
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 53 Issue 2 January 2018 

 

ISSN: 2231-5373                                            http://www.ijmttjournal.org                                      Page 166 

 

Cyclic Codes of Prime Power Length from 

Generalized Cyclotomic Classes of Order 4 and 

8 

Pankaj
#1

, Manju Pruthi
#2 

# Department of Mathematics, Indira Gandhi University,  

Meerpur (Rewari)-122502, Haryana, India 

 

Abstract: In this paper, we first introduce generalized cyclotomic classes of order 4 and 8 and then present a special 

class of cyclic codes with length 𝑝𝑚 . We also obtain lower bound on the minimum odd weight of these codes.  

Keywords:  Cyclotomy, Generator Polynomial, Cyclic code 

MSC 2010: 11Txx, 11T22, 11T71, 68P30, 94Bxx, 94B15 

1. INTRODUCTION 

Cyclic Codes are a small but highly structured subclass of linear codes. Cyclic codes have been studied for decades 

and a lot of progress has been made and many important results in the field of cyclic codes have been found (for 

example, see [2]-[4], [7]-[13], [15] etc). Recently, several classes of cyclic codes using two-prime Whiteman's 

generalized cyclotomic sequences and cyclotomic sequences of order 4 have been presented by C. Ding in [9] and 

[8] respectively and lower bounds on the nonzero minimum hamming weight of some cyclic codes were developed 

at the same time. In [35] and [37], several classes of cyclic codes have been constructed by employing Whiteman's 

generalized cyclotomic sequences of order 4 and 6 respectively. In [17], Pramod Kumar Kewat and Preeti Kumari 

employed Whiteman's generalized cyclotomic sequences of order 6 to construct several classes of cyclic codes. In 

[25], [26] and [27], several classes of cyclic codes over the finite field 𝐺𝐹(𝑞) with length 𝑛1𝑛2 have been obtained 

using the two-prime Whiteman's generalized cyclotomic sequences of order  8, 2𝑟 , 𝑟 ≥ 2 and 2𝑙, 𝑙 ≥ 2 respectively 

and the lower bounds of the minimum distance of these cyclic codes are also obtained. 

Quadratic residue codes [23, ch. 6] of prime length are a class of interesting error-correcting codes due to a high 

minimum distance. Those codes have a “square-root bound” which roughly asserts that the square of the minimum 

distance is greater than the block length. A more general class of codes with the square-root bound on their 

minimum odd weight is the duadic codes defined by Leon, Masley and Pless [19], [28]. 

Let 𝑛 be a positive composite integer. A partition  𝐷0 , 𝐷1 , 𝐷2 , ⋯ , 𝐷𝑑−1  of 𝑍𝑛
∗  is a family of sets with 

𝐷𝑖⋂𝐷𝑗 = ∅,   for all   𝑖 ≠ 𝑗,     𝐷𝑖 = 𝑍𝑛
∗

𝑑−1

𝑖=0

 

If 𝐷0 is a multiplicative subgroup of  𝑍𝑛
∗  and there are elements 𝑔1 , ⋯ , 𝑔𝑑−1 of 𝑍𝑛

∗  such that 𝐷𝑖 = 𝑔𝑖𝐷0 for all 𝑖, these 

𝐷𝑖  are called generalized cyclotomic classes of order 𝑑. When 𝑛 is a prime, it is referred to as classical cyclotomy. 

For a generalized cyclotomy of order 2, the cyclotomic classes 𝐷0 and 𝐷1 form a splitting of 𝑛, i.e., there exists an 

element 𝜇 such that 𝜇𝐷0 = 𝐷1 and 𝜇𝐷1 = 𝐷0 (for details about splitting, see [18], [28], [29], [30]). However, a 

splitting may not give a generalized cyclotomy of order 2. 

The generalized cyclotomic numbers of order 𝑑 are defined to be 

 𝑖, 𝑗 𝑑 =   𝐷𝑖 + 1 ⋂𝐷𝑗  , 𝑖, 𝑗 = 0,1, ⋯ , 𝑑 − 1. 

Classical cyclotomy was considered in detail by Gauss in his Disquisitions Arithmeticae [16], where he introduced 

so-called Gaussian periods, and then cyclotomic numbers. Both Gaussian periods and some cyclotomic numbers are 
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related to irreducible cyclic codes [22], [24]. In fact, the weight distribution of binary irreducible cyclic codes is 

completely determined by Gaussian periods or cyclotomic numbers. As for classical cyclotomy, cyclotomic numbers 

with respect to 𝑝 of order upto 24 are known. For information about classical cyclotomy refer to [3], [6] and [34]. 

Generalized cyclotomy with respect to 𝑝2 was considered in [7] for cryptographic purpose, where the corresponding 

generalized cyclotomic numbers of order 2 were presented. Generalized cyclotomy with respect to 𝑝𝑞 was 

introduced by Whiteman [36], where the motivation was to search for residue difference sets. Many new generalized 

cyclotomies of order 2 and the corresponding cyclotomic numbers were studied by C. Ding and T. Helleseth in [13].  

This paper is organized as follows. In section 2, we extend the classical cyclotomy with respect to 𝑝 into a 

generalized cyclotomy of order 4 with respect to 𝑝𝑚 . In section 3, we describe a special class of cyclic codes with 

length 𝑝𝑚  with this generalized cyclotomy. We also obtain lower bound on the minimum odd weight of these codes. 

In section 4, we define generalized cyclotomic classes of order 8 with respect to 𝑝𝑚 . In section 5, we describe a 

special class of cyclic codes with length 𝑝𝑚  with this generalized cyclotomy. We also obtain lower bound on the 

minimum odd weight of these codes. 

2. GENERALIZED CYCLOTOMIC CLASSES OF ORDER 4 

We start with the following assumption: 

All the primes mentioned in this paper are congruent to 1(mod 8) (hence 2 is a quadratic residue modulo such a 

prime). 

An integer 𝑎 is called a primitive root modulo 𝑛 if the multiplicative order of 𝑎 modulo 𝑛, denoted by 𝑜𝑟𝑑𝑛(𝑎), is 

equal to 𝜙(𝑛) where 𝜙 is the Euler phi function and  gcd(𝑎, 𝑛) = 1. It is well known that the only integers having 

primitive roots are 𝑝𝑒 , 2𝑝𝑒 , 1, 2 and 4, where 𝑝 is an odd prime. 

If 𝑔 is a primitive root modulo 𝑝2, then 𝑔 is primitive root modulo 𝑝𝑖  for all 𝑖. But 𝑔 is a primitive root modulo 𝑝 

does not imply that it is primitive root modulo 𝑝2 , but this situation is rare. These facts are well known. For details, 

we refer to [1]. 

Let 𝑙 ≥ 1 be an integer and 𝑔𝑙  be a primitive root modulo 𝑝𝑙 ,  where 𝑝 is an odd prime.  We now fix some notations 

for this and later sections. We use 𝑍𝑛  to denote the ring  𝑍𝑛 =  0,1,2, ⋯ , 𝑛 − 1  with integer addition modulo 𝑛 and 

integer multiplication modulo 𝑛 as the ring operations. Here and hereafter 𝑎 mod 𝑛 denotes the least nonnegative 

integer that is congruent to 𝑎 modulo 𝑛. As usual, we use 𝑍𝑛
∗  to denote all the invertible elements of 𝑍𝑛 , where 𝑛 ≥ 2 

is a positive integer. 

Let 𝑆 be a subset of 𝑍𝑛  and 𝑎 an element of 𝑍𝑛 . Define 

𝑎 + 𝑆 = 𝑆 + 𝑎 =  𝑎 + 𝑠: 𝑠 ∈ 𝑆 ,    𝑎𝑆 = 𝑆𝑎 =  𝑎𝑠: 𝑠 ∈ 𝑆  

The generalized cyclotomic classes of order 4 with respect to  𝑝𝑙  are defined by 

𝐷0

 𝑝 𝑙 
=  𝑔𝑙

4 ,     𝐷1

 𝑝 𝑙 
= 𝑔𝑙𝐷0

 𝑝 𝑙 
, 

𝐷2

 𝑝 𝑙 
= 𝑔𝑙

2𝐷0

 𝑝 𝑙 
,     𝐷3

 𝑝 𝑙 
= 𝑔𝑙

3𝐷0

 𝑝 𝑙 
, 

where  𝑔𝑙
4  denotes the subgroup generated by 𝑔𝑙

4 of 𝑍
𝑝 𝑙
∗ . It is obvious that  

𝐷0

 𝑝 𝑙 
⋃𝐷1

 𝑝 𝑙 
⋃𝐷2

 𝑝 𝑙 
⋃𝐷3

 𝑝 𝑙 
= 𝑍

𝑝 𝑙
∗  

and 

   𝐷
𝑖

 𝑝 𝑙 
⋂𝐷

𝑗

 𝑝 𝑙 
= ∅  

for all 0 ≤ 𝑖, 𝑗 ≤ 3, 𝑖 ≠ 𝑗, where ∅ denotes the empty set. 

We say that 𝐷0

 𝑝 𝑙 
, 𝐷1

 𝑝 𝑙 
, 𝐷2

 𝑝 𝑙 
 and 𝐷3

 𝑝 𝑙 
 form a partition of the set 𝑍

𝑝 𝑙
∗ . 

2.1. Lemma: 𝐷0

 𝑝 𝑙 
 is a subgroup of 𝑍

𝑝 𝑙
∗  with  𝐷0

 𝑝 𝑙 
 =

𝑝 𝑙−1 𝑝−1 

4
 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 53 Issue 2 January 2018 

 

ISSN: 2231-5373                                            http://www.ijmttjournal.org                                      Page 168 

 

and 

𝑎𝐷𝑖

 𝑝 𝑙 
= 𝐷𝑖+𝑗 (mod  4)

 𝑝 𝑙 
   if   𝑎 ∈ 𝐷𝑗

 𝑝 𝑙 
 for all 0 ≤ 𝑖, 𝑗 ≤ 3. 

Since 𝑝 ≡ 1 mod 8 , we also have 2 ∈ 𝐷0
𝑝
⋃𝐷2

𝑝
 i.e., 2 is a quadratic residue modulo 𝑝 [1]. 

2.2. Lemma: 𝑎 mod 𝑝 ∈ 𝐷𝑖
𝑝

 if and only if 𝑎 mod 𝑝𝑙 ∈ 𝐷𝑖

 𝑝 𝑙 
 for any 𝑙 ≥ 1, where 1 ≤ 𝑎 ≤ 𝑝 − 1, 𝑖 = 0,1,2,3. 

3. CYCLIC CODES FROM GENERALIZED CYCLOTOMIC CLASSES OF ORDER 4 

Let 𝜃𝑙  be a primitive 𝑝𝑙 th root of unity over a field containing 𝐺𝐹 2 . We define the generalized cyclotomic 

polynomials of order 4 with respect to 𝑝𝑙  as 

    𝑑𝑖

 𝑝 𝑙 
 𝑥 =   𝑥 − 𝜃𝑙

ℎ 

ℎ∈𝐷
𝑖

 𝑝 𝑙 

,     𝑖 = 0,1,2,3 

3.1. Lemma:     𝑑𝑖

 𝑝 𝑙 
 𝑥 ∈ 𝐺𝐹 2  𝑥  for all 𝑖 = 0,1,2,3. 

Let 𝑚 be a positive integer, 𝑔 primitive root modulo 𝑝𝑚  and 𝜃 a primitive 𝑝𝑚 th root of unity over a field containing 

𝐺𝐹 2  (let 𝑠 be the order of 2 modulo 𝑝𝑚 , such a primitive 𝑝𝑚 th root of unity exists in 𝐺𝐹 2𝑠 ). 

Define 

𝑔𝑙 ≡ 𝑔  mod 𝑝𝑙 ,   𝜃𝑙 = 𝜃𝑝𝑚 −𝑙
,   𝑙 = 1,2, ⋯ , 𝑚 

Then 𝑔𝑙  is a primitive root modulo 𝑝𝑙  and 𝜃𝑙  is a primitive 𝑝𝑙 th root of unity. 

3.2. Lemma: 

𝑥𝑝𝑚
− 1 =  𝑥 − 1       𝑑𝑖

 𝑝 𝑙 
 𝑥 

𝑚

𝑙=1

3

𝑖=0

 

For any set of 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 , where 𝑖𝑙 ∈  0,1,2,3 , 𝑙 = 1,2, ⋯ , 𝑚, let 

𝑔𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 𝑥 = 𝑑𝑖1

 𝑝 
 𝑥 𝑑𝑖2

 𝑝2 
 𝑥 ⋯ 𝑑𝑖𝑚

 𝑝𝑚  
 𝑥  

Let 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚  denote the cyclic code of length 𝑝𝑚  generated by the polynomial 𝑔𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 𝑥 . 

3.3. Theorem: For each set of 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 ∈  0,1,2,3 , 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚  is a  𝑝𝑚 ,  3𝑝𝑚 + 1 4   code with minimum odd 

weight 𝑑 ≥  𝑝𝑚4 . 

Proof: Let 2 < 𝑠 ≤ 𝑝 − 1 be a quadratic non-residue modulo 𝑝. By Lemma 2.2, 𝑠 ∈ 𝐷1

 𝑝 𝑙 
⋃𝐷3

 𝑝 𝑙 
 for all                 

𝑙 = 1,2, ⋯ , 𝑚. Let 

𝑢𝑗  𝑥 = 𝑔𝑖1+𝑗 mod  4 ,𝑖2+𝑗 mod  4 ,⋯,𝑖𝑚 +𝑗 mod  4  𝑥  

for all 0 ≤ 𝑗 ≤ 3. By the definition of the polynomial 𝑑𝑖

 𝑝 𝑙 
 and Lemma 2.1, 

     𝑑
𝑖𝑙+𝑗  mod  4 

 𝑝 𝑙 
 𝑢𝑗  𝑥      (1) 

for all 0 ≤ 𝑗 ≤ 3, 1 ≤ 𝑙 ≤ 𝑚. 

Let 𝑎0 𝑥  be a codeword of 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 with minimum odd weight 𝑑 and define                  

𝑎𝑗  𝑥 = 𝑎0 𝑥𝑠  mod 𝑝𝑚 − 1, 𝑗 = 1, 2, 3. Here and hereafter 𝑔 𝑥  mod ℎ 𝑥  denotes the unique polynomial of 

degree less than the degree of ℎ 𝑥  that is congruent to 𝑔 𝑥  modulo ℎ 𝑥 . By (1), 𝑎𝑗  𝑥  is a codeword of 

𝐶𝑖1+𝑗 mod  4 ,𝑖2+𝑗 mod  4 ,⋯,𝑖𝑚 +𝑗 mod  4  with odd weight 𝑑.  

Similarly, if 𝑎𝑗  𝑥  is a codeword of 𝐶𝑖1+𝑗  mod  4 ,𝑖2+𝑗  mod  4 ,⋯,𝑖𝑚 +𝑗 mod  4  with minimum odd weight 𝑑, then 

𝑎𝑗  𝑥
𝑠 mod 𝑝𝑚 − 1 is a codeword of 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚  with odd weight 𝑑. Thus these codes have same minimum odd 

weight. 
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Now consider the polynomial 𝑐 𝑥  defined by 𝑐 𝑥 = 𝑎0 𝑥 𝑎1 𝑥 𝑎2 𝑥 𝑎3 𝑥  mod 𝑝𝑚 − 1. It is a codeword of  

𝐶𝑖1+𝑗 mod  4 ,𝑖2+𝑗 mod  4 ,⋯,𝑖𝑚 +𝑗 mod  4  for all 0 ≤ 𝑗 ≤ 3, i.e., 𝑐 𝑥  is a multiple of 𝑔𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 𝑥 , 

𝑔𝑖1+1 mod  4 ,𝑖2+1 mod  4 ,⋯,𝑖𝑚 +1 mod  4  𝑥 , 𝑔𝑖1+2 mod  4 ,𝑖2+2 mod  4 ,⋯,𝑖𝑚 +2 mod  4  𝑥  and 

𝑔𝑖1+3 mod  4 ,𝑖2+3 mod  4 ,⋯,𝑖𝑚 +3 mod  4  𝑥 . Since 𝑎0 𝑥 , 𝑎1 𝑥 , 𝑎2 𝑥  and 𝑎3 𝑥  have odd weight, so 𝑐 𝑥  has odd 

weight. Hence 

𝑐 𝑥 =  𝑔𝑖1+𝑗  mod  4 ,𝑖2+𝑗  mod  4 ,⋯,𝑖𝑚 +𝑗 mod  4  𝑥 

3

𝑗 =0

 

    =  𝑥𝑝𝑚
− 1  𝑥 − 1   

    = 1 + 𝑥 + ⋯ + 𝑥𝑝𝑚 −1 

Note that 𝑐 𝑥  has at most 𝑑4 terms, it follows that 

𝑑4 ≥ 𝑝𝑚 , i.e., 𝑑 ≥  𝑝𝑚4 . 

Since 𝑑𝑒𝑔  𝑔𝑖1+𝑗 mod  4 ,𝑖2+𝑗 mod  4 ,⋯,𝑖𝑚 +𝑗  mod  4  𝑥  =
𝑝𝑚 −1

4
 for all 0 ≤ 𝑗 ≤ 3, the dimension of these codes is thus 

3𝑝𝑚 +1

4
.     ∎ 

Note that since there are 4𝑚  choices for the parameters 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 , we have 4𝑚  such different cyclic codes. 

4. GENERALIZED CYCLOTOMIC CLASSES OF ORDER 8 

The generalized cyclotomic classes of order 8 with respect to  𝑝𝑙  are defined by 

𝐷0

 𝑝 𝑙 
=  𝑔𝑙

8 ,     𝐷𝑖

 𝑝 𝑙 
= 𝑔𝑙

𝑖𝐷0

 𝑝 𝑙 
, 

1 ≤ 𝑖 ≤ 7,  where  𝑔𝑙
8  denotes the subgroup generated by 𝑔𝑙

8 of 𝑍
𝑝 𝑙
∗ . It is obvious that  

 𝐷𝑖

 𝑝 𝑙 
= 𝑍

𝑝 𝑙
∗

7

𝑖=0

 

and 

   𝐷
𝑖

 𝑝 𝑙 
⋂𝐷

𝑗

 𝑝 𝑙 
= ∅  

for all 0 ≤ 𝑖, 𝑗 ≤ 7, 𝑖 ≠ 𝑗, where ∅ denotes the empty set. 

We say that 𝐷0

 𝑝 𝑙 
, 𝐷1

 𝑝 𝑙 
, ⋯ , 𝐷7

 𝑝 𝑙 
 form a partition of the set 𝑍

𝑝 𝑙
∗ . 

4.1. Lemma: 𝐷0

 𝑝 𝑙 
 is a subgroup of 𝑍

𝑝 𝑙
∗  with  𝐷0

 𝑝 𝑙 
 =

𝑝 𝑙−1 𝑝−1 

8
 

and 

𝑎𝐷𝑖

 𝑝 𝑙 
= 𝐷𝑖+𝑗 (mod  8)

 𝑝 𝑙 
   if   𝑎 ∈ 𝐷𝑗

 𝑝 𝑙 
 for all 0 ≤ 𝑖, 𝑗 ≤ 7. 

Since 𝑝 ≡ 1 mod 8 , we also have 2 ∈ 𝐷0
𝑝
⋃𝐷2

𝑝
⋃𝐷4

𝑝
⋃𝐷6

𝑝
 i.e., 2 is a quadratic residue modulo 𝑝 [1]. 

4.2. Lemma: 𝑎 mod 𝑝 ∈ 𝐷𝑖
𝑝

 if and only if 𝑎 mod 𝑝𝑙 ∈ 𝐷𝑖

 𝑝 𝑙 
 for any 𝑙 ≥ 1, where 1 ≤ 𝑎 ≤ 𝑝 − 1,   0 ≤ 𝑖 ≤ 7. 

5. CYCLIC CODES FROM GENERALIZED CYCLOTOMIC CLASSES OF ORDER 8 

Let 𝜃𝑙  be a primitive 𝑝𝑙 th root of unity over a field containing 𝐺𝐹 2 . We define the generalized cyclotomic 

polynomials of order 8 with respect to 𝑝𝑙  as 

𝑑
𝑖

 𝑝 𝑙 
 𝑥 =   𝑥 − 𝜃𝑙

ℎ 

ℎ∈𝐷
𝑖

 𝑝 𝑙 

,     0 ≤ 𝑖 ≤ 7 

5.1. Lemma:     𝑑
𝑖

 𝑝 𝑙 
 𝑥 ∈ 𝐺𝐹 2  𝑥  for all 0 ≤ 𝑖 ≤ 7. 

5.2. Lemma: 
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𝑥𝑝𝑚
− 1 =  𝑥 − 1       𝑑

𝑖

 𝑝 𝑙 
 𝑥 

𝑚

𝑙=1

7

𝑖=0

 

For any set of 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 , where 𝑖𝑙 ∈  0,1,2,3,4,5,6,7 , 𝑙 = 1,2, ⋯ , 𝑚, let 

𝑔𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 𝑥 = 𝑑𝑖1

 𝑝 
 𝑥 𝑑𝑖2

 𝑝2 
 𝑥 ⋯ 𝑑𝑖𝑚

 𝑝𝑚  
 𝑥  

Let 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚  denote the cyclic code of length 𝑝𝑚  generated by the polynomial 𝑔𝑖1 ,𝑖2 ,⋯,𝑖𝑚
 𝑥 . 

5.3. Theorem: For each set of 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 ∈  0,1,2,3,4,5,6,7 , 𝐶𝑖1 ,𝑖2 ,⋯,𝑖𝑚  is a  𝑝𝑚 ,  7𝑝𝑚 + 1 8   code with 

minimum odd weight 𝑑 ≥  𝑝𝑚8
 

Proof: Proof is similar as that of Theorem 3.3.  ∎ 

Note that since there are 8𝑚  choices for the parameters 𝑖1 , 𝑖2 , ⋯ , 𝑖𝑚 , we have 8𝑚  such different cyclic codes. 
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