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Abstract 

The purpose of the present paper is to represent a mathematical model to look into the propagation of the waves at an imperfect 

boundary between micropolar elastic solid and micropolar porous elastic solid. The variation of modulus of amplitudes ratios of 

various reflected and refracted waves against the angle of incidence are computed numerically for obliquely incident wave 

travelling at high frequency as well as at low frequency. Discussed the corresponding derivation for the normal force stiffness, 

transverse force stiffness and welded contact. Stiffness effects on the amplitude ratios with the angle of incidence has been 

observed and depicted graphically. 

Keywords: Amplitude ratio, longitudinal wave, reflection, refraction, micropolar elastic solid, porous, frequency, normal force 

stiffness, transverse force stiffness.  

I. INTRODUCTION 

A linear theory as a special case of the nonlinear theory of micro-elastic solids was first constructed by Eringen and Suhubi 

(1964 a, b). Later, Eringen (1965) and (1966) recognized and extended this theory.  

Eringen's theory of micropolar elasticity keep on significance because of its applications in many physical substance for 

example material particles having rigid directors, chopped fibers composites, platelet composites, aluminium epoxy, liquid 

crystal with side chains, a large class of substance like liquid crystal with rigid molecules, rigid suspensions, animal blood with 

rigid cells, foams, porous materials, bones, magnetic fields, clouds with dust, concrete with sand and muddy fluids are example 

of micropolar materials. 

Cowin and co-workers developed the theories of non-linear and linear elastic material with voids. The linear theory of elastic 

material with voids is a special class of the nonlinear theory in which the change in void volume fraction and the strain are taken 

as independent kinematic variables. Material may be called porous material which has the properties of small distributed pores.  

Analysis of propagation of waves at an interface has long been of interest to researcher in the fields of geophysics, acoustics and 

nondestructive evaluation. Common to all these studies is the exploration of the degrees of interaction among the interfaces that 

manifest themselves in the form of reflection and refraction agents and give rise to geometric scattering. 

An interface between two different medium is much more complicated and has physical properties different from those of the 

substratum. A generalization of this concept is that of an imperfect bonded interface. In this case displacement across the 

surfaces need not be continuous. 

Imperfect bonding mull over in the present exploration is to mean that the stress components are incessantly, but the 

displacement field is not. The small vector variation in the displacement is considered to depend linearly on the traction vector. 

Momentous work has been done to illustrate the physical conditions on the interface by different mechanical boundary 

conditions by different researchers.      
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Many problems of waves and vibrations concerning the micropolar elasticity and material with voids have been discussed by 

many researchers in the past, e.g., chandersekhariah (1987), Wright (1998), Golamhossen (2000), Iesan and Nappa (2003), 

Tomar and Singh (2005, 06), Kumar and Singh (2009). Recently, such problems discussed by Tomar and Khurana (2011), 

Chong and Wei (2013), Kumari (2014), Shekhar and Parvez (2015), Zhang et al. (2016) and Merkel and Luding (2017). The 

present paper is concerned with reflection and refraction of longitudinal waves at an imperfect interface between and micropolar 

elastic solid half and micropolar elastic solid half space with porous.  

II. BASIC EQUATIONS AND CONSTITUTIVE RELATIONS 

 

1) For medium 𝑴𝟏  (Micropolar elastic solid) 

The equation of motion in micropolar elastic medium are given by Eringen (1968) as 

(c1
2 + c3

2)∇2ϕ =
∂2ϕ

∂t2
,                                                                                                          (1) 

(c2
2 + c3

2)∇2U + c3
2∇ × Φ =

∂2U

∂t2
,                                                                                   (2) 

(c4
2∇2 − 2ω0

2)Φ + ω0
2∇ × U =

∂2Φ

∂t2
,                                                                               (3) 

where 

c1
2 =

λ + 2µ

ρ
, c2

2 =
µ

ρ
, c3

2 =
κ

ρ
, c4

2 =
γ

ρj
, ω0

2 =
κ

ρj
,                             (4) 

Parfitt and Eringen (1969) have shown that eq. (1) corresponds to longitudinal wave propagating with velocity V1, given by 

V1
2 = c1

2 + c3
2 and equations (2) - (3) are coupled equations in vector potentials U and Φ and these correspond to coupled 

transverse and micro-rotation waves. If 
ω2

ω0
2 > 20, there exist two sets of coupled-wave propagating with velocities 1/λ1  and 

1/λ2. 

 where 

 λ1
2 =

1

2
[B − √B2 − 4C],    λ2

2 =
1

2
[B + √B2 − 4C],                                                  (5) 

and 

B =
q(p − 2)

ω2
+

1

(c2
2 + c3

2)
+

1

c4
2

 ,       C = (
1

c4
2

−
2q

ω2
)

1

(c2
2 + c3

2)
  ,    

p =
κ

μ + κ
 ,    q =

κ

γ
 .                                                                                                                (6) 

where symbols λ, μ, γ, κ, j have their usual meaning. We consider a two dimensional problem by taking the following 

components of displacement and micro- rotation as  

 U = (u, 0, w),       Φ = (0, Φ2, 0),                                                                                         (7) 

where 

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 53 Number 1 January 2018


lalitha
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 23




u =
∂ϕ

∂x
−

∂ψ

∂z
 ,      w =

∂ϕ

∂z
+

∂ψ

∂x
 ,                                                                                          (8) 

and components of stresses as  

tzz = (λ + 2μ + κ)
∂2ϕ

∂z2
+ λ

∂2ϕ

∂x2
+ (2μ + κ)

∂2ψ

∂x ∂z
 ,                                                         (9) 

tzx = (2μ + κ)
∂2ϕ

∂x ∂z
− (μ + κ)

∂2ψ

∂z2
+ μ

∂2ψ

∂x2
− κΦ2 ,                                                   (10) 

mzy = γ
∂Φ2

∂z
 .                                                                                                                         (11) 

2) For medium 𝑴𝟐  (Micropolar elastic solid with porous) 

The constitutive and field equations of micropolar porous elastic solid (see figure 1), in the absence of body force density and 

body couple density, can be written as 

(λ̅ + 2μ̅ + κ̅)∇(∇. 𝐮) − (μ̅ + κ̅)∇ × (∇ × 𝐮 ) + κ̅ ∇ × Φ̅ + β
∗∇ψ̅ = ρ̅ 𝐮̈ ,                 (12) 

(α̅ + β̅ + γ̅)∇(∇. Φ̅) − γ̅ ∇ × (∇ × Φ̅) + κ̅ ∇ × 𝐮 − 2 κ̅ Φ̅ = ρ̅ j ̅Φ̈̅ ,                           (13) 

α∗∇2ψ̅ − ξ
∗
ψ̅ − ω∗ψ̅ − β

∗∇. 𝐮 = ρ̅ κ∗ Ψ̈.                                                                          (14) 

where λ̅ and μ̅ ; κ̅ , α̅ , β̅ and γ̅ ; α∗ , β∗ , ξ∗ , ω∗ and κ∗ are Lame’s constant; elastic constants of micropolarity and elastic constants 

due to presence of voids, respectively;  𝐮 (x, t) and Φ̅(x, t) are the displacement and microrotation vectors, ψ̅ is the change in the 

void volume fraction from that of in the reference state; j ̅ is the micro-inertia and ρ̅ is the density of the medium. The 

superposed dots on the right hand side of these equations denote second ordered partial derivatives with respect to time. 

For time harmonic plane wave propagation (i.e., ∝ exp{−𝑖ω̅t}), the equations of motion (12) – (14) reduced to 

(c̅1
2 + c̅3

2)∇(∇. 𝐮) − (c̅2
2 + c̅3

2)∇ × (∇ ×  𝐮) + c̅3
2 ∇ × Φ̅ + c̅6

2∇ψ̅ + ω̅2𝐮 = 0,         (15) 

(c̅4
2 + c̅5

2)∇(∇. Φ̅) − c̅4
2∇ × (∇ ×  Φ̅) + ω̅0

2 ∇ × 𝐮 − 2ω̅0
2Φ̅ + ω̅2Φ̅ = 0,                   (16) 

(α
∗∇2 − ξ

∗ + iω̅ω∗ + ρ̅ κ∗ ω̅2)ψ̅ − β
∗∇. 𝐮 = 0 .                                                             (17) 

where 

c̅1
2 =

λ̅ + 2μ̅

ρ̅
, c̅2

2 =
μ̅

ρ̅
 , c̅3

2 =
κ̅

ρ̅
 , c̅4

2 =
γ̅

ρ̅ j̅
 , c̅5

2 =
α̅ + β̅

ρ̅ j̅
 , 

ω̅0
2 =

c̅3
2

 j̅
=

κ̅

ρ̅ j̅
 ,  c̅6

2 =
β

∗

ρ̅ 
  .                                                                                           (18) 

The constitutive relations for the micropolar porous elastic solid are given by (see Iesan, 1985)  

t̅kl = λ̅u̅r,rδkl + μ̅(u̅k,l + u̅l,k) + κ̅(u̅l,k − ϵklrϕ̅
r
) + δklβ

∗
ψ̅ ,                                       (19) 

m̅kl = α̅ϕ̅
r,r

δkl + β̅ϕ̅
k,l

+ γ̅ϕ̅
l,k

 ,                                                                                            (20) 
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h̅k = α∗ ψ̅
,k

  .                                                                                                                           (21) 

where t̅kl, m̅kl, and h̅k are the force stress tensor, couple stress tensor and equilibrated  force vector, respectively. 

Introducing the scalar potentials q̅ and  ξ , the vector potentials U̅ and Π, through the Helmholtz’s decomposition of vectors as  

𝐮 = ∇ q̅ + ∇ × U̅ , Φ̅ =  ∇ξ + ∇ × Π , ∇. U̅ = ∇. Π = 0 ,                                (22) 

and employing  these relations into equations of motion (15) – (17), we obtain the following system of equations 

[(c̅1
2 + c̅3

2)∇2 + ω̅2]q̅ + c̅6
2ψ̅ = 0 ,                                                                                      (23) 

[(c̅2
2 + c̅3

2)∇2 + ω̅2]U̅ + c̅3
2∇2 × Π = 0 ,                                                                           (24) 

[(c̅4
2 + c̅5

2)∇2 − 2ω̅0
2 + ω̅2]ξ = 0 ,                                                                                      (25) 

[c̅4
2∇2 − 2ω̅0

2 + ω̅2]Π + ω̅0
2∇ × U̅ = 0 ,                                                                             (26) 

(α
∗∇2 − ξ

∗ + iω̅ω∗ + ρ̅ κ∗ ω̅2)ψ̅ − β
∗∇2q̅ = 0 .                                                             (27) 

Following the procedure adopted by Tomar and Singh (2006) for plane waves advancing along the positive direction of a unit 

vector, we can obtain the dispersion relations giving the phase speeds of an independent longitudinal microrotational wave and 

two sets of coupled transverse waves along with the following dispersion equation giving the phase speeds of two longitudinal 

waves 

(τ2 −
ω̅2

S2
) (τ2 −

ω̅2

T2
+

1

l2
2 −

iω̅ω∗

α∗
) −

H∗

l1
2 τ2 = 0 ,                                                         (28) 

where   

S2 = c̅1
2 + c̅3

2 , T2 =
α∗

ρ̅ κ∗
  , l1

2 =
α∗

β
∗  , l2

2 =
α∗

ξ
∗   and  H∗ =

β
∗

(λ̅ + 2μ̅ + κ̅)
 . 

The quantity S is velocity of longitudinal displacement wave discussed by ( Parfitt and Eringen 1969), T is the velocity of wave 

carrying a change in void volume discussed by (Puri and Cowin 1985 )and H * is a dimensionless number similar to that 

introduced by (Puri and Cowin 1985) and reduces to it in the absence of micropolarity. Also, equation (28) can be written as 

(τ2 −
ω̅2

S2
) (τ2 −

ω̅2

T2
+

1

l2
2 −

iω̅ω∗

α∗
) −

N∗

l1
2 τ2 = 0 ,       N∗ =

l2
2 H∗

l1
2                              (29) 

where 0  N *  1. It can be seen that in the absence of micropolarity, the dispersion relation (29) match with the dispersion 

relation (24) of (Ciarletta and Sumbatyan 2003). If we put the void parameter β
∗ = 0 , then the dispersion relation (19) yields 

τ2 =
ω̅2

S2 , which gives the velocity of longitudinal displacement wave. 

The general solution of the dispersion relation (29) is complex valued, but it admits the real solutions for high limit and low 

limit frequencies. Rewriting the equation (29) as given below: 

τ4 − (
ω̅2

S2
+

ω̅2

T2
−

1

l2
2 +

N∗

l2
2 +

iω̅ω∗

α∗
) τ2 +

ω̅2

S2
(

ω2

T2
−

1

l2
2 +

iω̅ω∗

α∗
) = 0 .                     (30) 

For high frequency case (l2ω̅ ≫ 1), we obtain the following two roots of the equation (30) given as 
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τ1 =
ω̅

S
 , τ2 =

ω̅

T
+

ω∗ T

2α∗
 ,                                                                                            (31) 

Similarly for low limit frequency case (l2ω̅ ≪ 1), we obtain the following two roots of the equation (30) given as 

τ1 =
ω̅

S √1 − N∗
 , τ2 =

ω̅

c4
∗ +

i √1 − N∗

l2

 ,                                                                  (32) 

where 

c4
∗ =

2α∗√1−N∗ 

ω∗ l2
 .  c4

∗ is the phase speed of volume fractional wave discussed by (Puri and Cowin 1985). 

III. FORMULATION OF THE PROBLEM 

Consider a two dimensional problem by taking the z-axis pointing into the lower half-space and the plane interface z=0 

separating the uniform micropolar elastic solid half space M1 [z>0] and the micropolar elastic solid half space with porous M2 

[z<0]. A longitudinal wave propagates through the medium M1  and incident at the plane z=0 and makes an angle θ0 with 

normal to the surface. Corresponding to incident longitudinal wave, we get three reflected waves in the medium M1 and four 

refracted waves in medium M2.  

                                                                    A̅1  

                           θ̅1                      A̅2  

                             θ̅2                            A̅3  

                             M2                                            θ̅3                               A̅4 

 θ̅4        

                                                                       θ1  x  

 M1    θ0     θ2                 B3 

                                        θ3                              B2  

 B0                                                     B1  

                                                                         z 

 

Fig.1 Geometry of the problem. 

In medium 𝐌𝟏 

ϕ = B0 exp{ik0 (x sinθ0 – z cosθ0 )– iω1 t} + B1 exp{ik0 (x sinθ1 + z cosθ1 )– iω1 t},                         (33) 

ψ = B2 exp{ik1(x sinθ2 + z cosθ2 ) − iω2 t} + B3 exp{ik2(x sinθ3 + z cosθ3 ) − iω3 t},                  (34) 

Φ2 = EB2 exp{ik1(x sinθ2 + z cosθ2 ) − iω2 t} + FB3 exp{ik2(x sinθ3 + z cosθ3 ) − iω3 t},           (35) 
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Where                              E =
k1

2(k1
2−

ω2

(c2
2+c3

2)
+pq)

D
,                                                                                                        (36) 

F =
k2

2 (k2
2 −

ω2

(c2
2 + c3

2)
+ pq)

D
,                                                                                      (37) 

and 

D = p (2q −
ω2

c4
2

),    k1
2 = λ1

2
ω2,   k2

2 = λ2
2
ω2 .                                                               (38) 

where B0 , B1 , B2 , B3  are amplitudes of incident longitudinal displacement wave, reflected longitudinal wave, reflected coupled 

transverse and reflected micro-rotation waves respectively. 

In medium 𝐌𝟐  

q̅ = ∑ A̅i

i=1,2

P̅i , U̅2 = ∑ A̅i

i=3,4

P̅i , ϕ̅
2

= ∑ η̅
3,4

 A̅i

i=3,4

P̅i ,                                    (39) 

where P̅i = exp{ik̅i(x sinθ̅i– z cosθ̅i) − iω̅1 t} and A̅i (i = 1, 2, 3, 4) are the amplitudes ratios, can be determined using boundary 

conditions at the interface z = 0. The quantities η̅
3,4

 are the coupling parameters between U̅2 (the y-component of vector U̅) and 

ϕ̅
2

 , are given by Parfitt and Eringen (1969) and can be rewritten as below 

η̅
3,4

=  ω̅0
2 [V̅3,4

2 − 2
ω̅0

2

k̅3,4
2 − c̅4

2]

−1

. 

Using equations from (22) into equations (19)-(21), we can write the requisite components of stresses and displacements into 
potential form. The requisite components of stresses are given by 

t̅zz = (λ̅ + 2μ̅ + κ̅) q̅,zz + (2μ̅ + κ̅) U̅2,xz +  λ̅ q̅,xx + β
∗ ψ̅  ,   

t̅zx = (2μ̅ + κ̅) q̅,xz − (μ̅ + κ̅) U̅2,zz + μ̅ U̅2,xx − κ̅ ϕ̅
2

  , 

m̅zy = γ̅ ϕ̅
2,z

  , 

h̅k = α∗ ψ̅
,z

  .                                                                                                                                                         (40) 

where ψ̅ = (∇2 + ξ̅
2

2
) q̅ ,     ξ̅

1

2
=

ω2

c̅3
2+2c̅2

2   ,       ξ̅
2

2
=

ω2

c̅1
2+c̅3

2  . 

and we consider a two dimensional problem in x-z plane by taking  

𝐮 = (u1, 0, u3), Φ = (0, ϕ̅
2

, 0), ψ̅ = ψ̅(x, z ). 

and the requisite components of displacements are given by  

           u1 =  q̅,x − U̅2,z ,   u3 = q̅,z − U̅2,x . 

IV. BOUNDARY CONDITIONS 

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 53 Number 1 January 2018


lalitha
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 27




At the interface between micropolar elastic solid half-space and micropolar porous elastic solid half-space, the appropriate 
boundary conditions are continuity of force stresses, couple stresses, force vector, displacements and microrotation. 

Mathematically, these boundary conditions at the interface z = 0, can be written as: 

  tzz =  t̅zz , tzx = t̅zx , mzy = m̅zy , h̅z = 0, 

t̅zx = Kt(u − u1), t̅zz = Kn(w −  u3), Φ2 = ϕ̅
2

.                                             (41) 

In order to satisfy the boundary conditions, the extension of the Snell’s law will be  

sinθ0

V0

=
sinθ1

V1

=
sinθ2

λ1
−1 =

sinθ3

λ2
−1 =

sinθ1

V̅1

=
sinθ2

V̅2

=
sinθ3

V̅3

=
sinθ4

V̅4

 ,                        (42) 

For longitudinal wave, 

V0 = V1, θ0 = θ1,                                                                                                                      (43) 

Also at  z = 0 

k0V0 = k1V1 = k2λ1
−1 = k3λ2

−1 = k̅1V̅1 = k̅2V̅2 = k̅3V̅3 = k̅4V̅4 = ω.                  (44) 

Making the use of potentials given by equations (33)-(35) and (39) in the boundary conditions given by (41) and using (42)-

(44), we get a system of seven non homogeneous equations which can be written as  

∑ aij

7

j=1

Zj = Yi,        (i = 1,2,3,4,5,6,7 )                                                                               (45) 

where 

Z1 =
B1

B0

, Z2 =
B2

B0

, Z3 =
B3

B0

, Z4 =
A̅1

B0

, Z5 =
A̅2

B0

, Z6 =
A̅3

B0

, Z7 =
A̅4

B0

,                         (46) 

where  Z1 to Z7  are the amplitude ratios of reflected longitudinal wave, reflected coupled wave (CD I) at an angle  θ2, reflected 

coupled-wave (CD II) at an angle θ3, refracted longitudinal displacement wave (LD), refracted longitudinal volume fractional 

wave (LVM) and refracted two sets of coupled waves respectively. Also aij  and Yi  in non-dimensional form are as 

a11 = − {
λ

μ
+ D2cos2θ1} , a12 = −D2sinθ2cosθ2

k2
2

k0
2 ,   

a13 = −D2sinθ3cosθ3  
k3

2

k0
2   , a14 = (

2μ̅ + κ̅

μ
) {

k̅1

2

k0
2 sin

2
θ̅1 −

ξ̅
1

2

k0
2
} ,   

 a15 = (
2μ̅ + κ̅

μ
) {

k̅2

2

k0
2 sin

2
θ̅2 −

ξ̅
1

2

k0
2
} , a16 = (

2μ̅ + κ̅

μ
)

k̅3

2

k0
2  sinθ̅3 cosθ̅3 , 

  a17 = (
2μ̅ + κ̅

μ
)

k̅4

2

k0
2  sinθ̅4 cosθ̅4 , Y1 = a11. 

a21 = D2sinθ1cosθ1 , a22 = − {(D1cos2θ2 − sin
2
θ2) −

κ

μ

E

k2
2
}

k2
2

k0
2 , 
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a23 = − {(D1cos2θ3 − sin
2
θ3) −

κ

μ

F

k3
2
}

k3
2

k0
2  , a24 = (

2μ̅ + κ̅

μ
)

k̅1

2

k0
2  sinθ̅1 cosθ̅1 , 

a25 = (
2μ̅ + κ̅

μ
)

k̅2

2

k0
2  sinθ̅2 cosθ̅2 , a26 = − (

μ̅ + κ̅

μ
)

k̅3

2

k0
2  sinθ̅3 cosθ̅3 −

κ̅ η̅
3

μ k0
2 , 

a27 = − (
μ̅ + κ̅

μ
)

k̅4

2

k0
2  sinθ̅4 cosθ̅4 −

κ̅ η̅
4

μ k0
2  , Y2 = a12. 

a31 = 0 , a32 == Eγ cosθ2

δ1

k0

 , a33 = Fγcosθ3

δ2

k0

 , a34 = a35 = 0 ,  

a36 = η̅
3
 γ̅ cosθ̅3

k̅3

k0

 , a37 = η̅
4
 γ̅ cosθ̅4

k̅4

k0

 , Y3 = a31. 

a41 = a42 = a43 = a46 = a47 = 0, a44 =
k̅1

k0

(k̅1

2
− ξ̅

2

2
) cosθ̅1 ,   

a45 =
k̅2

k0

(k̅2

2
− ξ̅

2

2
) cosθ̅2 , Y4 = a41. 

a51 = −i sin θ1  , a52 =
ik2

k0

cosθ2 , a53 =
ik3

k0

cosθ3 , 

a54 = (2μ̅ + κ̅)
k̅1

2

Kt k0

 sinθ̅1 cosθ̅1 +
ik̅1

k0

sinθ̅1 , 

a55 = (2μ̅ + κ̅)
k̅2

2

Kt k0

 sinθ̅2 cosθ̅2 +
ik̅2

k0

sinθ̅2 , 

 a56 = − {(μ̅ + κ̅)
k̅3

2

Kt k0

 sinθ̅3 cosθ̅3 −
ik̅3

k0

cosθ̅3 +
κ̅ η̅

3

Kt k0

},  

a57 = − {(μ̅ + κ̅)
k̅4

2

Kt k0

 sinθ̅4 cosθ̅4 −
ik̅4

k0

cosθ̅4 +
κ̅ η̅

4

Kt k0

} , Y5 = −a51. 

a61 = −icosθ1 , a62 =
ik2

k0

sinθ2 , a63 =
ik3

k0

sinθ3 ,  

a64 = (
2μ̅ + κ̅

Kn

) {
k̅1

2

k0
2 sin

2
θ̅1 −

ξ̅
1

2

k0
2
}  +

ik̅1

k0

cosθ̅1 , 

a65 = (
2μ̅ + κ̅

Kn

) {
k̅2

2

k0
2 sin

2
θ̅2 −

ξ̅
1

2

k0
2
}  +

ik̅2

k0

cosθ̅2 ,   

a66 = (
2μ̅ + κ̅

Kn

)
k̅3

k0

sinθ̅3 cosθ̅3 −
ik̅3

k0

sinθ̅3 , 
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 a67 = (
2μ̅ + κ̅

Kn

)
k̅4

k0

sinθ̅4 cosθ̅4 −
ik̅4

k0

sinθ̅4 , Y6 = a61. 

a71 = 0, a72 = −E, a73 = −F, a74 = a75 = 0, a76 = η̅
3
 , 

 a77 = η̅
4
 , Y7 = a71.                                                                                                      (47) 

where  

D1 = 1 +
λ

μ
, D2 = 1 + D1. 

V. PARTICULAR CASES 

Case I: Normal force stiffness (Kn ≠ 0, Kt → ∞) 

In this case, we obtain a system of seven non homogeneous equations as those given by equation (45) with changed aij as  

a54 =
ik̅1

k0

sinθ̅1 , a55 =
ik̅2

k0

sinθ̅2 , a56 =
ik̅3

k0

cosθ̅3 , a57 =
ik̅4

k0

cosθ̅4 .              (48)  

Case II: Transverse force stiffness (Kn → ∞, Kt ≠ 0) 

In this case also, a system of seven non homogeneous equations as those given by equation (45) is gained with changed aij as 

given below 

a64 =
ik̅1

k0

cosθ̅1 , a65 =
ik̅2

k0

cosθ̅2 , a66 = −
ik̅3

k0

sinθ̅3 , a67 = −
ik̅4

k0

sinθ̅4 .                 (49) 

Case III: Welded contact (Kn → ∞, Kt → ∞) 

Again in this case, also, a system of seven non homogeneous equations as those given by equation (45) is obtained with 

changed aij as 

a54 =
ik̅1

k0

sinθ̅1 , a55 =
ik̅2

k0

sinθ̅2 , a56 =
ik̅3

k0

cosθ̅3 , a57 =
ik̅4

k0

cosθ̅4 , 

a64 =
ik̅1

k0

cosθ̅1 , a65 =
ik̅2

k0

cosθ̅2 , a66 = −
ik̅3

k0

sinθ̅3 , a67 = −
ik̅4

k0

sinθ̅4 .      (50) 

VI. NUMERICAL RESULTS AND DISCUSSION 

The theoretical results obtained above indicate that the amplitudes ratios Zi(i = 1,2,3,4,5,6,7 ) depend on the angle of incidence 

of incident wave and elastic properties of half spaces. In order to study in more detail the behavior of various amplitudes ratios. 

Following Gauthier (1982), the physical constants for micropolar elastic solid are  

λ = 7.59 × 1011dyne/cm2, μ = 1.89 × 1011dyne/cm2, 

κ = 0.0149 × 1011dyne/cm2, ρ = 2.19gm/cm3 

γ = 0.0268 × 1011 dyne , j = 0.0196 cm2,
ω2

ω0
2

= 20.                                      (51) 
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For a particular modal microplar porous elastic solid, the physical constants are given as 

λ̅ =  5.5 × 1011dyne/cm2, μ̅ = 2.14 × 1011dyne/cm2,  

κ̅ = 0.129 × 1011dyne/cm2, γ̅ = 1.88 × 1011dyne/cm2. 

j ̅ = 0.0166 cm2, ρ̅ = 2.2 gm/cm3,  ξ∗ = 10 × 1011dyne/cm2,  

β
∗ = 8 × 1011dyne/cm2 ,  ω∗ = 0.01 × 1011dyne/cm2, 

 α∗ = 0.002 × 1011dyne/cm2,                                                                                             (52) 

A computer programme in MATLAB has been evolved to calculate the modulus of amplitude ratios of various reflected and 

refracted waves for the particular model and to depict graphically. Zi(i = 1,2,3) and Zi(i = 4,5,6,7) represents the modulus of 

amplitude ratios for reflected and refracted waves respectively. The variations in all the figures are shown for the range 0o ≤

θ0 ≤90o. Figures (2) – (34) represent the variations of the amplitude ratios of reflected and refracted waves with angle of 

incidence of incident longitudinal wave. 

In all these figures dashed line represent the general case GEN of imperfect boundary, bold dotted line represent the normal 

force stiffness case NFS, bold dashed line represents the transverse force stiffness case TFS and solid line represents the welded 

contact case WD. 

For the case of high frequency: 

Figures (2) – (4), shows the variations of amplitude ratios Zi(i = 1,2,3) with respect to angle of incidence, when a longitudinal 

wave (LD wave) is incident obliquely at the interface with the frequency ω̅=500rad/s. The behavior of distribution of all curves 

is different. Figure (2) shows the variation of amplitude ratio of reflected LD wave. The amplitude ratio first rapidly increases to 

their maximum value at the angle of incidence 17o and after that rapidly decrease at the angle of incidence near by 18o for the 

case WD. For the cases GEN and TFS, firstly decreases with the corresponding angle and getting minimum value at angle 65o 

and after that increases with the corresponding angle, for the case (NFS), firstly decreases with the corresponding angle and 

getting minimum value at angle 71o and after that increases with the corresponding angle. Figure (3), shows the variation of 

amplitude ratio of reflected CD I, the values for WD sharply increases with the corresponding angle and getting maximum 

value at angle 18o and then sharply decreases at the same angle and approaches to zero and after that increases and decreases 

values are corresponding with the angle. The maximum values for the welded contact are large than all other cases. Figure (4), 

shows the variation of amplitude ratio of reflected CD II. The maximum values for the welded contact are large than all other 

cases. Also effect of stiffness is very clear. 

In figures (5) – (12), shows the variations of amplitude ratios Zi(i = 4,5,6,7)  with angle of incidence of incident longitudinal 

wave (LD wave). The behavior of all curves is different. In figures (5) – (6), shows the variations of amplitude ratios of 

refracted LD wave and the behavior for GEN and NFS is oscillatory. Figure (6), the values for WD increases with the 

corresponding angle and getting maximum value at angle 18o and sharply decreases at the same angle. After that it decreases 

with the corresponding angle and approaches to zero. The value for TFS decreases with the corresponding angle. 

In figures (7) – (8), shows the variations of amplitude ratios of refracted LVM wave, the behaviour in figures (7) – (8) are 

approximately same as in the figures (5) and (6). In figures (9) – (10), shows the variations of amplitude ratios of refracted CD I 

wave, the behavior in all cases is same i.e. first increases and takes maximum values and then decreases and approaches to zero. 

In figures (11) – (12), shows the variations of amplitude ratios of refracted CD II wave, discussions about the figures (11) – (12) 

are same as in the figures (9) and (10). 

For the case of low Frequency: 
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In figures (13) – (23), shows the variation of modulus values of amplitudes ratios of various reflected and refracted  waves with 

respect to angle of incidence, when a longitudinal wave (LD wave) is incident obliquely at the interface with the frequency 

ω̅=10rad/s. The figures (13) – (23), for the low frequency are approximately same as high frequency.  

Absence of micropolarity in the case of low Frequency: 

In figures (24) – (34), shows the variations of amplitude ratios Zi(i = 1,2,3,4,5,6,7) with respect to angle of incidence, when a 

longitudinal wave (LD wave) is incident obliquely at the interface with the frequency ω̅=10rad/s. The behavior of distribution of 

all curves is different. In figures (24) – (25), show the variation of amplitude ratio of reflected LD wave, the values for WD and 

NFS, smoothly decreases to their minimum value at the angle of incidence 65o and then increases and takes maximum values. 

The values of |Z1| for GEN case are oscillatory with angle of incidence. The value for TFS are rapidly increases and takes 

maximum value at the angle of 8o and sharply decreases and takes minimum value at the angle of 9o and lastly decreases with 

corresponding the angle. In figure (26), show the variation of amplitude ratio of reflected CD I wave, the values for GEN and 

NFS are increases with increase in angle of incidence and takes maximum value and then starts to decrease and takes minimum 

value. For TFS case the value of modulus of amplitude ratio sharply increases at an approximate angle 10o and then decreases 

and tends to zero value. The values are small for WD case. Figure (27), shows the variation of amplitude ratio of reflected CD II 

wave, values of all parameter are same as the figure (26). 

Figures (28) – (29) show the variation of amplitude ratios of reflected LD wave, the values for GEN, NFS and WD are 

monotonic with corresponding angle and the values for TFS are getting maximum value at the angle of  9o and after that 

decreases with corresponding the angle and approaches to zero value. Figures (30) – (31) show the variations of amplitude 

ratios of refracted LVM wave, behavior of figures (30) – (31) are same as the figures (28) and (29) but values are different 

behavior of modulus of amplitude ratio. Figures (32), shows the variations of amplitude ratios of refracted CD I wave, the 

values for GEN, NFS and WD cases are increases as well as decreases with corresponding angle and getting maximum value at 

the angle of 20o approximately. Behaviour of figure (33) is same like as figure (29). Figure (34) shows the variation of 

amplitude ratio of refracted CD II wave, values of all parameter are same as the figure (26). Comparing the figures (13) – (23) 

to corresponding figures from (14) – (24), the effect of micropolarity is very clear.   
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Fig.2-4. (High frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 1, 2, 3) with angle of incidence of the incident 

LD wave. 
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Fig.5-12. (High frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 4,5,6,7) with angle of incidence of the 

incident LD wave. 
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Fig.13-15. (Low frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 1, 2, 3) with angle of incidence of the 

incident LD wave. 
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Fig.16-23. (Low frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 4,5,6,7) with angle of incidence of the 

incident LD wave. 
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Fig.24-27. (Low frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 1, 2, 3 ) with angle of incidence of the 

incident LD wave (micropolarity approaches to zero). 
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Fig.28-34. (Low frequency case) Variation of modulus amplitudes ratios |Zi|, (i = 4, 5, 6, 7) with angle of incidence of the 

incident LD wave (micropolarity approaches to zero). 

VII. CONCLUSION 

The analytic expression for the reflection and refraction coefficients of various reflected wave and refracted waves has been 

derived for the normal force stiffness, transverse force stiffness and welded contact. The results are consider to be useful in 

further theoretical and observational studies of propagation of waves in more realistic models of micropolar elastic solid present 

in the interior of earth. Making the use of appropriate set of boundary conditions, the system of simultaneous equations giving 

the amplitudes of various reflected and refracted waves are obtained. 

(a) The amplitudes of various reflected and refracted waves are found to be complex valued. 

(b) The modulus of amplitudes of various reflected and refracted waves depend upon angle of incidence, frequency, 

stiffness of forces and elastic properties of materials of the medium. 

(c) Maximum amount of incident energy is carried along the reflected and refracted longitudinal displacement wave. 

(d) For limit high and low frequency cases, the void volume fractional wave is more influenced by the micropolarity of the 

medium.  
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