Bring a Nonempty Set, Get a Ring

Manoranjan Singha
Assistant Professor, Department of Mathematics, University of north Bengal West Bengal, India, PIN-734013

Abstract

A nonempty set equipped with two binary operations which satisfy certain well known properties is called ring. Now a question may arise that 'Is it possible to define binary operations on any nonempty set so that the corresponding algebraic structure becomes a ring?'. This article answers the question in affirmative sense and establishes some results in this context. Bijection between two sets having same cardinality plays the main role in this article.

Keywords - Binary operation, Ring, Cardinality.

Mathematics subject classification 2010: 97H20

Main results:

Let's begin with two lemmas which will be used as the main tools to reveal the answer of the aforementioned question.

Lemma 1. There exists commutative ring of any pre-assigned order (except singular and limit cardinals) with identity.
Proof. The rings $\left(\{0\},+^{*}\right), \mathbb{Z}_{n}(n \geq 2), \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} ensure the existence of commutative ring of order upto c other than 1 . Now for any $X \neq \Phi$ consider the set $\left\{\mathbb{Z}_{2}\right\}^{X}$ of all functions having domain X and codomain \mathbb{Z}_{2} and define binary operations $\oplus \quad$ and $\odot \quad$ on it by
$(f \oplus g)(x)=f(x)+g(x), \forall x \in X$ and
$(f \odot g)(x)=f(x) \cdot g(x), \forall x \in X$.
Then $\left(\left\{\mathbb{Z}_{2}\right\}^{X}, \oplus, \odot\right)$ is a commutative ring of order $2^{|X|}$ with identity $I(x)=\overline{1} \in \mathbb{Z}_{2} \forall x \in X$, where $|X|$ denotes the cardinality of X.
Now generalized continuum hypotheses completes the proof.
Lemma 2. There exists commutative ring of any preassigned order.
Proof. Let X be any infinite set and R be the collection of all elements of $\left\{\mathbb{Z}_{2}\right\}^{X}$ with finite support. Then $(R, @, *)$ is a commutative ring of order $|X|$ where,
$(f @ g)(x)=f(x)+g(x), \forall x \in X$ and
$(f * g)(x)=f(x) \cdot g(x), \forall x \in X$.
Theorem 1. Any nonempty set can be made a commutative ring.
Proof. Suppose X be any nonempty set and consider a commutative ring $\left(R, H_{,}\right.$.) so that $|X|=|R|$ (by Lemma 2). Let us choose a bijection $f: X \rightarrow R$ and define binary operations and \star in X as follows
x (3) $y=f^{-1}(f(x)+f(y)), \forall x, y \in X$ and
$x \star y=f^{-1}(f(x) \cdot f(x)), \forall x, y \in X$.
Then $(X, *)$ is a commutative ring.
Example 1. Consider the bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by
$f(n)=\frac{n}{2}$, if n is even, $=\frac{1-n}{2}$, if n is odd.
Define a binary operation ${ }^{\circ}$ on the set \mathbb{N} by
$m \circ n=f^{-1}(f(m)+f(n)), \forall m, n \in \mathbb{N}$; that is,
$m \circ n=m+n-1$, if m and n are odd,

$$
=m+n, \text { if } m \text { and } n \text { are even }
$$

$$
\begin{aligned}
& =o-e, \text { if } o>e \text { and } \\
& =1-(o-e), \text { if } o<e,
\end{aligned}
$$

where $o=\operatorname{Odd}\{m, n\}$ and $e=\operatorname{Even}\{m, n\}$. It can be verified that $(\mathbb{N}, \stackrel{\Delta}{ })$ is a cyclic group generated by 2 or 3. The identity element of this group is 1 and the inverse of one member of every pair $\{2 n, 2 n+1\}$ is the other, $n \in \mathbb{N}$.
Again define a binary operation \square on \mathbb{N} by
$m \square n=f^{-1}(f(m) \cdot f(n)), \forall n \in \mathbb{N}$; that is,
$m \square n=1$, if at least one of m and n is 1 ,

$$
\begin{aligned}
& =\frac{(m-1) \cdot(n-1)}{2}, \text { if both are odd and } m \neq 1, n \neq 1 \\
& =\frac{m \cdot n}{2}, \text { if } m \text { and } n \text { both are even, } \\
& =1+\frac{(o-1) \cdot e}{2}, \text { if one of } m \text { and } n \text { is odd and other is even, }
\end{aligned}
$$

where $o=\operatorname{Odd}\{m, n\}$ and $e=\operatorname{Even}\{m, n\}$. Then $(\mathbb{N}, \circ, \square)$ is a commutative ring with identity 2.
Some results that can be worked out in similar fashion are listed in the following.
Theorem 2. (1) For any nonempty set X and any element \boldsymbol{e} of it there is a binary operation o so that (X, o) forms a group with identity elemente. If $|X| \leq a$ then o can be defined on X in such a way that (X, o) forms a cyclic group generated by g with identity element \boldsymbol{e} where g and \boldsymbol{e} are any preassigned distinct (if there) elements of X.
(2) Let Y be a nonempty subset of a finite set X so that $|Y| /|X|$. Then there is a binary operation * on X such that Y becomes a subgroup of the group $(X, *)$; if $|X|=a$ or c then replacement of the condition $|Y| / / X \mid$ by $|X-Y|=a$ or c respectively will not make an exception.
(3) Any set X such that $|X|=p^{n}, a$ or c, where p is a prime and n is any natural number, can be achieved the designation of a field.
Proof. Proofs of (1) and (3) intuitionally follow from the above discussion, rather, let's prove (2). For the first part consider the additive cyclic group $\mathbb{Z}_{|X|}$ and a subgroup H of it so that $|H|=|Y|$. Choose bijections $g: Y \rightarrow H, h: X-Y \rightarrow \mathbb{Z}_{|X|}-H$ and define desired binary operation * on X as follows
$x * y=f^{-1}(f(x)+f(y)), \forall x, y \in X$,
where the bijection $f: X \rightarrow \mathbb{Z}_{|X|}$ is defined by
$f(x)=g(x)$, whenever $x \in Y$
$=h(x)$, whenever $x \in X-Y$
To prove the next part let's begin with the case when $|X|=a$ and Y is a nonempty finite subset of X with $|Y|=n$. Consider the group (G_{\bullet}.) and its subgroup $C_{n}=\left\{z_{;} z^{n}-1=0\right\}$ where $G=\mathrm{U}_{n \in \mathbb{N}} C_{n}$ and '. , denotes the complex multiplication. Choose bijections $i: Y \rightarrow C_{n}, j: X-Y \rightarrow G-C_{n}$, then, construct a bijection $f: X \rightarrow G$ defined by
$f(x)=i(x)$, whenever $x \in Y$
$=j(x)$, otherwise.
Then $(X, *)$ is a group and Y is a subgroup of it where
$x * y=f^{-1}(f(x) \cdot f(y)), \forall x, y \in X$.
If $|X|=a=|Y|$ where Y is a subset of X satisfying $|X-Y|=a$ then replace G by the additive group \mathbb{Q} of rational numbers and C_{n} by the additive group \mathbb{Z} of integers. If $|X|=c$ and Y is nonempty finite then replace G by the multiplicative group \mathbb{C}^{*} of nonzero complex numbers. If $|X|=c$ and $|Y|=a$ then replace G by the multiplicative group \mathbb{C}^{*} or \mathbb{R}^{*} and C_{n} by \mathbb{Q}^{*}. At the end, if $|X|=c=|Y|$ where Y is a subset of X so that $|X-Y|=c$ then replace G by the multiplicative group \mathbb{C}^{*} and C_{n} by \mathbb{R}^{*}.

I conclude proposing the following.
Problem 1: Let X be an infinite set of cardinality greater than c and Y be any nonempty subset of it. Is it possible to define a binary operation O on X so that Y becomes a subgroup of the group (X, o) ?
Problem 2: Is it possible to define binary operations on any infinite set of cardinality greater than \boldsymbol{C} to make it a field ?

Acknowledgement: I am grateful to Professor Alan Dow for suggesting the technique for the proofs of Lemma 1 and Lemma 2.

References

[1] Hewitt, E. and K. Stromberg, Real and Abstract Analysis, Berlin: Springer-Verlag, 1969.
[2] Baumgartner J. E. and Prikry K., Singular cardinals and the generalized continuum hypothesis, Amer. Math. Monthly, 84 (1977), 108113.
[3] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.

