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Abstract 

In [3], Theorem 2.1 deals with characterization of mappings    𝜙:𝑀𝑛 → 𝑀𝑛  which satisfies  𝑂𝜀 𝜙 𝐴 𝜙 𝐵   =

𝑂𝜀 𝐴𝐵 , where  𝑂𝜀 𝐴 , 𝜀 ∈   0,1 , denotes Ostrowski set of𝐴. In the proof of this theorem an assertion was 

made (assertion 2.6) whose proof contains an error. In this paper an example is provided to substantiate our 

claim and the error also has been rectified. 
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                                                                            Introduction 

First we introduce the notations used in the paper.  

 Let 𝑀𝑛  be the set of n  n complex matrices and 𝐸11 ,𝐸12 ,……  𝐸𝑛𝑛  be the standard basis of  𝑀𝑛 . 

For any matrix 𝐴 ∈  𝑀𝑛 , Eigen values inclusion set is a set which includes all its eigenvalues. 

    There are three main Eigen values inclusion sets of any matrix 𝐴 ∈ 𝑀𝑛 ,  namely Gershgorin set, Ostrowski 

set and Brauer’s set which are denoted by 𝐺 𝐴 ,𝑂𝜀 𝐴  and 𝐶(𝐴) respectively (For definitions of 𝐺 𝐴 , and 

 𝑂𝜀 𝐴  see section 1). It is known that 𝑂1 𝐴 = 𝐺 𝐴 .   
     In [3, Theorem2.1], it has been proved that, a mapping  𝜙:𝑀𝑛 → 𝑀𝑛  satisfies 

 𝑂𝜀 𝜙 𝐴 𝜙 𝐵   = 𝑂𝜀 𝐴𝐵   for all 𝐴,𝐵 ∈ 𝑀𝑛 , 𝜀 ∈   0,1  if and only if there exist  𝑐 =  ±1, a permutation 

matrix 𝑃 and an invertible diagonal matrix 𝐷, where  𝐷 is unitary matrix unless 

  𝑛, 𝜀  = ( 2, 1

2
 ), such that 𝜙 𝐴 = 𝑐 𝐷𝑃 𝐴(𝐷𝑃)−1.  

While Assertions 2.1 to 2.3 prove the theorem for 𝜀 = 1 i.e, when  𝜙 satisfies  

𝐺 𝜙 𝐴 𝜙 𝐵   = 𝐺 𝐴𝐵  for all 𝐴,𝐵 ∈ 𝑀𝑛 , Assertions 2.4 to 2.6 prove the theorem for 𝜀 ∈  0,1 . Essentially 

proof of assertion (2.6) is the proof of the theorem for 𝜀 ∈  0,1 . 

        The matrices 𝑋 and 𝑌 considered in 2.6 do not satisfy 𝑂1

2

 𝐴 = 𝑂1

2

 𝐵  as claimed which is crucial for the 

proof of the assertion. A counter example has been provided in this note to this effect. Further, 𝑋 and 𝑌 have 

been defined so that  

𝑂1

2

 𝐴 = 𝑂1

2

 𝐵  and the rest of the proof goes through. 

       This paper has been divided into 2 sections, 

 Section 1 deals with basic definitions, statements of key results from [3] and Section 2 with counter example to 

show that the claim made in Assertion 2.6 is false and rectification of proof of the assertion. 

                                                      

                                                   Section 1: Basic Definitions and Statements 

 Given matrix 𝐴 =   𝑎𝑖𝑗  ∈ 𝑀𝑛 , we define  

                                𝑅𝑘(𝐴) = Row deleted sum of  𝐴 =  |𝑎𝑘𝑗 |𝑛
𝑗≠𝑘 ,𝑗=1      

                                𝐶𝑘 𝐴  = Column deleted sum of 𝐴 =  |𝑎𝑗𝑘 |𝑛
𝑗≠𝑘 ,𝑗=1  

The Gershgorin set of 𝐴 (see [1], [2]) is defined as 

                             𝐺 𝐴  =   𝐺𝑘
𝑛
𝑘=1  𝐴  , where  𝐺𝑘 𝐴 = {𝜇 ∈  ℂ ;  𝜇 − 𝑎𝑘𝑘  ≤ 𝑅𝑘 𝐴 } 

It is well known that 𝐺(𝐴) contains all the Eigen values of A. 

Let 𝜀 𝜖 [0, 1] the Ostrowski set of 𝐴 (see [1]) is defined by 
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                                 𝑂𝜀 𝐴 =  𝑂𝜀 ,𝑘

𝑛
𝑘=1  𝐴 = 𝑂(𝐴), where 

                             
 𝑂𝜀 ,𝑘(𝐴) = {𝜇 ∈  ℂ ;  𝜇 − 𝑎𝑘𝑘  ≤ 𝑅𝑘

𝜀  𝐴 𝐶𝑘
1−𝜀(𝐴)} 

It is also known that the Ostrowski set contains all the eigenvalues of A. It is clear that 𝑂1 𝐴 = 𝐺 𝐴 .  

       If a mapping  𝜙:𝑀𝑛 → 𝑀𝑛  satisfies 𝑂𝜀 𝜙 𝐴 𝜙 𝐵   = 𝑂𝜀 𝐴𝐵   for all 𝐴,𝐵 ∈ 𝑀𝑛 ,  𝜀 ∈  0,1  the following 

assertions have been proved in [3]. 

Assertion 2.4: Let 𝐷 = µ 𝑑𝑖𝑎𝑔  1, 2,… ,𝑛  with  µ >  1. Then there exist a permutation matrix P and a 
diagonal matrix 𝑅 = 𝑑𝑖𝑎𝑔 (𝑟1,… , 𝑟n) with 𝑟𝑘∊ {1,-1} such that  𝜙(𝐷)  =  𝑃𝑅𝐷𝑃𝑇and  

𝜙 𝐷 + 𝐸𝑖𝑗  = 𝑃(𝑅𝐷 + 𝜐𝑖𝑗𝐸𝑖𝑗 )𝑃𝑡   for all 𝑖 ≠ 𝑗, where 𝜐𝑖𝑗 ’s are non zero numbers such that 𝜐𝑖𝑗 . 𝜐𝑗𝑖 =1. 

Assertion 2.5: Following the notation in Assertion 2.4 and letting 𝜐𝑘𝑘 = 𝑟𝑘   for   1 ≤ 𝑘 ≤ 𝑛, we have 𝜙 𝐸𝑖𝑗  =

𝜐𝑖𝑗𝑃𝐸𝑖𝑗𝑃
𝑡  for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

                                                                              Section 2 

        In [3] the assertion 2.6 states:  A mapping  𝜙:𝑀𝑛 → 𝑀𝑛  satisfies  

𝑂𝜀 𝜙 𝐴 𝜙 𝐵   = 𝑂𝜀 𝐴𝐵   for all 𝐴,𝐵 ∈ 𝑀𝑛 , 𝜀 ∈  0,1  if and only if there exist  𝑐 =  ±1, a permutation 

matrix 𝑃 and an invertible diagonal matrix 𝐷, where 𝐷 is unitary matrix unless  𝑛, 𝜀  = (2, 1

2
), such that 

𝜙 𝐴 = 𝑐 𝐷𝑃 𝐴(𝐷𝑃)−1. 

         To show 𝜙 𝐴 = 𝑐 𝐷𝑃 𝐴(𝐷𝑃)−1  authors take 𝜙 𝐴 =  𝑣𝑖𝑗𝑎𝑖𝑗   and observe, in view of the earlier 

discussion in the paper, that 𝑣𝑘𝑘 = 1 for all 𝑘. 

 The proof of the assertion being direct for  𝑛, 𝜀 =  2,
1

2
 , authors prove the assertion for  𝑛, 𝜀 ≠  2,

1

2
 . In the 

proof authors claim  𝑣𝑖𝑗  = 1 for 𝑖 ≠ 𝑗 and observe that once the claim holds, the assertion holds for 𝑛 = 2.  

          The claim follows easily for 𝜀 ≠
1

2
 , so it remains to prove the claim for 𝜀 =

1

2
 ,𝑛 ≥ 3. To carry out the 

proof authors take 

     𝑋 =  𝐸𝑖𝑖 + 2𝐸𝑖𝑗 + 𝐸𝑖𝑘 + 𝐸𝑗𝑖  and  𝑌 =  𝐸𝑖𝑖 + 𝐸𝑖𝑗 + 2𝐸𝑖𝑘 + 𝐸𝑗𝑖 , where 𝑖, 𝑗 and 𝑘 are distinct, and claim   

                                                         𝑂1

2

 𝑋 = 𝑂1

2

(𝑌)   , which is not true. 

 When,  𝑛 = 3, 𝑖 = 1, 𝑗 = 2, 𝑘 = 3  

 𝑂1
2

 𝑋 ≠ 𝑂1
2

 𝑌  

Because, 

                                𝑋 = 𝐸11+2𝐸12+𝐸13+𝐸21=  
1 2 1
1 0 0
0 0 0

  and 𝑌 = 𝐸11+𝐸12+2𝐸13+𝐸21=  
1 1 2
1 0 0
0 0 0

   

                                                       𝑂1

2

(𝑋) = {𝑧: |𝑧 − 1| ≤  3 } ∪ {𝑧: |𝑧| ≤  2}  ∪  {𝑧: |𝑧| ≤ 0}, 

𝑂1
2

(𝑌) = {𝑧: |𝑧 − 1| ≤  3 }  ∪  {𝑧: |𝑧| ≤ 1}  ∪  {𝑧: |𝑧| ≤ 0} 

Clearly 

                                                              𝑂1

2

 𝑋 ≠ 𝑂1

2

 𝑌  

  Instead we take  

                                              𝑋 =  𝐸𝑖𝑖 + 2𝐸𝑖𝑗 + 𝐸𝑖𝑘 + 𝐸𝑗𝑖 + 𝐸𝑘𝑖 ,  

                                              𝑌 =  𝐸𝑖𝑖 + 𝐸𝑖𝑗 + 2𝐸𝑖𝑘 + 𝐸𝑗𝑖 + 𝐸𝑘𝑖 , where 𝑘 ≠  𝑖, 𝑗  and 𝑖 ≠ 𝑗  

    We observe  𝑂1

2

 𝑋 = 𝑂1

2

 𝑌  and the proof of the assertion goes through. 

 

We have 
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                                           𝑋 =

 
 
 
 
 
 
 
 
 
 
 
 

0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 2⋯ 1⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 0⋯ 0⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 0⋯ 0⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 0⋯ 0⋯ 0⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

  ,   𝑌 =

 
 
 
 
 
 
 
 
 
 
 
 

0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 1⋯ 2⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 0⋯ 0⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 1⋯ 0⋯ 0⋯ 0
0⋯ 0⋯ 0⋯ 0⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯
0⋯ 0⋯ 0⋯ 0⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Therefore 

𝑂1
2

(𝑋) = {𝜇 ∈ ℂ: |𝜇 − 1| ≤  6 }  ∪  {𝜇 ∈ ℂ: |𝜇| ≤  2}  ∪  {𝜇 ∈ ℂ: |𝜇| ≤ 1}   ∪  {0} 

                                                               = {𝜇 ∈ ℂ: |𝜇 − 1| ≤  6 }  ∪  {𝜇 ∈ ℂ: |𝜇| ≤  2}, 

 

                                     𝑂1

2

(𝑌)  =   {𝜇 ∈ ℂ: |𝜇 − 1| ≤  6 }  ∪  {𝜇 ∈ ℂ: |𝜇| ≤ 1}  ∪  {𝜇 ∈ ℂ: |𝜇| ≤  2 }   ∪  {0}                                                            

=  {𝜇 ∈ ℂ: |𝜇 − 1| ≤  6 }  ∪  {𝜇 ∈ ℂ: |𝜇| ≤  2} 

 

We note that for the above X and Y 

 𝑂1

2

 𝑋 = 𝑂1

2

(𝑌). 

                                                        Hence 

                                                                                         𝑂1

2

 𝐼𝑛𝑋 = 𝑂1

2

(𝐼𝑛𝑌) 

                        ⇒ 𝑂1

2

 𝜙(𝐼𝑛 𝜙(𝑋))  = 𝑂1

2

 𝜙(𝐼𝑛 𝜙(𝑌)) 

                                      ⇒  𝑂1

2

 𝐼𝑛𝜙(𝑋) = 𝑂1

2

(𝐼𝑛𝜙 𝑌 )   as 𝜙(𝐼𝑛) =  𝐼𝑛  

     ⇒  𝑂1

2

 𝜙(𝑋) = 𝑂1

2

(𝜙 𝑌 )   

          As  𝜙 𝐴 =  𝑣𝑖𝑗𝑎𝑖𝑗   ,  

                                𝜙 𝑋 =  

 
 
 
 
 
 
 
 
 
 
 
 

0⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑖𝑖 ⋯⋯ 2𝑣𝑖𝑗 ⋯𝑣𝑖𝑘 ⋯ 0

0  ⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑗𝑖 ⋯⋯ 0⋯⋯ 0⋯⋯ 0

0 ⋯⋯ 0⋯  ⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑘𝑖 ⋯⋯ 0⋯⋯ 0⋯⋯ 0
0 ⋯⋯ 0⋯⋯  0 ⋯⋯  0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0  ⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 , 𝜙 𝑌 =  

 
 
 
 
 
 
 
 
 
 
 
 

0⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑖𝑖 ⋯⋯𝑣𝑖𝑗 ⋯ 2𝑣𝑖𝑘 ⋯ 0

0  ⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑗𝑖 ⋯⋯ 0⋯⋯ 0⋯⋯ 0

0 ⋯⋯ 0⋯  ⋯ 0⋯⋯ 0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0⋯⋯𝑣𝑘𝑖 ⋯⋯ 0⋯⋯ 0⋯⋯ 0
0 ⋯⋯ 0⋯⋯  0⋯⋯  0⋯⋯ 0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0  ⋯⋯ 0⋯⋯ 0⋯⋯ 0⋯⋯ 0  

 
 
 
 
 
 
 
 
 
 
 

 

 

As  𝑂1

2

 𝜙(𝑋) = 𝑂1

2

(𝜙 𝑌 ), equating the radii of the disks, we obtain an equation 

                                                       ( 𝑣𝑖𝑗  +   2𝑣𝑖𝑘  )
1

2  ( 𝑣𝑗𝑖  +  𝑣𝑘𝑖  )
1

2 =  ( 2𝑣𝑖𝑗  +  𝑣𝑖𝑘  )
1

2 ( 𝑣𝑗𝑖  +   𝑣𝑘𝑖  )
1

2     

                                                ⟹   𝑣𝑖𝑗  +  2𝑣𝑖𝑘   
1

2 =     2𝑣𝑖𝑗  +  𝑣𝑖𝑘   
1

2  

                                                             ⟹  𝑣𝑖𝑗  =   𝑣𝑖𝑘   ………. (1) 

 Taking inverse both sides 

                                                                    𝑣𝑗𝑖  =   𝑣𝑘𝑖   ……….. (2) 

Interchanging the role of 𝑖 and 𝑗 in (1), we obtain 

                                                                   𝑣𝑗𝑖  =   𝑣𝑗𝑘   ……….. (3) 
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Interchanging the role of 𝑗 and 𝑘, we obtain 

                                                                    𝑣𝑘𝑖  =   𝑣𝑘𝑗   ………. (4) 

From equations (1), (2), (3) and (4), we get 

                                           𝑣𝑖𝑗  =   𝑣𝑖𝑘  =   𝑣𝑘𝑖  
−1 =   𝑣𝑘𝑗  

−1
=   𝑣𝑗𝑘  =   𝑣𝑗𝑖     [as 𝜐𝑖𝑗 . 𝜐𝑗𝑖 =1 from Assertion 

2.4] 

Hence,   

                                                                   𝑣𝑖𝑗  =   𝑣𝑗𝑖  =  𝑣𝑖𝑗  
−1

  

                                                            ⟹   𝑣𝑖𝑗  = 1 and the rest of the proof follows. 
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