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Abstract -In this paper, we have considered a very general Holling type predator-prey system with selective harvesting and 

where both of the species follow logistic growth. The uniform boundedness of the system has been studied together with the 

conditions of existence. Also, we have obtained the criteria for local stability of various equilibrium points then considering 

suitable Lyapunov function, the global stability of the system has been discussed. After that using Pontryagin Maximal 

Principle, we have studied the optimal harvesting policy for the system. At the end, the problem has been illustrated through 
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I. INTRODUCTION 

The way which was first introduced by Lotka [1] and Volterra [2] in population biology, is in recent time a very 

important branch in modern science. From the simplest model of Lotka-Volterra, researchers gradually 

developed different kinds of population models which are more realistic and much needful for demand-supply 

chain in between human population and natural resources. To serve these purpose Jogensen [3] has done the 

pioneering work for the dynamical behaviour of population biology. Since then the population biology has 

started to take a formal shape. Now-a-days in population biology the study of fishery and harvesting plays an 

important role. For this purpose, bio economic modelling is a dynamic area of study in biomathematics. Initially 

the techniques of formulating the model and its solution procedure have been discussed by Clerk ([4],[5]).  

After that many researchers have worked with several single and multi-species interacting population model 

with more than one state variable. The problem of combine harvesting of two ecologically independent species 

first studied by Clerk [4]. Also, some multi species harvesting models have been developed by Mesterton-

Gibbons [7]. Then many types of combined harvesting of two and three species have also been discussed by 

Chowdhuri and Kar ([8]- [10]), Kar et.al. [11], Sadhukhan et.al.[12] etc.  

In this present work, we have considered a prey predator model with selecting harvesting of prey population 

only and having logistic growth rate for both species with the assumption that the predator has some other 

source of food except the prey under consideration, which is more realistic for real life phenomenon like shark, 

salmon, harring etc. type of fishes. Till now almost all researchers have considered simple response functions 

like Holling type II and ratio dependent function. But in the present model we have considered a general type of 

Holling function ([13]- [15]) which is more realistic like in real life problems. The model has been discussed 

about its uniform boundedness, local stability, Global stability, bionomic equilibrium position, optimal 

harvesting condition and at the end, with some numerical examples based on hypothetical data model has been 

illustrated. 

II. FORMULATION OF THE MODEL  

Assuming that the harvesting of prey populations is subjected to as harvesting effort 𝐸, we can formulate the 

model as 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥  1 −

𝑥

𝑘1
 −

𝛼𝑥𝑝𝑦

𝑎+𝑥𝑝 − 𝐸𝑞𝑥

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦  1 −

𝑦

𝑘2
 +

𝛽𝑥𝑝𝑦

𝑎+𝑥𝑝

(1) 

with, 𝑥 0 ≥ 0, 𝑦 0 ≥ 0. 

Where,  

𝑥 =  𝑥(𝑡) = size of the prey population at time 𝑡,  

𝑦 = 𝑦(𝑡) = size of the predator population at time 𝑡,  

𝑘1 =environmental carrying capacity of the prey,  
𝑘2 =environmental carrying capacity of the predator,  

𝑟1 =intrinsic growth rate of prey,  
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𝑟2 =intrinsic growth rate of predator,  

𝑎 = Michaelies-Menten constant,  

𝛼 = predation coefficient, 

𝛽 = conversion factor, assumed to be less than 1,  

𝑞 =are catchability coefficients of the prey species respectively, 

also, the response function 𝑔 (𝑥)  =
𝑥𝑝

𝑎+𝑥𝑝  (𝑝 >  0) is built by assuming that the per capita rate of predation 

depends on the prey numbers only. Here all parameters are positive. Here the functional response is said to 

belong to Holling type II if 𝑝 ≤  1; to Holling type III if 𝑝 >  1.  

III. STEADY STATES 

The possible steady states of the system (1) are 𝐸0 0, 0 , 𝐸1 𝑥, 0 , where 𝑥 =
𝑘1

𝑟1
 𝑟1 − 𝐸𝑞 ,  𝐸2 0, 𝑘2  and non-

trivial steady state 𝐸3 𝑥
∗, 𝑦∗ , where 

𝑟1  1 −
𝑥∗

𝑘1
 −

𝛼𝑥∗𝑝−1𝑦∗

𝑎+𝑥∗𝑝 − 𝐸𝑞 = 0

𝑟2  1 −
𝑦∗

𝑘2
 −

𝛽𝑥∗𝑝

𝑎+𝑥∗𝑝 = 0                
 (2) 

IV. BOUNDEDNESS OF THE SOLUTIONS  

A. Theorem 1. All the solutions of the system (1) in ℜ+
2 are uniformly bounded.  

Proof:Let us introduce a function𝑊 =
𝑥

𝛼
+

𝑦

𝛽
. 

Now using the system (1) and above relation we have 
𝑑𝑊

𝑑𝑡
=

𝑟1𝑥

𝛼
 1 −

𝑥

𝑘1

 −
𝐸𝑞𝑥

𝛼
+

𝑟2

𝛽
 1 −

𝑦

𝑘2

  

Therefore, for 𝜂 > 0 
𝑑𝑊

𝑑𝑡
+ 𝜂𝑊 =

𝑟1𝑥

𝛼
 1 −

𝑥

𝑘1

 −
𝐸𝑞

𝛼
+

𝑟2

𝛽
 1 −

𝑦

𝑘2

 + 𝜂
𝑥

𝛼
+ 𝜂

𝑦

𝛽
 

=
𝑥

𝛼
 𝑟1  1 −

𝑥

𝑘1
 + 𝜂 − 𝐸𝑞 +

𝑦

𝛽
 𝑟2  1 −

𝑦

𝑘2
 + 𝜂  . 

Now using the relations 

 𝑘1 𝑟1 + 𝜂 − 𝐸𝑞 − 2𝑟1𝑥 
2 ≥ 0 𝑎𝑛𝑑  𝑘2 𝑟2 + 𝜂 − 2𝑟2𝑦 

2 ≥ 0 
we can respectively derive 

𝑥

𝛼
 𝑟1  1 −

𝑥

𝑘1

 + 𝜂 − 𝐸𝑞 ≤
𝑘1

4𝑟1𝛼
 𝑟1 + 𝜂 − 𝐸𝑞 2 

and 
𝑦

𝛽
 𝑟2  1 −

𝑦

𝑘2

 + 𝜂 ≤
𝑘2

4𝑟2𝛽
 𝑟2 + 𝜂 2 

Therefore, 
𝑑𝑊

𝑑𝑡
+ 𝜂𝑊 ≤ 𝛾. 

Where, 𝛾 =
𝑘1

4𝑟1𝛼
 𝑟1 + 𝜂 − 𝐸𝑞 2 +

𝑘2

4𝑟2𝛽
 𝑟2 + 𝜂 2. 

Now applying the theorem of differential inequalities [17], we get0 ≤ 𝑊 𝑥, 𝑦 ≤
𝛾

𝜂
+

𝑊 𝑥 0 ,𝑦 0  

𝑒𝜂𝑡 . 

Therefore, for 𝑡 → ∞, 0 ≤ 𝑊 𝑥, 𝑦 ≤
𝛾

𝜂
. 

So,   𝑥, 𝑦 ∈ ℜ+
2 : 0 ≤ 𝑊 𝑥, 𝑦 ≤

𝛾

𝜂
+ 𝜖, 𝑓𝑜𝑟 𝜖 > 0 = 𝐵 is the region where all solutions of the system of 

equation (1) are bounded in ℜ+
2 . Hence the theorem.  

V. LOCAL STABILITY ANALYSIS 

In this section, we investigate the local stability of the system (1) around its steady states.  

The variational matrix of the system (1) is given by  

𝑉 𝑥, 𝑦 =  
𝑟1 −

2𝑟1

𝑘1
𝑥 −

𝛼𝑎𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 − 𝐸𝑞 −
𝛼𝑥 𝑝

𝑎+𝑥𝑝

𝑎𝛽𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 𝑟2 −
2𝑟2

𝑘2
𝑦 +

𝛽𝑥 𝑝

𝑎+𝑥𝑝

 (3) 

From (3), we get, 

𝑉 0, 0 =  
𝑟1 − 𝐸𝑞 0

0 𝑟2
 , 𝑝 ≥ 1(4) 

From the variational matrix (3), using the relation 𝑥 =
𝑘1

𝑟1
 𝑟1 − 𝐸𝑞  we get, 
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𝑉 𝑥, 0 =  
−

𝑟1

𝑘1
𝑥 −

𝛼𝑥
𝑝

𝑎+𝑥
𝑝

0 𝑟2 +
𝛽𝑥

𝑝

𝑎+𝑥
𝑝

   (5) 

 

Again, from the variational matrix (3), for the point 𝐸2 0, 𝑘2  

𝑉 0, 𝑘2 =  
𝑟1 − 𝐸𝑞 0

0 −𝑟2
 , 𝑝 ≥ 1(6) 

 

Also, for the non-trivial steady state 𝐸3 𝑥
∗, 𝑦∗ , using (2) in (3) we have, 

𝑉 𝑥∗, 𝑦∗ =  
−

𝑟1

𝑘1
𝑥∗ +

𝛼𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  
−

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  2 −
𝛼𝑥 ∗𝑝

𝑎+𝑥∗𝑝

𝑎𝛽𝑝 𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  2 −
𝑟2

𝑘2
𝑦∗

 (7) 

A. Theorem 2. The steady state 𝐸0 0, 0 is unstable. 

Proof: The eigen values of V (0, 0) are 𝑟1 −  𝐸𝑞and 𝑟2. So, irrespective of the sign of 𝑟1–  𝐸𝑞, the intrinsic 

growth rate of predator𝑟2 is always positive. 

Therefore, the steady state 𝐸0 0, 0  is unstable.  

 

B. Theorem 3. The steady state 𝐸1 𝑥, 0 is unstable. 

Proof: The eigen values of V (𝑥, 0) are − 𝑟1 −  𝐸𝑞 and 𝑟2 +
𝛽𝑥

𝑝

𝑎+𝑥
𝑝 . So, irrespective of the sign of − 𝑟1–  𝐸𝑞 , the 

other eigen value 𝑟2 +
𝛽𝑥

𝑝

𝑎+𝑥
𝑝  is always positive. 

Therefore, the steady state 𝐸1 𝑥, 0  is unstable.  

C. Theorem 4. The steady state  𝐸2 0, 𝑘2  will be an asymptotically stable if and only if𝑝 ≥  1 and𝐸 >

𝐵𝑇𝑃𝑥and unstable otherwise. Where, 𝐵𝑇𝑃𝑥 =
𝑟1

𝑞
, is the biotic potential for 𝑥. 

Proof: The eigen values of V (0, 𝑘2) are  𝑟1 −  𝐸𝑞 and −𝑟2. So, the steady state will be a stable node if  𝑟1 −

 𝐸𝑞 < 0. That is if 𝐸 >
𝑟1

𝑞
 , which imply 𝐸 > 𝐵𝑇𝑃𝑥 . 

This completes the proof. 

D. Theorem 5. The steady state 𝐸3 𝑥
∗, 𝑦∗  will be an asymptotically stable if and only if 

𝑟1

𝑘1
>

𝛼𝑥∗𝑝−2𝑦∗

 𝑎+𝑥∗𝑝  
and 

unstable otherwise. 

Proof: The characteristic equation for the variational matrix 𝑉 𝑥∗, 𝑦∗  can be written as 

𝜆2—
𝑟1

𝑘1
𝑥∗ +  

𝛼𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  
−

𝛼𝑎𝑝 𝑥 ∗𝑝−1𝑦 ∗

 𝑎+𝑥∗𝑝  2 −
𝑟2

𝑘2
𝑦∗ 𝜆                                  

+  
𝑟1𝑟2

𝑘1𝑘2

𝑥∗𝑦∗ −
𝑟2

𝑘2

𝛼𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  
 +

𝑟2

𝑘2

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  2 +
𝑎𝛽𝑎𝑝 𝑥∗2𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  3  = 0
(8) 

From the equation (8), the sum and product of the roots are respectively 

𝜆1 + 𝜆2 =  −
𝑟1

𝑘1
𝑥∗ +

𝛼𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  
−

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  2 −
𝑟2

𝑘2
𝑦∗  (9) 

and 

𝜆1𝜆2 =
𝑟1𝑟2

𝑘1𝑘2
𝑥∗𝑦∗ −

𝑟2

𝑘2

𝛼𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  
+

𝑟2

𝑘2

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  2 +
𝑎𝛽𝑎𝑝 𝑥∗2𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  3 (10) 

Therefore, 𝐸3 𝑥
∗, 𝑦∗ will be asymptotically stable node if  

𝜆1 + 𝜆2 < 0 𝑎𝑛𝑑 𝜆1𝜆2 > 0  (11) 

which implies the conditions 
𝑟1

𝑘1
𝑥∗ −

𝛼𝑥∗𝑝−1𝑦∗

 𝑎+𝑥∗𝑝  
+

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦 ∗

 𝑎+𝑥∗𝑝  2 +
𝑟2

𝑘2
𝑦∗ > 0  (12) 

and 
𝑟1𝑟2

𝑘1𝑘2
𝑥∗𝑦∗ −

𝑟2

𝑘2

𝛼𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  
+

𝑟2

𝑘2

𝛼𝑎𝑝 𝑥∗𝑝−1𝑦∗2

 𝑎+𝑥∗𝑝  2 +
𝑎𝛽𝑎𝑝 𝑥∗2𝑝−1𝑦 ∗

 𝑎+𝑥∗𝑝  3 > 0 (13) 

These two conditions hold together if and only if 
𝑟1

𝑘1
>

𝛼𝑥∗𝑝−2𝑦∗

 𝑎+𝑥∗𝑝  
 (14) 

which completes the theorem. 

 

VI. GLOBAL STABILITY ANALYSIS 

In this section, to check the global stability of the system (1) we assume that the equilibrium point 𝐸3 𝑥
∗, 𝑦∗  

exists and it is locally asymptotically stable.  
Now let us consider the functions  
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𝐺 𝑥, 𝑦 =
1

𝑥𝑦
(15) 

1 𝑥, 𝑦 = 𝑟1𝑥  1 −
𝑥

𝑘1
 −

𝛼𝑥𝑝𝑦

𝑎+𝑥𝑝 − 𝐸𝑞𝑥 (16) 

and 

2 𝑥, 𝑦 = 𝑟2𝑦  1 −
𝑦

𝑘2
 +

𝛽𝑥𝑝𝑦

𝑎+𝑥𝑝  (17) 

Clearly, 𝐺 𝑥, 𝑦 > 0 in the interior of the positive quadrant of 𝑥 − 𝑦 plane.  

Therefore, we have 

∆ 𝑥, 𝑦 =
𝜕 1𝐺 

𝜕𝑥
+

𝜕 2𝐺 

𝜕𝑦
= −

𝑟1

𝑘1𝑦
−

𝛼

 𝑎 + 𝑥𝑝 2
 𝑎 𝑝 − 1 𝑥𝑝−2 − 𝑥2𝑝−2 −

𝑟2

𝑘2𝑥
 

Clearly for 𝑝 > 1,∆ 𝑥, 𝑦 < 0 if 𝑎 𝑝 − 1 𝑥𝑝−2 − 𝑥2𝑝−2 > 0. 

That is if 𝑥 <  𝑎 𝑝 − 1  
1

𝑝 . 
Therefore, in this circumstance, by Bendixson-Dulac criterion there exists no limit cycle in the region 

𝐵 ≡   𝑥, 𝑦 : 𝑥 <  𝑎 𝑝 − 1  
1

𝑝 , 𝑦 > 0  

So, with the assumption of the existence and local asymptotic stability of the interior equilibrium point 

𝐸3 𝑥
∗, 𝑦∗ , it is also globally asymptotically stable in the above region B of 𝑥 − 𝑦plane [18].  

Again, for 𝑝 > 1, ∆ 𝑥, 𝑦 = −
𝑟1

𝑘1𝑦
+

𝛼

 𝑎+𝑥𝑝  2 −
𝑟2

𝑘2𝑥
.  

So, in this case the region for globally asymptotically stable will be  

𝐵1 ≡   𝑥, 𝑦 :
𝑟1

𝑘1𝑦
+

𝑟2

𝑘2𝑥
>

𝛼

 𝑎 + 𝑥𝑝 2
, 𝑦 > 0 . 

If 0 <  𝑝 <  1 then the condition for global stability is 𝑥𝑝 < 𝑎 𝑝 − 1 , which is not possible as, 𝑥is non-

negative.  

VII. BIONOMIC EQUILIBRIUM 

The concept of bionomic equilibrium is the combination of biological and economic equilibriums. Biological 

equilibrium is the solution of the system 𝑥 = 0, 𝑦 = 0and the economic equilibrium occurs when the total 

revenue (TR) obtained by selling the harvested biomass is equal to the total cost (TC) for the effort of 

harvesting. Now considering 𝐶 as constant fishing cost per unit effort and 𝑐 as constant price per unit biomass 

of the first and second species respectively, the net economic rent is given by  

𝜋 𝑥, 𝑦, 𝐸 = 𝑐𝑞𝑥𝐸 − 𝐶𝐸 (18) 

As the harvesting cost per unit effort (𝐶) is constant, now we get from (1)  

𝑥 = 0 ⇒ 𝑥 = 0 𝑜𝑟, 𝐸 =
1

𝑞
 𝑟1  1 −

𝑥

𝑘1
 −

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝   (19) 

and 

𝑦 = 0 ⇒ 𝑦 = 0 𝑜𝑟 𝑦 =
𝑘2

𝑟2
 𝑟2 +

𝛽𝑥𝑝

𝑎+𝑥𝑝  (20) 

So, the bionomic equilibrium  𝑥𝑏 , 𝑦𝑏 is determined by solving the (19), (20) along with the equation 

𝜋 𝑥, 𝑦, 𝐸 = 𝑐𝑞𝑥𝐸 − 𝐶𝐸 = 0  (21) 

Therefore, we have 

 

𝑥𝑏 =
𝑐

𝐶𝑞

𝑦𝑏 =
𝑘2

𝑟2
 𝑟2 +

𝛽 
𝑐

𝐶𝑞
 
𝑝

𝑎+ 
𝑐

𝐶𝑞
 
𝑝 

 
 

 

(22)    

and the corresponding value of 𝐸is  

𝐸𝑏 =
1

𝑞
 𝑟1  1 −

𝑥𝑏

𝑘1
 −

𝛼𝑥𝑏
𝑝−1

𝑦𝑏

𝑎+𝑥𝑏
𝑝  (23)    

 

VIII. OPTIMAL HARVESTING POLICY  
In this section with the assumption of existence of𝐸3 𝑥

∗, 𝑦∗ ,the present value of𝐽, continuoustime-stream of 

revenues is given by  

𝐽 =  𝑒−𝛿𝑡∞

0
𝜋 𝑥, 𝑦, 𝐸, 𝑡 𝑑𝑡(24) 

where 𝜋 𝑥, 𝑦, 𝐸, 𝑡 =    𝑐𝑞𝑥 − 𝐶 𝐸 and 𝛿 denotes the annual discount rate. Now we have to maximize 𝐽 subject 
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to the system of equation (1) using Pontryagin’s Maximal Principle [19]. The control variable 𝐸(𝑡) is subjected 

to the constraints 0 ≤  𝐸(𝑡)  ≤  𝐸𝑚𝑎𝑥, so that 𝑉𝑡 
=  [0, 𝐸𝑚𝑎𝑥] is the control set and 𝐸𝑚𝑎𝑥is a feasible upper 

limit for the harvesting effort.  

 The Hamiltonian for the problem is given by 

𝐻 = 𝑒−𝛿𝑡   𝑐𝑞𝑥 − 𝐶 𝐸 + 𝜆1  𝑟1𝑥  1 −
𝑥

𝑘1
 −

𝛼𝑥𝑝𝑦

𝑎+𝑥𝑝 − 𝐸𝑞𝑥 + 𝜆2  𝑟2𝑥  1 −
𝑦

𝑘2
 +

𝛽𝑥𝑝𝑦

𝑎+𝑥𝑝  (25) 

where, 𝜆1 𝑡  and 𝜆2 𝑡  are adjoint variables. 

Hamiltonian 𝐻 depends linearly on 𝐸 with coefficient𝜎 =  𝑒−𝛿𝑡   𝑐𝑞𝑥 − 𝐶 − 𝜆1𝑞𝑥 

Consequently, its maximum value is reached for extremes of 𝐸, i.e. the harvest rate must be either 0 or 𝐸𝑚𝑎𝑥  . 

This observation leads to the rule that one must harvest as much as possible when the switching function 𝜎 >
 0, and will not harvest at all when 𝜎 <  0. Furthermore, when 𝜎 =  0, the harvest rate is undetermined. In this 

case three solutions for E are possible, namely 0, 𝐸𝑚𝑎𝑥  𝑜𝑟 𝐸∗which is the singular control that maintains the 

condition 𝜎 =  0. Therefore, the optimal control path will be either “bang-bang” control or singular.  

Our objective is to reach optimal solution optimally from the initial state  𝑥 0 , 𝑦 0  . This can be achieved by 

applying a “bang-bang” control (Pontryagin et. al. [19]) to the system as presented below.  

Define, 

𝐸  𝑡 =  
𝐸𝑚𝑎𝑥   𝑓𝑜𝑟 𝜎 𝑡 > 0

0         𝑓𝑜𝑟 𝜎 𝑡 < 0
  (26) 

Moreover, let 𝑇 be the time at which the path  𝑥 𝑡 , 𝑦 𝑡  , which, generated via the “bang-bang” control 

𝐸 𝑡 = 𝐸  𝑡 , reaches the steady state 𝑥𝛿 , 𝑦𝛿 . Then, the optimal control policy is  

𝐸 𝑡 =  
𝐸  𝑡   𝑓𝑜𝑟 0 ≤ 𝑡 < 𝑇
𝐸∗        𝑓𝑜𝑟       𝑡 > 𝑇

 (27) 

and the optimal path is given by the trajectory generated by the above optimal control.  

In view of the stability property of the interior equilibrium of the system (1), we can also reach the singular 

optimal solution through a suboptimal by choosing the control policy 𝐸 𝑡  to be equal to 𝐸∗ for all t. The 

advantage of choosing the optimal path is that it leads to the optimal singular solution more rapidly than the 

suboptimal path does.  

By the maximal principal, there exists adjoint variables 𝜆1 𝑡  and 𝜆2 𝑡  for all 𝑡 ≥ 0, such that  
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
= 𝜆1  

𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2  − 𝜆2
𝑎𝛽𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 − 𝑐𝑞𝑒−𝛿𝑡𝐸(28) 

and 
𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦
= 𝜆1

𝛼𝑥𝑝

𝑎+𝑥𝑝 + 𝜆2
𝑟2𝑦

𝑘2
 (29) 

Now eliminating 𝜆2 from (28) and (29)  
𝑑2𝜆1

𝑑𝑡2 −  
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 +
𝑟2𝑦

𝑘2
 

𝑑𝜆1

𝑑𝑡
+  

𝑟2𝑦

𝑘2
 
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2  +
𝛼2𝛽𝑎𝑝 𝑥2𝑝−1𝑦

 𝑎+𝑥𝑝  3  𝜆1 = 𝑀1𝑒
−𝛿𝑡 (30) 

where, with the help of (23) 

𝑀1 = 𝛿𝑐𝑞𝐸 +
𝑟2𝑦

𝑘2
𝑐𝑞𝐸 =  𝛿𝑐𝑞 +

𝑟2𝑦

𝑘2
𝑐𝑞  

1

𝑞
 𝑟1 −

𝑟1𝑥𝑏

𝑘1
−

𝛼𝑥𝑏
𝑝−1

𝑦𝑏

𝑎+𝑥𝑏
𝑝   (31)  

The auxiliary equation corresponding to the differential equation (28) can be written as 

𝜇2 −  
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 +
𝑟2𝑦

𝑘2
 𝜇 +  

𝑟2𝑦

𝑘2
 
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2  +
𝛼2𝛽𝑎𝑝 𝑥2𝑝−1𝑦

 𝑎+𝑥𝑝  3  = 0(32) 

 

From the equation (32) with the help of (12) and (13) under the assumption that the condition of Theorem-5 

holds, we have  

𝑇𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡𝑒 𝑟𝑜𝑜𝑡𝑠 =  
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 +
𝑟2𝑦

𝑘2
 > 0 (33) 

and  

𝑇𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑒 𝑟𝑜𝑜𝑡𝑠 =
𝑟2𝑦

𝑘2
 
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2  +
𝛼2𝛽𝑎𝑝 𝑥2𝑝−1𝑦

 𝑎+𝑥𝑝  3 > 0(34) 

So, we conclude that the roots of the equation (32) are either both real and positive or complex conjugates with 

positive real parts. Therefore, the general solution of (30) is of the form  

𝜆1 = 𝐴1𝑒
𝜇1𝑡 + 𝐵1𝑒

𝜇2𝑡 +
𝑀1

𝑁
𝑒−𝛿𝑡  (35) 

where, 𝐴1 and 𝐵1 are arbitrary constants and 𝜇𝑖 ′𝑠 𝑖 = 1,2  are the roots of the equation (32) 

𝑁 = 𝛿2 +  
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2 +
𝑟2𝑦

𝑘2
 𝛿 +  

𝑟2𝑦

𝑘2
 
𝑟1𝑥

𝑘1
−

𝛼𝑥𝑝−1𝑦

𝑎+𝑥𝑝 +
𝑎𝛼𝑝 𝑥𝑝−1𝑦

 𝑎+𝑥𝑝  2  +
𝛼2𝛽𝑎𝑝 𝑥2𝑝−1𝑦

 𝑎+𝑥𝑝  3  ≠ 0(36) 

Therefore, the shadow price [4], 𝜆1𝑒
𝛿𝑡  remains bounded as 𝑡 → ∞ if and only if 𝐴1 = 𝐵1 = 0 and therefore 

𝜆1𝑒
𝛿𝑡 =

𝑀1

𝑁
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (37) 
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Similarly, we get  

𝜆2𝑒
𝛿𝑡 =

𝑀2

𝑁
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(38) 

again here, with the help of (23) 

𝑀2 = −
𝛼𝑥𝑝

𝑎+𝑥𝑝  
1

𝑞
 𝑟1 −

𝑟1𝑥𝑏

𝑘1
−

𝛼𝑥𝑏
𝑝−1

𝑦𝑏

𝑎+𝑥𝑏
𝑝   (39) 

Thus, the shadow price, 𝜆𝑖𝑒
𝛿𝑡 (i =  1, 2. ), remain constant over time in optimal equilibrium when they satisfy 

the transversality condition at infinity [5], when they remain bounded as 𝑡 → ∞. The Hamiltonian (25) must 

maximized for 𝐸 belongs to 𝑉𝑡 . Assuming that the control constraints are not binding (that is optimal solution 

does not occur at 𝐸 =  0 𝑜𝑟 𝐸 =  𝐸𝑚𝑎𝑥 ) we have singular control [6] given by 
𝜕𝐻

𝜕𝐸
= 𝑒−𝛿𝑡   𝑐𝑞𝑥 − 𝐶 − 𝜆1𝑞𝑥 = 0(40) 

i.e.  

𝜆1𝑞𝑥 = 𝑒−𝛿𝑡 𝜕𝜋

𝜕𝐸
(41) 

which indicates that the total user cost of harvest per unit effort must be equal to the discounted value of the 

future profit at the steady state effort level. Using the values of 𝜆1 𝑡 and 𝜆2 𝑡 in equation (40), we get  

 𝑐 −
𝑀1

𝑁
 𝑞𝑥 = 𝐶(42) 

The above equation together with the equations (22) and (23) gives the optimal equilibrium population densities 

as 𝑥 =  𝑥𝛿 , 𝑦 = 𝑦𝛿 . Now when 𝛿 → ∞, the above equation leads to the result  

𝑐𝑞𝑥∞ = 𝐶(43)                

which gives that 𝜋 𝑥∞ , 𝑦∞ , 𝐸 = 0.  
This shows that an infinite discount rate leads to complete dissipation of economic revenue. Which is a similar 

conclusion drawn by Clark [4] for combined harvesting of two ecologically independent populations and by 

Chaudhuri [16] in the combined harvesting of two competing species. Using (42), we get  

𝜋 =  𝑐𝑞𝑥 − 𝐶 𝐸 =
𝑀1𝑞𝑥𝐸

𝑁
 (44) 

Aseachof 𝑀1isof 𝑜(𝛿) and𝑁isof 𝑜(𝛿2), therefore𝜋isof𝑜(𝛿−1). Thus, 𝜋 isa decreasing function of 𝛿 (≥  0). We 

therefore conclude that 𝛿 =  0 leads to maximization of 𝜋.  

We have established here the existence of an optimal equilibrium solution and discussed about the optimal 

approach path (cf. Clark [6], Kar et. al. [22], Srinivasu ([20],[21]), Kar and Chattopadhyay [23]) using “bang-

bang” control.  

 

IX. NUMERICAL EXPERIMENTS 

We illustrate the model by the examples for the following set of parametric values with suit- able unit: 𝑟1 =
7.5, 𝑟2 = 6, 𝑘1 = 500, 𝑘2 = 400, 𝑎 = 30, 𝛼 = 0.01, 𝛽 = 0.01, 𝑞 = 0.3, 𝐸 = 10, 𝑐 = 0.7, 𝛿 =  0.5 𝑎𝑛𝑑 𝐶 = 20  
A. Example-1: For the above values of parameters and for 𝑝 =  0.5, we get  

(1) from theorem-2, (0,0) is an unstable node.  

(2) from theorem-3, (300, 0) is unstable.  

(3) from theorem-4, (0, 400) is unstable.  
(4) from theorem-5, the nontrivial steady state (296.7, 400) is stable.  

(5) the bionomic equilibriums are (0.12, 400) and corresponding harvesting effort 𝐸𝑏 = 3.64. 

(6) the optimal equilibriums are (363.64, 400.25) and corresponding optimal harvesting effort 𝐸∗ = 5.57. 

 

In next two examples, we are going to discuss about the behaviour of the system for non-trivial steady states 

only. 

B. Example-2: For the above values of parameters and for 𝑝 =  1, we get  

(1) from theorem-5, the nontrivial steady state (291.7, 400) is stable. 

(2) the bionomic equilibriums are (0.12, 400.60) and corresponding harvesting effort is not feasible. 

(3) the optimal equilibrium is also not feasible in this case. 

 

C. Example-3: For the above values of parameters and for 𝑝 =  1.5, we get  

(1) from theorem-5, the nontrivial steady state (290.9, 400) is stable. 

(2) the bionomic equilibriums are (0.12, 401) and corresponding harvesting effort is 𝐸𝑏 = 9.97. 

(3) the optimal equilibrium is (256.41, 400.67) and corresponding optimal harvesting effort 𝐸∗ = 11.67. 
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Fig. 1: Stability diagram of the system for p = 0.5, 1.0 & 1.5 with x 0 = 50 and y 0 = 5. 

 

 

 
Fig.2: Phase portrait for p = 0.5, 1.0 & 1.5with x 0 = 50 and y 0 = 5. 

 

X. CONCLUSIONS 

The present paper mainly deals with the problem of selective harvesting with same catching effort(𝐸)in a two-

species prey-predator system in which the growth of the both species is governed by the logistic law of growth. 

The distinguishing feature of this prey-predator model is the response function, which is a most general Holling 

type form because for different values of 𝑝 we can get different Holling type response functions. Firstly, we 

have studied the boundedness of the solutions for the system in ℜ+
2 , then we have examined the conditions of 

existence and stability of the several steady states. Also selecting a suitable Lyapunov function, we analysed the 

global stability for the system. After that, we have examined the existence of the Bionomic (i.e. biological as 

well as economic) equilibrium.  

Through the optimal harvesting policy, we have tried to find out the condition to maximize the monetary benefit 

together with the condition to save each of the species from extinction to keep ecological balance right. The 

optimal tax policy within the range of variation of tax for the interior equilibrium has been studied by 

Pontryagin’s maximal principal.  

Finally, we have discussed the problem with the help of a numerical example by using arbitrary feasible 

parametric values and using MATLAB, we observed from stability diagram (Fig.-1) and phase portrait (Fig.-

2)that as the values of 𝑝decreases, the steady state value of Prey population increases. This is quite good result 

for ecological sustainability of species. Our model may be extended by incorporating time delay and 

stochasticity in the system. 
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