Cyclic Codes of Prime Power Length from Generalized Cyclotomic Classes of Order 4 and

8
Pankaj ${ }^{\# 1}$, Manju Pruthi ${ }^{\# 2}$
\# Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India

Abstract

In this paper, we first introduce generalized cyclotomic classes of order 4 and 8 and then present a special class of cyclic codes with length p^{m}. We also obtain lower bound on the minimum odd weight of these codes.

Keywords: Cyclotomy, Generator Polynomial, Cyclic code
MSC 2010: $11 T x x$, 11T22, 11T71, 68P30, 94Bxx, 94B15

1. INTRODUCTION

Cyclic Codes are a small but highly structured subclass of linear codes. Cyclic codes have been studied for decades and a lot of progress has been made and many important results in the field of cyclic codes have been found (for example, see [2]-[4], [7]-[13], [15] etc). Recently, several classes of cyclic codes using two-prime Whiteman's generalized cyclotomic sequences and cyclotomic sequences of order 4 have been presented by C. Ding in [9] and [8] respectively and lower bounds on the nonzero minimum hamming weight of some cyclic codes were developed at the same time. In [35] and [37], several classes of cyclic codes have been constructed by employing Whiteman's generalized cyclotomic sequences of order 4 and 6 respectively. In [17], Pramod Kumar Kewat and Preeti Kumari employed Whiteman's generalized cyclotomic sequences of order 6 to construct several classes of cyclic codes. In [25], [26] and [27], several classes of cyclic codes over the finite field $G F(q)$ with length $n_{1} n_{2}$ have been obtained using the two-prime Whiteman's generalized cyclotomic sequences of order $8,2^{r}, r \geq 2$ and $2 l, l \geq 2$ respectively and the lower bounds of the minimum distance of these cyclic codes are also obtained.

Quadratic residue codes [23, ch. 6] of prime length are a class of interesting error-correcting codes due to a high minimum distance. Those codes have a "square-root bound" which roughly asserts that the square of the minimum distance is greater than the block length. A more general class of codes with the square-root bound on their minimum odd weight is the duadic codes defined by Leon, Masley and Pless [19], [28].
Let n be a positive composite integer. A partition $\left\{D_{0}, D_{1}, D_{2}, \cdots, D_{d-1}\right\}$ of Z_{n}^{*} is a family of sets with

$$
D_{i} \cap D_{j}=\emptyset \text {, for all } i \neq j, \quad \bigcup_{i=0}^{d-1} D_{i}=Z_{n}^{*}
$$

If D_{0} is a multiplicative subgroup of Z_{n}^{*} and there are elements g_{1}, \cdots, g_{d-1} of Z_{n}^{*} such that $D_{i}=g_{i} D_{0}$ for all i, these D_{i} are called generalized cyclotomic classes of order d. When n is a prime, it is referred to as classical cyclotomy. For a generalized cyclotomy of order 2, the cyclotomic classes D_{0} and D_{1} form a splitting of n, i.e., there exists an element μ such that $\mu D_{0}=D_{1}$ and $\mu D_{1}=D_{0}$ (for details about splitting, see [18], [28], [29], [30]). However, a splitting may not give a generalized cyclotomy of order 2 .
The generalized cyclotomic numbers of order d are defined to be

$$
(i, j)_{d}=\left|\left(D_{i}+1\right) \cap D_{j}\right|, \quad i, j=0,1, \cdots, d-1 .
$$

Classical cyclotomy was considered in detail by Gauss in his Disquisitions Arithmeticae [16], where he introduced so-called Gaussian periods, and then cyclotomic numbers. Both Gaussian periods and some cyclotomic numbers are
related to irreducible cyclic codes [22], [24]. In fact, the weight distribution of binary irreducible cyclic codes is completely determined by Gaussian periods or cyclotomic numbers. As for classical cyclotomy, cyclotomic numbers with respect to p of order upto 24 are known. For information about classical cyclotomy refer to [3], [6] and [34].

Generalized cyclotomy with respect to p^{2} was considered in [7] for cryptographic purpose, where the corresponding generalized cyclotomic numbers of order 2 were presented. Generalized cyclotomy with respect to $p q$ was introduced by Whiteman [36], where the motivation was to search for residue difference sets. Many new generalized cyclotomies of order 2 and the corresponding cyclotomic numbers were studied by C. Ding and T. Helleseth in [13].

This paper is organized as follows. In section 2 , we extend the classical cyclotomy with respect to p into a generalized cyclotomy of order 4 with respect to p^{m}. In section 3, we describe a special class of cyclic codes with length p^{m} with this generalized cyclotomy. We also obtain lower bound on the minimum odd weight of these codes. In section 4 , we define generalized cyclotomic classes of order 8 with respect to p^{m}. In section 5 , we describe a special class of cyclic codes with length p^{m} with this generalized cyclotomy. We also obtain lower bound on the minimum odd weight of these codes.

2. GENERALIZED CYCLOTOMIC CLASSES OF ORDER 4

We start with the following assumption:
All the primes mentioned in this paper are congruent to $1(\bmod 8)$ (hence 2 is a quadratic residue modulo such a prime).

An integer a is called a primitive root modulo n if the multiplicative order of a modulo n, denoted by $\operatorname{ord}_{n}(a)$, is equal to $\phi(n)$ where ϕ is the Euler phi function and $\operatorname{gcd}(a, n)=1$. It is well known that the only integers having primitive roots are $p^{e}, 2 p^{e}, 1,2$ and 4 , where p is an odd prime.

If g is a primitive root modulo p^{2}, then g is primitive root modulo p^{i} for all i. But g is a primitive root modulo p does not imply that it is primitive root modulo p^{2}, but this situation is rare. These facts are well known. For details, we refer to [1].

Let $l \geq 1$ be an integer and g_{l} be a primitive root modulo p^{l}, where p is an odd prime. We now fix some notations for this and later sections. We use Z_{n} to denote the ring $Z_{n}=\{0,1,2, \cdots, n-1\}$ with integer addition modulo n and integer multiplication modulo n as the ring operations. Here and hereafter $a \bmod n$ denotes the least nonnegative integer that is congruent to a modulo n. As usual, we use Z_{n}^{*} to denote all the invertible elements of Z_{n}, where $n \geq 2$ is a positive integer.
Let S be a subset of Z_{n} and a an element of Z_{n}. Define

$$
a+S=S+a=\{a+s: s \in S\}, \quad a S=S a=\{a s: s \in S\}
$$

The generalized cyclotomic classes of order 4 with respect to p^{l} are defined by

$$
\begin{gathered}
D_{0}^{\left(p^{l}\right)}=\left(g_{l}^{4}\right), \quad D_{1}^{\left(p^{l}\right)}=g_{l} D_{0}^{\left(p^{l}\right)}, \\
D_{2}^{\left(p^{l}\right)}=g_{l}^{2} D_{0}^{\left(p^{l}\right)}, \quad D_{3}^{\left(p^{l}\right)}=g_{l}^{3} D_{0}^{\left(p^{l}\right)},
\end{gathered}
$$

where $\left(g_{l}^{4}\right)$ denotes the subgroup generated by g_{l}^{4} of $Z_{p^{l}}^{*}$. It is obvious that

$$
D_{0}^{\left(p^{l}\right)} \cup D_{1}^{\left(p^{l}\right)} \cup D_{2}^{\left(p^{l}\right)} \cup D_{3}^{\left(p^{l}\right)}=Z_{p^{l}}^{*}
$$

and

$$
D_{i}^{\left(p^{l}\right)} \cap D_{j}^{\left(p^{l}\right)}=\varnothing
$$

for all $0 \leq i, j \leq 3, i \neq j$, where \emptyset denotes the empty set.
We say that $D_{0}^{\left(p^{l}\right)}, D_{1}^{\left(p^{l}\right)}, D_{2}^{\left(p^{l}\right)}$ and $D_{3}^{\left(p^{l}\right)}$ form a partition of the set $Z_{p^{l}}^{*}$.
2.1. Lemma: $D_{0}^{\left(p^{l}\right)}$ is a subgroup of $Z_{p^{l}}^{*}$ with $\left|D_{0}^{\left(p^{l}\right)}\right|=\frac{p^{l-1}(p-1)}{4}$
and

$$
a D_{i}^{\left(p^{l}\right)}=D_{i+j(\bmod 4)}^{\left(p^{l}\right)} \quad \text { if } \quad a \in D_{j}^{\left(p^{l}\right)} \text { for all } 0 \leq i, j \leq 3 .
$$

Since $p \equiv 1(\bmod 8)$, we also have $2 \in D_{0}^{p} \cup D_{2}^{p}$ i.e., 2 is a quadratic residue modulo p [1].
2.2. Lemma: $a \bmod p \in D_{i}^{p}$ if and only if $a \bmod p^{l} \in D_{i}^{\left(p^{l}\right)}$ for any $l \geq 1$, where $1 \leq a \leq p-1, i=0,1,2,3$.

3. CYCLIC CODES FROM GENERALIZED CYCLOTOMIC CLASSES OF ORDER 4

Let θ_{l} be a primitive p^{l} th root of unity over a field containing $G F(2)$. We define the generalized cyclotomic polynomials of order 4 with respect to p^{l} as

$$
d_{i}^{\left(p^{l}\right)}(x)=\prod_{h \in D_{i}^{\left(p^{l}\right)}}\left(x-\theta_{l}^{h}\right), \quad i=0,1,2,3
$$

3.1. Lemma: $\quad d_{i}^{\left(p^{l}\right)}(x) \in G F(2)[x]$ for all $i=0,1,2,3$.

Let m be a positive integer, g primitive root modulo p^{m} and θ a primitive p^{m} th root of unity over a field containing $G F(2)$ (let s be the order of 2 modulo p^{m}, such a primitive p^{m} th root of unity exists in $G F\left(2^{s}\right)$).
Define

$$
g_{l} \equiv g\left(\bmod p^{l}\right), \quad \theta_{l}=\theta^{p^{m-l}}, \quad l=1,2, \cdots, m
$$

Then g_{l} is a primitive root modulo p^{l} and θ_{l} is a primitive p^{l} th root of unity.

3.2. Lemma:

$$
x^{p^{m}}-1=(x-1) \prod_{i=0}^{3} \prod_{l=1}^{m} d_{i}^{\left(p^{l}\right)}(x)
$$

For any set of $i_{1}, i_{2}, \cdots, i_{m}$, where $i_{l} \in\{0,1,2,3\}, l=1,2, \cdots, m$, let

$$
g_{i_{1}, i_{2}, \cdots, i_{m}}(x)=d_{i_{1}}^{(p)}(x) d_{i_{2}}^{\left(p^{2}\right)}(x) \cdots d_{i_{m}}^{\left(p^{m}\right)}(x)
$$

Let $C_{i_{1}, i_{2}, \cdots, i_{m}}$ denote the cyclic code of length p^{m} generated by the polynomial $g_{i_{1}, i_{2}, \cdots, i_{m}}(x)$.
3.3. Theorem: For each set of $i_{1}, i_{2}, \cdots, i_{m} \in\{0,1,2,3\}, C_{i_{1}, i_{2}, \cdots, i_{m}}$ is a $\left[p^{m},\left(3 p^{m}+1\right) / 4\right]$ code with minimum odd weight $d \geq \sqrt[4]{p^{m}}$.
Proof: Let $2<s \leq p-1$ be a quadratic non-residue modulo p. By Lemma 2.2, $s \in D_{1}^{\left(p^{l}\right)} \cup D_{3}^{\left(p^{l}\right)}$ for all $l=1,2, \cdots, m$. Let

$$
u_{j}(x)=g_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)}(x)
$$

for all $0 \leq j \leq 3$. By the definition of the polynomial $d_{i}^{\left(p^{l}\right)}$ and Lemma 2.1,

$$
\begin{equation*}
d_{i_{l}+j(\bmod 4)}^{\left(p^{l}\right)} \mid u_{j}(x) \tag{1}
\end{equation*}
$$

for all $0 \leq j \leq 3,1 \leq l \leq m$.
Let $a_{0}(x)$ be a codeword of $C_{i_{1}, i_{2}, \cdots, i_{m}}$ with minimum odd weight d and define $a_{j}(x)=a_{0}\left(x^{s}\right) \bmod p^{m}-1, j=1,2,3$. Here and hereafter $g(x) \bmod h(x)$ denotes the unique polynomial of degree less than the degree of $h(x)$ that is congruent to $g(x)$ modulo $h(x)$. By (1), $a_{j}(x)$ is a codeword of $C_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)}$ with odd weight d.
Similarly, if $a_{j}(x)$ is a codeword of $C_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)}$ with minimum odd weight d, then $a_{j}\left(x^{s}\right) \bmod p^{m}-1$ is a codeword of $C_{i_{1}, i_{2}, \cdots, i_{m}}$ with odd weight d. Thus these codes have same minimum odd weight.

Now consider the polynomial $c(x)$ defined by $c(x)=a_{0}(x) a_{1}(x) a_{2}(x) a_{3}(x) \bmod p^{m}-1$. It is a codeword of $C_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)} \quad$ for \quad all $\quad 0 \leq j \leq 3$, i.e., $c(x) \quad$ is a multiple of $\quad g_{i_{1}, i_{2}, \cdots, i_{m}}(x)$, $g_{i_{1}+1(\bmod 4), i_{2}+1(\bmod 4), \cdots, i_{m}+1(\bmod 4)}(x), \quad g_{i_{1}+2(\bmod 4), i_{2}+2(\bmod 4), \cdots, i_{m}+2(\bmod 4)}(x) \quad$ and $g_{i_{1}+3(\bmod 4), i_{2}+3(\bmod 4), \cdots, i_{m}+3(\bmod 4)}(x)$. Since $a_{0}(x), a_{1}(x), a_{2}(x)$ and $a_{3}(x)$ have odd weight, so $c(x)$ has odd weight. Hence

$$
\begin{aligned}
& c(x)=\prod_{j=0}^{3} g_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)}(x) \\
& =\left(x^{p^{m}}-1\right) /(x-1) \\
& =1+x+\cdots+x^{p^{m}-1}
\end{aligned}
$$

Note that $c(x)$ has at most d^{4} terms, it follows that

$$
d^{4} \geq p^{m}, \text { i.e., } d \geq \sqrt[4]{p^{m}}
$$

Since $\operatorname{deg}\left(g_{i_{1}+j(\bmod 4), i_{2}+j(\bmod 4), \cdots, i_{m}+j(\bmod 4)}(x)\right)=\frac{p^{m}-1}{4}$ for all $0 \leq j \leq 3$, the dimension of these codes is thus $\frac{3 p^{m}+1}{4}$.
Note that since there are 4^{m} choices for the parameters $i_{1}, i_{2}, \cdots, i_{m}$, we have 4^{m} such different cyclic codes.

4. GENERALIZED CYCLOTOMIC CLASSES OF ORDER 8

The generalized cyclotomic classes of order 8 with respect to p^{l} are defined by

$$
D_{0}^{\left(p^{l}\right)}=\left(g_{l}^{8}\right), \quad D_{i}^{\left(p^{l}\right)}=g_{l}^{i} D_{0}^{\left(p^{l}\right)}
$$

$1 \leq i \leq 7$, where $\left(g_{l}^{8}\right)$ denotes the subgroup generated by g_{l}^{8} of $Z_{p^{l}}^{*}$. It is obvious that

$$
\bigcup_{i=0}^{7} D_{i}^{\left(p^{l}\right)}=Z_{p^{l}}^{*}
$$

and

$$
D_{i}^{\left(p^{l}\right)} \cap D_{j}^{\left(p^{l}\right)}=\emptyset
$$

for all $0 \leq i, j \leq 7, i \neq j$, where \emptyset denotes the empty set.
We say that $D_{0}^{\left(p^{l}\right)}, D_{1}^{\left(p^{l}\right)}, \cdots, D_{7}^{\left(p^{l}\right)}$ form a partition of the set $Z_{p^{l}}^{*}$.
4.1. Lemma: $D_{0}^{\left(p^{l}\right)}$ is a subgroup of $Z_{p^{l}}^{*}$ with $\left|D_{0}^{\left(p^{l}\right)}\right|=\frac{p^{l-1}(p-1)}{8}$
and

$$
a D_{i}^{\left(p^{l}\right)}=D_{i+j(\bmod 8)}^{\left(p^{l}\right)} \quad \text { if } \quad a \in D_{j}^{\left(p^{l}\right)} \text { for all } 0 \leq i, j \leq 7
$$

Since $p \equiv 1(\bmod 8)$, we also have $2 \in D_{0}^{p} \cup D_{2}^{p} \cup D_{4}^{p} \cup D_{6}^{p}$ i.e., 2 is a quadratic residue modulo p [1].
4.2. Lemma: $a \bmod p \in D_{i}^{p}$ if and only if $a \bmod p^{l} \in D_{i}^{\left(p^{l}\right)}$ for any $l \geq 1$, where $1 \leq a \leq p-1, \quad 0 \leq i \leq 7$.

5. CYCLIC CODES FROM GENERALIZED CYCLOTOMIC CLASSES OF ORDER 8

Let θ_{l} be a primitive p^{l} th root of unity over a field containing $G F(2)$. We define the generalized cyclotomic polynomials of order 8 with respect to p^{l} as

$$
d_{i}^{\left(p^{l}\right)}(x)=\prod_{h \in D_{i}^{\left(p^{l}\right)}}\left(x-\theta_{l}^{h}\right), \quad 0 \leq i \leq 7
$$

5.1. Lemma: $d_{i}^{\left(p^{l}\right)}(x) \in G F(2)[x]$ for all $0 \leq i \leq 7$.

5.2. Lemma:

$$
x^{p^{m}}-1=(x-1) \prod_{i=0}^{7} \prod_{l=1}^{m} d_{i}^{\left(p^{l}\right)}(x)
$$

For any set of $i_{1}, i_{2}, \cdots, i_{m}$, where $i_{l} \in\{0,1,2,3,4,5,6,7\}, l=1,2, \cdots, m$, let

$$
g_{i_{1}, i_{2}, \cdots, i_{m}}(x)=d_{i_{1}}^{(p)}(x) d_{i_{2}}^{\left(p^{2}\right)}(x) \cdots d_{i_{m}}^{\left(p^{m}\right)}(x)
$$

Let $C_{i_{1}, i_{2}, \cdots, i_{m}}$ denote the cyclic code of length p^{m} generated by the polynomial $g_{i_{1}, i_{2}, \cdots, i_{m}}(x)$.
5.3. Theorem: For each set of $i_{1}, i_{2}, \cdots, i_{m} \in\{0,1,2,3,4,5,6,7\}, C_{i_{1}, i_{2}, \cdots, i_{m}}$ is a $\left[p^{m},\left(7 p^{m}+1\right) / 8\right]$ code with minimum odd weight $d \geq \sqrt[8]{p^{m}}$
Proof: Proof is similar as that of Theorem 3.3.
Note that since there are 8^{m} choices for the parameters $i_{1}, i_{2}, \cdots, i_{m}$, we have 8^{m} such different cyclic codes.

REFERENCES

[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Bakshi G. K. and Raka M., Minimal cyclic codes of length $p^{n} q$, Finite Fields and Their Applications, 9, 432-448, 2003.
[3] Baumert L. D., Cyclic Difference Sets, Lecture Notes in Mathematics, Vol. 182, Springer-Verlag, New York, 1971.
[4] Betti E. and Sala M., A new bound for the minimum distance of a cyclic code from its defining set, IEEE Transactions on Information Theory, 52(8), 3700-3706, 2006.
[5] Brouwer A. E., Bounds on the size of linear codes, in Handbook of Coding Theory, V. Pless and W. C. Huffman, Eds. Amsterdam, the Netherlands, Elsevier, 1998.
[6] Cusik T., Ding C. and Renvall A., Stream Ciphers and Number Theory, North-Holland Mathematical Lib., North-Holland, 2003.
[7] Ding C., Binary cyclotomic generators, in Fast Software Encryption (B. Preneel, Ed.), Lecture Notes in Computer Science, 1008, 29-60, 1995.
[8] Ding C., Cyclic codes from cyclotomic sequence of order four, Finite Fields and Their Applications, 23, 8-34, 2012.
[9] Ding C., Cyclic codes from the two-prime sequences, IEEE Transactions on Information Theory, 58(6), 3881-3891, 2012.
[10] Ding C., Cyclotomic constructions of cyclic codes with length being the product of two primes, IEEE Transactions on Information Theory 58(4), 2231-2236, 2012.
[11] Ding C., Du X., and Zhou Z., The bose and minimum distance of a class of BCH codes, IEEE Transactions on Information Theory, 61(5), 2351-2356, 2015.
[12] Ding C. and Helleseth, T., Generalized cyclotomic codes of length $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$, IEEE Transactions on Information Theory, 45(2), 467474, 1999.
[13] Ding C. and Helleseth T., New generalized cyclotomy and its applications, Finite Fields and Their Applications, 4(2), 140-166, 1998.
[14] Ding C., Pie D. and Salomaa A., Chinese Remainder Theorem, Applications in Computing, Coding, Cryptography, World Scientific, Singapore, 1996, chs. 2 and 6.
[15] Eupen M. and Lint J. van, On the minimum distance of ternary cyclic codes, IEEE Transactions on Information Theory 39(2), 409-416, 1993.
[16] Gauss C. F., Disquisitions Arithmeticae, Leipzig, Germany, 1801, English translation, New Haven, CT: Yale Univ. Press, 1966, reprinted, Berlin, Heidelberg and New York, Springer-Verlag, 1986.
[17] Kewat P. K. and Kumari Preeti, Cyclic codes from the second class two-prime whiteman's generalized cyclotomic sequence with order 6, Cryptography and Communications, 9(4), 475-499, 2017.
[18] Leon J. S., A probabilistic algorithm for computing minimum weight of large error-correcting codes, IEEE Transactions on Information Theory, 34, 1354-1359, 1998.
[19] Leon J. S., Masley J. M. and Pless V., Duadic codes, IEEE Transactions on Information Theory, 30, 709-714, 1984.
[20] Lidl R. and Niederreiter H., Finite fields, Cambridge Univ. Press, 1997.
[21] Lint J. van and Wilson R., On the minimum distance of cyclic codes, IEEE Transactions on Information Theory 32(1), 23-40, 1986.
[22] MacWilliams F.J., Cyclotomic numbers, coding theory and orthogonal polynomials, Discrete Math., 3, 133-151, 1972.
[23] Macwilliams F. and Sloane N., The theory of error correcting codes, North-Holland Mathematical Lib., North-Holland, 1997.
[24] McEliece R. J. and Rumsey H., Euler product, cyclotomy and coding, Journal of Number Theory, 4, 302-311, 1972.
[25] Pankaj and Pruthi M., Cyclic codes from generalized cyclotomic sequences of order 8, Journal of Rajasthan Academy of Physical Sciences, 15(3), 155-182, 2016.
[26] Pankaj and Pruthi M., Cyclic codes from generalized cyclotomic sequences of order $2^{r}, r \geq 2$, Journal of Information and Optimization Sciences, 38(3-4), 621-646, 2017.
[27] Pankaj and Pruthi M., Cyclic codes from generalized cyclotomic sequences of order $2 l, l \geq 2$, The Journal of the Indian Academy of Mathematics, 38(2), 183-209, 2016.
[28] Pless V., Q-codes, Journal of Combinatorial Theory, 43(2), 258-276. 1986.
[29] Pless V. and Huffman W. C., An introduction to algebraic codes, in Handbook of Coding Theory, V. Pless and W. C. Huffman, Eds. Amsterdam, the Netherlands, Elsevier, 1998.
[30] Pless V., Masley J. M. and Leon J. S., On weights in duadic codes, Journal of Combinatorial Theory, 44(1), 6-21, 1987.
[31] Pruthi M. and Arora S. K., Minimal Codes of Length $2 p^{n}$ Finite Fields and Their Applications 5, 177-187, 1999.
[32] Pruthi M. and Arora S. K., Minimal Codes of Prime-Power Length, Finite Fields and Their Applications 3, 99-113, 1997.
[33] Pruthi M. and Pankaj, The minimum Hamming distances of the irreducible cyclic codes of length $l_{1}^{m_{1}} l_{2}^{m_{2}} \ldots l_{r}^{m_{r}}$, Journal of Discrete Mathematical Sciences and Cryptography, 19(5-6), 965-995, 2016.
[34] Storer T., Cyclotomy and difference sets, Markham, Chicago, 1967.
[35] Sun Y., Yan T. and Li H., Cyclic codes from the two-prime whiteman's generalized cyclotomic sequences with order 4 , CoRR arxiv:1303.6378, 2013.
[36] Whiteman A. L., A family of difference sets, Illionois J. Math 6, 107-121, 1962.
[37] Yan T., Lui Y., Sun Y., Cyclic codes from generalized cyclotomic sequences of order 6, Advances in Mathematics of Communications, 10(4), 707-723, 2016.

