeling of Cycle and Wheel Related Graphs

S. M. Vaghasiya ${ }^{1}$, G. V. Ghodasara ${ }^{2}$
${ }^{1}$ Research Scholar, R. K. University, Rajkot-360020, India.
${ }^{2}$ H. \& H. B. Kotak Institute of Science,Rajkot-360001, India.

Abstract

Abstact -Let G be a (p, q) graph. Let k be an integer with $2 \leq k \leq p$ and $f: V(G) \rightarrow\{1,2, \ldots k\}$ be a map. For each edge $u v$, assign the label $|f(u)-f(v)|$. The function f is called a k-difference cordial labeling of G if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labelled with $x(x \in\{1,2, \ldots, k\}), e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we discuss 4 -difference cordial labeling for cycle, wheel, crown, helm and gear graph.

Key words : Difference cordial labeling, 4difference cordial labeling.
Subject classification number: 05C78.

I. Introduction

We consider simple, finite, undirected graph $G=(V, E)$. R. Ponraj, M. Maria Adaickalam and R. Kala [6] introduced k difference cordial labeling of graphs. In [6], they investigated k-difference cordial labeling behavior of star, m copies of star and proved that every graph is a subgraph of a connected k-difference cordial graph. In [7], R. Ponraj and M. Maria Adaickalam discussed the 3 -difference cordial labeling behavior of path, cycle, star, bistar, complete graph, complete bipartite graph, comb, double comb, quadrilateral snake. For the standard terminology and notations we follow Harary [1].

II. Main Results

In this paper we have proved that cycle, wheel, helm, crown and gear graph are 4difference cordial graphs.

Definition II.1. A cycle $C_{n}(n \in \mathbb{N}, n \geq 3)$ is closed path with n vertices.

Theorem II.1. Cycle C_{n} is a 4-difference cordial graph.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We define labeling function $f: V\left(C_{n}\right) \rightarrow\{1,2,3,4\}$ as follows. Case 1: n is odd.

$$
\begin{aligned}
f\left(v_{4 i+1}\right) & =1 ; 0 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor . \\
f\left(v_{4 i+2}\right) & =2 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i}\right) & =3 ; 1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor . \\
f\left(v_{4 i+3}\right) & =4 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor .
\end{aligned}
$$

Case 2: n is even.
Subcase 1: $n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
f\left(v_{4 i}\right) & =1 ; 1 \leq i \leq \frac{n}{4} . \\
f\left(v_{4 i+3}\right) & =2 ; 0 \leq i \leq \frac{n-4}{4} . \\
f\left(v_{4 i+1}\right) & =3 ; 0 \leq i \leq \frac{n-4}{4} . \\
f\left(v_{4 i+2}\right) & =4 ; 0 \leq i \leq \frac{n-4}{4} .
\end{aligned}
$$

Subcase 2: $n \equiv 2(\bmod 4)$.

$$
\begin{aligned}
f\left(v_{1}\right) & =2 \\
f\left(v_{2}\right) & =1 \\
f\left(v_{4 i+1}\right) & =1 ; \quad 1 \leq i \leq \frac{n-2}{4} . \\
f\left(v_{4 i+2}\right) & =2 ; \quad 1 \leq i \leq \frac{n-2}{4} . \\
f\left(v_{4 i}\right) & =3 ; \quad 1 \leq i \leq \frac{n-2}{4} . \\
f\left(v_{4 i+3}\right) & =4 ; \quad 0 \leq i \leq \frac{n-6}{4} .
\end{aligned}
$$

In each case cycle C_{n} satisfies the conditions for 4 -difference cordial labeling.
Hence C_{n} is a 4-difference cordial graph.

Example 1. The 4-difference cordial labeling of C_{18} is shown in Figure 1.

Fig. 1

Definition II.2. The wheel $W_{n}(n \in$ $\mathbb{N}, n \geq 3)$ is a join of the graphs C_{n} and K_{1}. i.e $W_{n}=C_{n}+K_{1}$.
Here vertices corresponding to C_{n} are called rim vertices and C_{n} is called rim of W_{n}.
The vertex corresponding to K_{1} is called apex vertex.
Theorem II.2. W_{n} is a 4-difference cordial graph.
Proof. Let v_{0} be the apex vertex and
$v_{1}, v_{2}, \ldots, v_{n}$ be the rim vertices of W_{n}. We define labeling function $f: V\left(W_{n}\right) \rightarrow$ $\{1,2,3,4\}$ as follows.
Case 1: n is odd.

$$
\begin{array}{r}
f\left(v_{4 i}\right)=1 ; 1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor . \\
f\left(v_{4 i+1}\right)=2 ; 0 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor . \\
f\left(v_{4 i+2}\right)=3 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i+3}\right)=4 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor .
\end{array}
$$

Case 2: n is even.

$$
\begin{aligned}
f\left(v_{1}\right) & =2, \\
f\left(v_{2}\right) & =3, \\
f\left(v_{3}\right) & =4 . \\
f\left(v_{4 i+3}\right) & =1 ; \quad 1 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i}\right) & =2 ; \quad 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor . \\
f\left(v_{4 i+1}\right) & =3 ; \quad 1 \leq i \leq\left\lfloor\frac{n-2}{4}\right\rfloor . \\
f\left(v_{4 i+2}\right) & =4 ; \quad 1 \leq i \leq\left\lfloor\frac{n-2}{4}\right\rfloor .
\end{aligned}
$$

In each case wheel graph W_{n} satisfies the conditions of 4 -difference cordial labeling. Hence W_{n} is 4 -difference cordial graph.

Example 2. 4-difference cordial labeling of W_{11} is shown in Figure 2.

Fig. 2

Definition II.3. [3] The crown $C_{n} \odot$ $K_{1}(n \in \mathbb{N}, n \geq 3)$ is obtained by joining a pendant edge to each vertex of C_{n}.

Theorem II.3. Crown $C_{n} \odot K_{1}$ is a 4difference cordial graph.
Proof. Let $V\left(C_{n} \odot K_{1}\right) \quad=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are rim vertices and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ are pendant vertices.
We define labeling function $f: V\left(C_{n} \odot K_{1}\right) \rightarrow\{1,2,3,4\}$ as follows.
Case 1: n is odd.

$$
\begin{aligned}
f\left(v_{2 i+1}\right) & =1 ; 0 \leq i \leq \frac{n-1}{2} . \\
f\left(v_{2 i}\right) & =3 ; 1 \leq i \leq \frac{n-1}{2} . \\
f\left(v_{2 i+1}^{\prime}\right) & =2 ; 0 \leq i \leq \frac{n-1}{2} . \\
f\left(v_{2 i}^{\prime}\right) & =4 ; 1 \leq i \leq \frac{n-1}{2} .
\end{aligned}
$$

Case 2: n is even.

$$
\begin{aligned}
f\left(v_{2 i+1}\right) & =1 ; 0 \leq i \leq \frac{n-2}{2} . \\
f\left(v_{2 i}\right) & =3 ; 1 \leq i \leq \frac{n}{2} . \\
f\left(v_{2 i+1}^{\prime}\right) & =2 ; 0 \leq i \leq \frac{n-2}{2} . \\
f\left(v_{2 i}^{\prime}\right) & =4 ; 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

In each case the crown graph $C_{n} \odot K_{1}$ satisfies the conditions of 4-difference cordial labeling. Hence it is 4 -difference cordial graph.
Example 3. 4-difference cordial labeling of crown $C_{9} \odot K_{1}$ is shown in Figure 3.

Fig. 3

Definition II.4. A helm $H_{n}(n \geq 3)$ is the graph obtained from the wheel W_{n} by adding a pendant edge at each vertex on the rim of W_{n}.

Theorem II.4. H_{n} is a 4-difference cordial graph.

Proof. Let $\quad V\left(H_{n}\right) \quad=$ $\left\{v_{0}, v_{1}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}, \quad$ where v_{0} is apex vertex, $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are rim vertices and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ are pendant vertices.
We define labeling function $f: V\left(H_{n}\right) \rightarrow\{1,2,3,4\}$ as follows.
Case 1: n is odd.

$$
\begin{aligned}
f\left(v_{4 i}\right) & =1 ; 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor . \\
f\left(v_{4 i+1}\right) & =2 ; 0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor . \\
f\left(v_{4 i+2}\right) & =3 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i+3}\right) & =4 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i+3}^{\prime}\right) & =1 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i+2}^{\prime}\right) & =2 ; 0 \leq i \leq\left\lfloor\frac{n-3}{4}\right\rfloor . \\
f\left(v_{4 i+1}^{\prime}\right) & =3 ; 0 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor . \\
f\left(v_{4 i}^{\prime}\right) & =4 ; 1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor .
\end{aligned}
$$

Case 2: n is even.

$$
\begin{aligned}
f\left(v_{2 i+1}\right) & =2 ; 0 \leq i \leq \frac{n-2}{2} . \\
f\left(v_{2 i}\right) & =4 ; 1 \leq i \leq \frac{n}{2} . \\
f\left(v_{2 i+1}^{\prime}\right) & =1 ; 0 \leq i \leq \frac{n-2}{2} . \\
f\left(v_{2 i}^{\prime}\right) & =3 ; 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

In each case the helm graph H_{n} satisfies the conditions of 4-difference cordial labeling. Hence H_{n} is 4-difference cordial graph.

Example 4. 4-difference cordial labeling of helm H_{9} is shown in Figure 4.

Fig. 4

Definition II.5. A gear graph $G_{n}(n \geq 3)$ is obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of rim of W_{n}.

Theorem II.5. Gear G_{n} is a 4-difference cordial graph.

Proof. Let $G_{n}=\left\{v_{0}, v_{1}, \ldots, v_{2 n}\right\}$, where v_{0} is apex vertex, $\left\{v_{1}, v_{3}, \ldots, v_{2 n-1}\right\}$ are the vertices of degree 3 and $\left\{v_{2}, v_{4}, \ldots, v_{2 n}\right\}$ are the vertices of degree 2 .
We define labeling function $f: V\left(G_{n}\right) \rightarrow$ $\{1,2,3,4\}$ as follows.

Case 1: n is odd.

$$
\begin{aligned}
v_{0} & =3 . \\
f\left(v_{4 i+1}\right) & =1 ; 0 \leq i \leq \frac{n-1}{2} . \\
f\left(v_{4 i+2}\right) & =2 ; 0 \leq i \leq \frac{n-1}{2} . \\
f\left(v_{4 i+3}\right) & =3 ; 0 \leq i \leq \frac{n-3}{2} . \\
f\left(v_{4 i+4}\right) & =4 ; 0 \leq i \leq \frac{n-3}{2} .
\end{aligned}
$$

Case 2: n is even.

$$
\begin{aligned}
v_{0} & =1 . \\
f\left(v_{4 i+1}\right) & =1 ; 0 \leq i \leq \frac{n}{2}-1 . \\
f\left(v_{4 i+2}\right) & =2 ; 0 \leq i \leq \frac{n}{2}-1 . \\
f\left(v_{4 i+3}\right) & =3 ; 0 \leq i \leq \frac{n}{2}-1 . \\
f\left(v_{4 i+4}\right) & =4 ; 0 \leq i \leq \frac{n}{2}-1 .
\end{aligned}
$$

In each case the gear graph G_{n} satisfies the conditions of 4 -difference cordial labeling. Hence G_{n} is 4 -difference cordial graph.

Example 5. 4-difference cordial labeling of G_{5} is shown in Figure 5.

Fig. 5

REFERENCES

[1] F. Harary, Graph theory, Addision-wesley, Reading, MA (1969).
[2] I. Cahit, On cordial and 3-equitable labelings of graphs, Util. Math., 37(1990), 189-198.
[3] J. A. Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2013), $\sharp D S 61-308$.
[4] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, (1999).
[5] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5 (2013) 185-196.
[6] R. Ponraj, M. Maria Adaickalam and R. Kala, k difference cordial labeling of graphs, International Journal of Mathematical Combinatorics, 2 (2016), 121-131.
[7] R. Ponraj and M. Maria Adaickalam, 3-difference cordial labeling of some cycle related graphs, Journal of Algorithms and Computation, 47 (2016), 1-10.
[8] S. M. Vaghasiya and G. V. Ghodasara, Difference Cordial of Operational Graph Related to Cycle, International Journal of Advanced Engineering Research and Science, 3 (2016), 236-239.

