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Abstract

In this article, we use advection diffusion equation for nutrient up-
take by the aquatic root which is considered as cylindrical, i.e, we
obtain concentration of nutrient entering into the root surface by ad-
vection diffusion equation. The equation is written in the radial form
and solved using Michal Menten boundary condition, which is nonlin-
ear boundary condition. It is found that generally advection diffusion
is solved taking Peclet number as zero, then equation reduces to the
diffusion equation and solved by Laplace method [10]. But we solve
the advection diffusion equation without taking Peclet number as zero
and solved by re-scaling and using separation of variable which reduces
it into Bessel’s equation. For particular solution, we use extreme pa-
rameters.

∗

Key words and Phrases: Solution of advection diffusion equation, Re-scaling variable,
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1 Introduction

The primary physiological function of root is uptaking the water as well
as nutrients and transport to leaves for photosynthesis. Investigations and
observation of the uptake of water and nutrient in plant root and stem can
be traced back to many years ago, it possesses importance in point of view of
agricultural production and economical development[4,8-10]. In traditional
farming like planting and agricultural the mechanism of water and nutrients
is invaluable for utilizing water and fertilizer for increasing production. Now a
new trend of planting inedible plant, emerge on industrial basis. also Aquatic
plant help to purify water in the Dam or River.

In recent years, a number of researchers from various fields, such as
physics, applied mathematics and plant physiology, paid more attention to
develop mathematical model for water and nutrient uptake. The outstanding
work in this field is done by T.Roose and proposed a mathematical model for
uptake of water and nutrient. Roose work is the development of Nye, Tin-
ker and Barber model for water and nutrient uptake assuming that the root
is an infinitely long cylinder. To develop Mathematical model, we first de-
rive advection diffusion equation of nutrient transport in the water and then
try to solve the advection diffusion equation by transforming it into non-
dimensional form and using Michal Menten boundary condition as boundary
condition. We re-scale the equation and reduce into the Bessel’s equation,
so we write solution in terms of Bessel’s function.

I already workout this problem for nutrient uptake by plant root from
groundwater in my Ph.D. Thesis. In this paper we tried to this problem
for aquatic plant.In this paper we derived mathematical models and obtain
solutions with different situation.

2 Advection diffusion equation for nutrient

in water

The aquatic root are mainly surrounded by liquid and gas. We indicate φl
volume fraction of soil occupied by the liquid, and φg volume fraction of soil
occupied by gas. Other phases like microbes, mucigel etc are neglected. The
conservation of soil volume equation is written as:

φg + φl = 1. (2.1)

Nutrient comes in contact with surface of the root by flow of water in which
diffusion of nutrient takes place. Then the equation for ions in the liquid
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phase is written as

∂

∂t
(φlcl) +∇.(clu) = ∇.(φlD∇cl), (2.2)

where u is the Darcy flux of water, cl is the nutrient concentration and D is
the diffusion coefficient in the liquid, Hence, the equation (2.2) in terms of
cl becomes,

(φl)
∂cl
∂t

+∇.(clu) = ∇.(φlD∇cl). (2.3)

Noting cl = c and writing equation (2.3) in radial polar coordinates we get

(φl)
∂c

∂t
− aV

r

∂c

∂r
= Dφl

1

r

∂

∂r
(r
∂c

∂r
), (2.4)

where a is the radius of the root. The water flux is given by u = −aV
r

,
which derives from the law of mass conservation for water, i.e, ∇.u = 0. The
quantity V is the Darcy flux of water into the root [1].

3 Boundary condition

Root surface accept the nutrient up to a certain level even if the nutrient
concentration in liquid increases indefinitely. It is also verified that the root
surface accept nutrient up to a critical level(low) of nutrient in liquid phase
near the root surface below which first it stop the uptake of nutrient and
then start bleeding in the liquid. The experimentally measured, heuristic
Michaelis-Menten type nutrient uptake boundary condition is therefore given
by, see [6]

φlD
∂c

∂r
+ V c =

Fmc

Km + c
− E, (3.1)

at r = a.
Where c indicate the concentration of nutrient in the liquid, Km indicate

the Michaelis-Menten constant that is equal to the root surface nutrient con-
centration when the flux of nutrient into the root is half of the maximum pos-
sible, Fm indicate the maximum flux of nutrient into the root, E = Fmcmin

Km+cmin
where cmin indicate the minimum concentration when the roots stop the
uptake of nutrients, and a is the radius of the root.

4 Initial Condition and boundary condition

Initial condition can be write as for t = 0

c = c0 at t = 0 for a < r <∞, (4.1)
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for later time
c→ c0 as r →∞ for t > 0. (4.2)

5 Non-dimensionalisation of Nutrient Trans-

port equation

Choosing time, space, and concentration-scale as follows and substitute in
(2.4)

t =
a2

D
t∗, r = ar∗, c = Kmc

∗. (5.1)

Where c∗, t∗ andr∗are dimensionless nutrient concentration, time, and radial
variables,respectively, we obtain (after dropping ∗s) the following dimension-
less model

∂c

∂t
− Pe

1

r

∂c

∂r
=

1

r

∂

∂r
(r
∂c

∂r
), (5.2)

with boundary conditions

∂c

∂r
+ Pec = λ

c

1 + c
− ε at r = 1. (5.3)

c→ c∞ as r →∞ for t > 0, (5.4)

the dimensionless initial condition is given by

c = c∞ at t = 0 for 1 < r <∞. (5.5)

the dimensionless parameters in above equations are defined as

Pe =
aV

Dφl
, λ =

Fma

DKmφl
, ε =

Ea

DKmφl
, c∞ =

c0
Km

. (5.6)

equation (5.2) write as

∂c

∂t
− (

Pe + 1

r
)
∂c

∂r
=
∂2c

∂r2
, (5.7)

implies
∂c

∂t
= (

Pe + 1

r
)
∂c

∂r
+
∂2c

∂r2
, (5.8)

re-scaling with r = (1+Pe)R, then ∂r = (1+Pe)∂R. Then equation (5.8)
become

(1 + Pe)
∂c

∂t
=

∂2c

∂R2
+

1

R

∂c

∂R
, (5.9)
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Corresponding boundary condition changes

∂c

∂R
+ (1 + Pe)Pec = λ(1 + Pe)[

c

1 + c
− ε], at R =

1

1 + Pe
, (5.10)

for λ = Fma
DKmφl

value of λ with large value of φ and small radius R we have

λ ≡ 0. (5.11)

Then the boundary condition becomes

∂c

∂R
+ (1 + Pe)Pec = 0, (5.12)

Consider c(R, t) = U(R)T (t) substituting in (5.9) and (5.12) then it be-
comes

1

T
(1 + Pe)

∂T

∂t
=

1

U
[
∂2U

∂R2
+

1

R

∂U

∂R
], (5.13)

corresponding boundary condition becomes

∂U

∂R
+ (1 + Pe)PeU = 0. (5.14)

From the equation (5.9) we can write

1

T
(1 + Pe)

∂T

∂t
=

1

U
[
∂2U

∂R2
+

1

R

∂U

∂R
] = −β2. (5.15)

We have the Bessel equation with boundary condition

∂2U

∂R2
+

1

R

∂U

∂R
+ β2U = 0. (5.16)

∂U

∂R
+ (1 + Pe)PeU = 0, at R =

1

1 + Pe
(5.17)

and
∂T

∂t
= − β2

1 + Pe
T. (5.18)

c = c∞ at t = 0 as 1 < R <
1

1 + Pe
(5.19)

Solution of Bessels equation is given by,

U(β,R) = J0(βR)[βY1(β
1

(1 + Pe)
) + Pe(−1− Pe)Y0(β

1

(1 + Pe)
)]

−Y0(βR)[βJ1(β
1

(1 + Pe)
) + Pe(−1− Pe)J0(β

1

1 + Pe
)], (5.20)
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also

N(β) = [βJ1(β
1

(1 + Pe)
) + (−1− Pe)J0(β

1

(1 + Pe)
)]2

+[βY1(β
1

(1 + Pe)
) + (−1− Pe)Y0(β

1

(1 + Pe)
)]2. (5.21)

Replacing R by R = r
(1+Pe)

in equation (5.20)
Above solution of Bessels equation become

U(β, r) = J0(β
r

(1 + Pe)
)[βY1(β

1

(1 + Pe)
) + Pe(−1− Pe)Y0(β

1

(1 + Pe)
)]

−Y0(β
r

(1 + Pe)
)[βJ1(β

1

(1 + Pe)
) + Pe(−1− Pe)J0(β

1

1 + Pe
)].(5.22)

Then the complete solution is given by, see [5]

c(r, t) =

∫ ∞
β=0

β

N(β)
e−

1
(1+Pe)

β2tU(β, r)dβ

∫ ∞
r′=1

r′U(β, r′)c∞dr
′. (5.23)

Amount of nutrient absorb by root is given as, [2,3]

M = 2πrt
∂c

∂t
. (5.24)

6 Steady state uptake of nutrient

Consider equation (5.7) with boundary condition (5.3) and (5.5) in steady
state it takes the form

∂2c

∂r2
+

(1 + Pe)

r

∂c

∂r
= 0, (6.1)

with the substitution r = (1 + Pe)R equation (6.1) changes to the form

∂2c

∂R2
+

1

R
(
∂c

∂R
) = 0. (6.2)

With the assumption of section (5.1), λ approaches to zero and ε is of
order zero then boundary condition for (5.12) is the equation changes to the
form,

∂c

∂R
+ (1 + Pe)Pec = 0. (6.3)
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And initial condition changes to c→ c∞ as R→∞fort > 0

c = c∞, at t = o for
1

1 + Pe
< R <∞, (6.4)

we may take for large R as L Solution of equation (6.2) is given by, see [2,3],

c = A+BlogR. (6.5)

We can find the arbitrary constant A and B by applying initial and boundary
condition as follwes
B
R

+ (1 + Pe)Pe(A+BlogR) = 0 at R = 1
1+Pe

,

B = − (1 + Pe)Pec∞
[(1 + Pe) + (1 + Pe)Pe log

1
L(1+Pe)

]
. (6.6)

A = c∞ +
(1 + Pe)Pec∞

[(1 + Pe) + (1 + Pe)Pe log
1

L(1+Pe)
]
logL. (6.7)

Then the general solution for equation is given by
c = c∞ + (1+Pe)Pec∞

[(1+Pe)+(1+Pe)Pe log
1

L(1+Pe)
]
logL− (1+Pe)Pec∞

[(1+Pe)+(1+Pe)Pe log
1

L(1+Pe)
]
logR.

c = c∞ +
Pec∞

[1 + Pe log
1

L(1+Pe)
]
logL− Pec∞

[1 + Pe log
1

L(1+Pe)
]
logR, (6.8)

solution modified as

c(R) = c∞[1 +
Pelog

L
R

[1 + Pe log
1

L(1+Pe)
]
], (6.9)

replacing value of R is

c(r) = c∞[1 +
Pelog

L(1+Pe)
r

[1 + Pe log
1

L(1+Pe)
]
]. (6.10)

Solution of steady state advection diffusion equation is written as

c(r) = c∞[
1− Pelogr

1− PelogL(1 + Pe)
], (6.11)

total nutrient uptake per unit length is given by

Q = −2πDc∞
r − Pe

1− PelogL(1 + Pe)
. (6.12)
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7 Nutrient transport equation with c∞ << 1

and ε < Pe << 1

In this section we consider Pe, ε and c∞ are negligible. If Michaelis-Menten
coefficient K∞ much larger than the far field concentration c0 ,i.e., c∞ << 1,
the equation (5.2) reduces to the form

∂c

∂t
=

1

r

∂

∂r
(r
∂c

∂r
). (7.1)

∂c

∂t
=
∂2c

∂r2
+

1

r

∂c

∂r
. (7.2)

Corresponding boundary condition reduces to the form

∂c

∂r
= λ

c

1 + c
, (7.3)

re-scaling c = c∞C then the model in scaled concentration is written as

∂C

∂t
=
∂2C

∂r2
+

1

r

∂C

∂r
, (7.4)

scaled boundary condition are as follows

∂C

∂r
= λ

C

1 + c∞C
, r = 1 and C → 1 as r →∞. (7.5)

for c∞ << 1 we can approximate the root surface boundary condition,using
the binomial expansion,at the leading order given by

∂C

∂r
≈ λC at r = 1. (7.6)

Initial condition scaled in following manner

C = 1 at t = 0 for 1 < r <∞. (7.7)

We solve the above boundary value problem by separation of the variables
.substituting the substitution C(r, t) = T (t)U(r) the value in equation (7.4)
we have

1

U
[
∂2U

∂r2
+

1

r

∂U

∂r
] =

1

T
[
∂T

∂t
] = −β2. (7.8)

Now consider the boundary value problem

∂2U

∂r2
+

1

r

∂U

∂r
+ β2U = 0. (7.9)
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With the boundary condition

dU

dr
− λU = 0. (7.10)

The complete solution is given by, see [5],

C(r, t) =

∫ ∞
β=0

β

N(β)
e−β

2tU(β, r)dβ

∫ ∞
r=1

r′U(β, r′)dr′, (7.11)

where U(βm, r) is eigenvalue function.

U(β, r) = J0(βr)[βY1(β) + λY0(β)]− Y0(βr)[βJ1(β) + λJ0(β)]. (7.12)

N(β) = [βJ1(β) + λJ0(β)]2 + [βY1(β) + λY0(β)]2. (7.13)

So the general solution of equation is given by

c(r, t) =

∫ ∞
β=0

β

N(β)
e−β

2tR(β, r)dβ

∫ ∞
r=1

r′R(β, r′)dr′. (7.14)

8 Advection diffusion equation with Case c∞ <<

1and ε << 1

With the very very small space concentration ε value is negligible for the ad-
vection diffusion equation (5.2) with boundary condition (5.3) can be reduced
in the diffusion equation by re-scaling r = (1 + Pe)R and c = c∞C

‘(1 + Pe)
∂C

∂t
=
∂2C

∂R
+

1

R

∂C

∂R
. (8.1)

∂C

∂R
+ (1 + Pe)PeC = λ(1 + Pe)[

C

1 + c∞C
] at R =

1

1 + Pe
, (8.2)

for c∞ << 1 we can approximate the root surface boundary condition,using
the binomial expansion,at the leading order given by

∂C

∂R
+ (1 + Pe)PeC = λ(1 + Pe)C at R =

1

1 + Pe
. (8.3)

∂C

∂R
+ [(1 + Pe)Pe − λ(1 + Pe)]C = 0 at R =

1

1 + Pe
. (8.4)

∂C

∂R
+ (1 + Pe)(Pe − λ)C = 0 at R =

1

1 + Pe
. (8.5)
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The complete solution is given by separation of variable as similar to equation
(7.8) with the substitution C(R, t) = U(R)T (t)

C(R, t) =

∫ ∞
β=0

β

N(β)
e−β

2tU(β,R)dβ

∫ ∞
R= 1

1+Pe

R′U(β,R′)dR′ (8.6)

where U(βm, R) is solution of Bessel equation.

U(β,R) = J0(βR)[βY1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)Y0(βR)]

−Y0(βr)[βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1

1 + Pe
)]. (8.7)

N(β) = [βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1

1 + Pe
)]2

+[β
1

1 + Pe
Y1(β) + (1 + Pe)(Pe − λ)Y0(β

1

1 + Pe
)]2. (8.8)

Re-substituting value of R = r
1+Pe

U(β, r) = J0(β
r

1 + Pe
)[βY1(β

1

1 + Pe
) + (1 + Pe)(Pe − λ)Y0(βR)]

−Y0(βr)[βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1

1 + Pe
)], (8.9)

so the general solution of equation is given by

c(r, t) = c∞

∫ ∞
β=0

β

N(β)
e−β

2tU(β, r)dβ

∫ ∞
r=1

r′U(β, r′)dr′. (8.10)

9 High Nutrient uptake forλ >> 1

If the gradient of nutrient concentration near root surface is high, i.e., ∂c
∂r
|r=1 =

λ >> 1 for c ∼ O(1). Then re-scaling the independent variables r and t to
stretched variables R and T i.e. r = 1 + R

λ
and t = T

λ2
, the problem reduces

to
∂c

∂T
=

∂2c

∂R2
+

1

R + λ

∂c

∂R
. (9.1)

Which at the leading order simplifies to

∂c

∂T
=

∂2c

∂R2
, (9.2)
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since 1
λ+R

<< 1 for λ >> 1. The re-scaled boundary conditions are

∂c

∂R
= c at R = 0 and c→ 1 as R→∞, (9.3)

and the initial condition is c = 1 at T = 0 for 0 < R <∞. Then the general
solution to this leading order problem is given by

c(R, T ) = erf(
R

2
√
T

) + eR+T erfc(
R

2
√
T

+
√
T ), (9.4)

with the flux F (T ) = ∂c
∂R

∂R
∂r
|R=0, of nutrient into the root given by

F (T ) = λeT erfc(
√
T ). (9.5)

As T → ∞, the concentration of nutrient at the surface c → 0 and F → 0,
since eT erfc(

√
T )→ 0 as T →∞.

10 Zero-sink Model

For t > tc ∼ 1
λ2

the root surface nutrient concentration has dropped to a
very low level then we take the boundary condition at the root surface at the
leading order to be c = 0 at r = 1, i.e, the problem to be solved is, see [7],

∂c

∂t
+

(−Pe)
r

∂c

∂r
=

1

r

∂

∂r
(r
∂c

∂r
) (10.1)

c = 0 at r = 1 and c→ 1 as r →∞, (10.2)

Let q = Pe + 1 the equation (10.1) becomes

∂c

∂t
=
∂2c

∂r2
+
q

r

∂c

∂r
. (10.3)

Using variable separation technique where λ is the separation constant yield

1

T

∂T

∂t
=

1

U
[
∂2U

∂r2
+
q

r

∂U

∂r
] = −λ. (10.4)

Then above equation reduces to the equations

∂T

∂t
+ λT = 0. (10.5)

r
∂2U

∂r2
+ q

∂U

∂r
+ rλU = 0, (10.6)
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R(1) = 0 (10.7)

the time function T (t) is the exponential solution of equation (10.5) is

Ti(t) = e−λit. (10.8)

The solution of spatial function R(r) is obtained by power series method
used for bessel equation

Ri(r) =
∞∑
n=0

(−1)n(r
√
λi)

2n

22n−γn!.Γ(ν − γ + 1).λ
γ
2
i

with γ =
1− q

2
= −Pe

2
, (10.9)

given solution can be represented using a negative γ -order Bessel function
J−γ of the first kind. The separation constant λi of a specific problem is
a scaled version of the general Bessel function roots to accommodate the
boundary condition at r=1

Ri(r) = rγ.J−γ(r
√
λi)r=1 = 0,

√
λi = si, (10.10)

combining the spatial and time function solution we get desired solution as
an infinite sum of eigenfunctions as

C(r, t) = Σ∞t=0[Air
γ.J−γ(r

√
λi)e

−λit]. (10.11)

According to the Sturm-Liouville theory orthogonal base functions corre-
spond to the weights rq. The coefficient Ai can be adjusted using a Fourier-
Bessel decomposition

Ai =

∫ 1

0
J(sir).r

γ+qdr∫ 1

0
[J(sir)]2.r2γ+qdr

. (10.12)

11 Zero-sink Model with Pe << 1

The equation (10.1) is reduced to the form as,

∂c

∂t
=

1

r

∂

∂r
(r
∂c

∂r
). (11.1)

c = 0 at r = 1 and c→ 1 as r →∞, (11.2)

c = 1 at t = 0 as 1 < r <∞.
Separating the variables solution for time-variable function is given by e−β

2t

and space variable function U(β, r) is the solution of the following problem

d2U

dr2
+

1

r

dU

dr
+ β2U = 0 for 1 < r <∞, (11.3)
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c = 0 at r = 1. (11.4)

Then the complete solution for c(r, t) is constructed as

c(r, t) =

∫ ∞
β=0

C(β)e−β
2tR(β, r)dβ, (11.5)

with the application of initial condition we get

1 =

∫ ∞
β=0

c(β)U(β, r)dβ in 1 < r <∞, (11.6)

using the orthogonality of eigenvalue functions we have

C(β) ≡ 1

N(β)
β

∫ ∞
r′=1

r′R(β, r′)dr′. (11.7)

Substituting equation (10.7) into equation (10.5) gives

c(r, t) =

∫ ∞
β=0

β

N(β)
e−β

2tU(β, r)dβ

∫ ∞
r′=1

r′R(β, r′)dr′. (11.8)

Where
U(β, r) = J0(βr)Y0(β)− Y0(βr)J0(β), (11.9)

and
N(β) = [J2

0 (β) + Y 2
0 (β)]. (11.10)

Then complete integral is given by

c(r, t) =

∫ ∞
β=0

β

J2
0 (β) + Y 2

0 (β)
e−β

2t[Y0(βr)J0(β)]dβ − J0(βr)Y0(β)

.

∫ ∞
r′=1

r′[J0(βr
′)Yo(β)− Y0(βr′)J0(β)]dr′. (11.11)

12 Conclusion

Similarly to nutrient uptake mathematical model for plant root from ground-
water, In this paper, we developed mathematical model for nutrient uptake
by aquatic plant root.

We solved radial advection diffusion by re-scaling and reduced it by sep-
aration of variables into Bessel’s equation rather than Laplace method used
in [10], in which whenever Laplace method is used for solving advection dif-
fusion, we have to choose always Pe << 1. The method used in this article
is one of the best alternative to Laplace method used in [10] and not always
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necessary to choose Pe << 1 due to which it reducing the advection diffusion
equation into diffusion form.

we also developed the model for high sink of nutrient by root and model
for zero sink of nutrient by root of aquatic plant
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