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Abstract— A nonempty set equipped with two binary operations which satisfy certain well known properties is
called ring. Now a question may arise that ‘Is it possible to define binary operations on any nonempty set so
that the corresponding algebraic structure becomes a ring?’. This article answers the question in affirmative
sense and establishes some results in this context. Bijection between two sets having same cardinality plays the
main role in this article.
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Main results:
Let’s begin with two lemmas which will be used as the main tools to reveal the answer of the aforementioned
question.

Lemma 1. There exists commutative ring of any pre-assigned order (except singular and limit cardinals) with
identity.

Proof. The rings ({0}, +,-), Z,, (n = 2), E, @, R and C ensure the existence of commutative ring of order
upto ¢ other than 1. Now for any X # @ consider the set {£,}* of all functions having domain X and
codomain Z; and define binary operations €& and () onitby

(f&g)(x)=f(x)+g(x). VxEX and

(f ©g)(x) =f(x).g(x), VxEX.

Then ({Z,}%, €5, @) is a commutative ring of order 2!%! with identity I(x) = 1 € Z, ¥ x € X, where

| X| denotes the cardinality of .
Now generalized continuum hypotheses completes the proof.

Lemma 2. There exists commutative ring of any preassigned order.

Proof. Let X be any infinite set and R be the collection of all elements of {EZ}X with finite support. Then
(R, @,*) is a commutative ring of order || where,

(f@g)(x) = f(x) + g(x), ¥ x €X and

(f=g)(x)=f(x).g(x), Vx€X.

Theorem 1. Any nonempty set can be made a commutative ring.

Proof. Suppose X be any nonempty set and consider a commutative ring (R, +,.) so that |X| = |R]| (by
Lemma 2). Let us choose a bijection f: X — R and define binary operations (5 and *in X as follows

x@y = fHf(x)+ f(¥), ¥ x,y EX and

xxy=fHf(x).f(x)), ¥ x,yEX.

Then (X, (51+) is a commutative ring.

Example 1. Consider the bijection f: M — Z defined by
n
f(n) = > if n is even,

1—n
= , ifn is odd.
2

Define a binary operation ¢ on the set M by
men=f1(f(m)+f(n)), ¥V m n€EN; that is,
men=m+n—1, if m and n are odd,

=m +n, if m and n are even,
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=pg—eg, if o >e and

=1—(o—e), ifo=<e,
where @ =0dd{m, 1} and € =Even{m, n}. It can be verified that (},2) is a cyclic group generated by 2 or
3. The identity element of this group is 1 and the inverse of one member of every pair {27,21n + 1} is the
other,m € N,

Again define a binary operation O on M by
mon = f1(f(m).f(n)), ¥V n € N; that is,
mOn = 1, if at least one of m and »n is 1,

_ (m—1).(n—1)
2

, if bothareoddandm=1, n#1

™Mm.m
= 5 if m and n both are even,

(o0 —1).e

=1+——"—, if one of m and n is odd and other is even,

where @ =0dd{m, 1} and € =Even{m, n}. Then (M,¢, O) is a commutative ring with identity 2.
Some results that can be worked out in similar fashion are listed in the following.

Theorem 2. (1) For any nonempty set X and any element & of it there is a binary operation @ so that (X, @)
forms a group with identity elemente. If | X| = @ then ¢ can be defined on X in such a way that (X, o) forms
a cyclic group generated by & with identity element € where & and € are any preassigned distinct (if there)
elements of X

(2) Let ¥ be a nonempty subset of a finite set X so that |¥'|/|X|. Then there is a binary operation * on X such
that ¥ becomes a subgroup of the group (X,*); if |X| = @ or ¢ then replacement of the condition |¥|/|X| by
|X — ¥| = a or ¢ respectively will not make an exception.

(3) Any set X such that |X| = p™, a or ¢, where p is a prime and 72 is any natural number, can be achieved
the designation of a field.

Proof. Proofs of (1) and (3) intuitionally follow from the above discussion, rather, let’s prove (2. For the
first part consider the additive cyclic group Z; | and a subgroup H of it so that [H| = [¥'[. Choose bijections
g:Y = H h: X — Y — I, — H and define desired binary operation * on X as follows
xxy=fHf)+f(M). VxyEX
where the bijection f: X — Z, | is defined by
f(x) = g(x), whenever xe ¥

= h(x), whenever x e X — Y
To prove the next part let’s begin with the case when |X| = @ and ¥ is a nonempty finite subset of X with
|¥'| = n. Consider the group (G, .) and its subgroup C,, = {z;z" — 1 =0} where G = U,, .54 C,, and * .
> denotes the complex multiplication. Choose bijections :¥ —= €, j: X — ¥ — G — C,, then, construct a
bijection f: X — G defined by
f(x) =i(x), wheneverx €V

= j(x), otherwise.

Then (X,#) is a group and ¥ is a subgroup of it where
xty = fAF().F (), V 2,y € X.
If |[X] = a = |¥| where ¥ is a subset of X satisfying |X — ¥| = a then replace G by the additive group @
of rational numbers and C,, by the additive group Z of integers. If |X| = ¢ and ¥ is nonempty finite then
replace G by the multiplicative group ©* of nonzero complex numbers. If |X| = ¢ and |¥| = @ then replace
G by the multiplicative group ©* or B* and C,, by @". At the end, if |X| = ¢ = |¥| where ¥ is a subset of
X sothat |[X — ¥| = ¢ then replace G by the multiplicative group C* and C,, by K",
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I conclude proposing the following.

Problem 1: Let X be an infinite set of cardinality greater than ¢ and ¥ be any nonempty subset of it. Is it
possible to define a binary operation @ on X so that ¥ becomes a subgroup of the group (X, @) ?

Problem 2: Is it possible to define binary operations on any infinite set of cardinality greater than ¢ to make it
afield ?

Acknowledgement: | am grateful to Professor Alan Dow for suggesting the technique for the proofs of Lemma
1 and Lemma 2.
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