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Abstract. In this paper we have proved that every group of finite order can be embedded in a normal

subgroup of the group of invertible matrices over the field R, i.e., GL(n,R) for some n. The field we

have taken, is R. But, we can also take Z,Q,C or finite fields instead of R. We have given the proof for

embedding of An in SL(n,R) which is stronger result than the embedding of An in SL(n + 1,R). We

have also shown that any group of finite order can be embedded in a perfect group.
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1. Introduction

An embedding of some object R into a different or same object S is a map F : R→ S which is injective

and structure preserving, i.e., an injective homomorphism. We can then say that R is isomorphic to a

subset of S having same structural properties as that of S. Example of such maps are injective group

homomorphism, ring homomorphisms, field homomorphisms and many more. Homeomorphism between

topological spaces is also one of the example of an embedding. But in this paper we confined ourselves

to the injective group homomorphisms only. Our main aim is to define injective group homomorphims

between the groups.

2. Main result

Theorem 2.1. Any group having finite order can be embedded in a normal subgroup of the general linear

group of matrices i.e. GL(k,R) for some positive integer k.

For proving above theorem, we need few results. So, we first discuss them and then we will prove the

Theorem.

Theorem 2.2. Cayley Theorem: Any group G is isomorphic to a subgroup of a symmetric group SG,

where SG is the permutation group of elements of G.

Proof. For proof, see [1, p. 86, Th. 5.1]. �

Remark 2.1. If G is of finite order, say n, then G will be isomorphic to a subgroup of Sn, where Sn is

symmetric group on n symbols.

Theorem 2.3. The symmetric group Sn can be embedded in group of all even permutations on n+ 2

symbols {1, 2 . . . , n+ 2}, i.e. Alternating group An+2 for any positive integer n.
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Proof. To prove this, we use the following results about Sn which are already proved in [1], [2]:

(1) Any permutation ζ ∈ Sn can be written as product of even or odd number of transpositions and

accordingly these permutations are coined as even or odd.

(2) Multiplying any odd (even) permutation with a 2− cycle, it becomes even (odd).

Now let us define a map ψ : Sn 7→ An+2 as

ψ(ζ) =

ζ, if ζ is even

ζ(n+ 1, n+ 2), if ζ is odd

where (n+ 1, n+ 2) is a 2− cycle.

It is easy to prove that ψ is a group homomorphism. Further

Kernel ψ = {ζ ∈ Sn : ψ(ζ) = (1)}

= {(1)}

where (1) is identity permutation. Thus ψ is one-one and hence ψ is an embedding. �

Theorem 2.4. The alternating group An can be embedded in GL(n,R), where GL(n,R) is general linear

group of (n× n) matrices over reals for any positive integer n.

Proof. For proving above result, again we have to define a one-one homomorphism between the two. So

consider F : An 7→ GL(n,R) defined as

F (ζ) = (Aζ)
t

where (Aζ) is a matrix whose (i, j)th entry is 1 whenever ζ(i) = j and 0 elsewhere, i.e.,ith row of (Aζ) is

etj where ej is the (n × 1) column vector with 1 at jth position and 0 elsewhere . Now the main task is

to prove that F is a group homomorphism, i.e.,

F (ζ ◦ η) = F (ζ)F (η)

where ζ, η ∈ An. For proving above, it is enough to prove that ith column of both the matrices is same

for each i ≤ n. So, let ζ, η ∈ An, and also consider

ζ(j) = k & η(i) = j 1 ≤ i, j, k ≤ n.

Then ith column of F (ζ ◦ η) is ith row of the matrix (Aζ◦η) which is the (n× 1) vector ek.

Now ith column of F (ζ)F (η) is obtained by multiplying F (ζ) with ith column of F (η) i.e., ej . So,

ith column of F (ζ)F (η) will then be equal to jth column of F (ζ) which is equal to ek. Thus F is a

homomorphism.

Further we can easily prove that Kernel F = {(1)} which implies that F is one-one and hence an

embedding. �

Theorem 2.5. The general linear group of k×k matrices i.e. GL(k,R) can be embedded in special linear

group of (k + 1) × (k + 1) matrices over reals having determinant 1 i.e. SL(k + 1,R) for any positive

integer k.
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Proof. Let us consider the following map φ : GL(k,R) 7→ SL(k + 1,R) defined by

φ(G) =

 1

det(G)
0

0 G


Since G is an invertible k × k matrix, clearly φ(G) is a well defined (k + 1)× (k + 1) matrix. Moreover,

det(φ(G)) =
1

det(G)
× det(G) = 1

and thus φ(G) ∈ SL(k + 1,R).

To prove φ is injective homomorphism.

For homomorphism, take G1, G2 ∈ GL(k,R), we have

φ(G1G2) =

 1

det(G1G2)
0

0 G1G2

 =

 1

det(G1)det(G2)
0

0 G1G2



=

 1

det(G1)
0

0 G1

×
 1

det(G2)
0

0 G2


= φ(G1)φ(G2).

It is easy to check that φ is injective. �

Above two theorems combinely say that an Alternating group of degree n , i.e., An can be embedded

in the special linear group , SL(n+ 1,R). Infact we can also prove a slightly stronger result.

Theorem 2.6. The alternating group An can be embedded in SL(n,R), where SL(n,R) is general linear

group of (n× n) matrices over reals.

Proof. We begin with the same mapping F : An → SL(n,R), as taken in Theorem 2.4, and we prove

that F (ζ) ∈ SL(n,R) for all ζ ∈ An. For that, we have to prove that determinant of F (ζ) = 1 for all

ζ ∈ An, i.e., to prove that det(F (ζ)) = 1 for all ζ ∈ An. Let σ = (i, j) ∈ Sn, where i < j,

F (σ) =



R1

.

.

.

Rn


where Rk = etk for k 6= i, j ; Ri = etj and Rj = eti. By interchanging Ri and Rj , we get the identity

matrix I. Thus, from ([1], p.51,Cor.5.2)

det(F (σ)) = −det(I) = −1

Now, any ζ ∈ An can be written as product of even number of transpositions and as F is a homomorphism,

we get

det(F (ζ)) = (−1)k

where ζ is product of k number of transpositions. Further we know that k is even, and so,

det(F (ζ)) = 1
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and hence the result. �

Theorem 2.7. SL(k,R) is a normal subgroup of GL(k,R) for every positive integer k.

Proof. We know that Kernel of any group homomorphism is a normal subgroup of the group. So we will

use this result to prove above stated theorem. Now define a map f : GL(k,R) 7→ R∗ given by

f(A) = det(A)

where R∗ is a multiplicative group of non zero reals. So, f is an onto homomorphism having kernel

SL(k,R), and hence the result. �

Now we are ready to give the proof of theorem 2.1.

Proof. (theorem-2.1) Using theorems 2.2 to 2.7, we conclude that any group of finite order can be em-

bedded in a normal subgroup of a matrix group. �

3. Embedding of any finite group into a Perfect group

Definition 3.1. Commutator subgroup of a Group G :- It is the subgroup generated by all the commutators

of G. It is denoted by G
′

and is defined by G
′

= 〈ghg−1h−1|g, h ∈ G〉. It is also known as derived subgroup

of the group G.

Definition 3.2. Perfect Group :- A group G for which the commutator subgroup, G′ is the whole group

G, is called perfect group.

Theorem 3.1. Every finite group can be embedded in a simple group.

Proof. If the order of G is finite, then clearly G can be embedded in Sn for n = order of G and from

theorem 2.3, Sn can be embedded in An+2. So any group of order n can be embedded in An+2 , and

further we know that An can be embedded inside Ak for all k ≥ n . Now as we know that An is simple

for n ≥ 5,(cf.[1], p.135,Thm.3.3) we have the result. �

Corollary 3.1. Every group of finite order can be embedded inside a perfect group.

Proof. We have the result that commutator subgroup of a groupG is a normal subgroup ofG, (cf.[1], p.93,Thm.1.4),

and hence A
′

nEAn, but as we know that the alternating group An is simple for n ≥ 5, so either A
′

n = (1)

or An
′ = An, but if A

′

n = (1), this would imply that An is abelian which is not true for n ≥ 4, and so

An
′ = An for n ≥ 5 , so An is perfect for n ≥ 5, and hence the result. �
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