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Abstract — In this paper, I derived shape functions 

for 2,3,4,5 noded line element by polynomial 

functions, by taking natural coordinate system and 

also I verified two verification conditions for shape 

functions. First verification condition is sum of all 

the shape functions is equal to one and second 

verification condition is each shape function has a 

value of one at its own node and zero at the other 

nodes. For computational purpose I used 

Mathematica 9 Software[2]. 
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I. INTRODUCTION  

                   Initially shape functions were derived 

interms of Cartesian coordinates. Polynomial 

functions were used for this. After natural 

coordinates were identified and its advantage was 

noticed researchers started deriving shape functions 

interms of natural coordinates. By this approach 

more elements could be developed [1]. By 

increasing more number of nodes we can minimize 

error in Finite Element Method [3]. In this 

computation one of the important observation is one 

dimensional polynomial changes to Lagrange 

interpolation formula. 

 

           II. GEOMETRICAL DESCREPTION 

Line element with 2,3,4,5 nodes is shown in 

figures.1, 2, 3, 4. 

 

                

 
               Figure.1:  2 noded line element 

             

 
                      Figure.2:  3 noded line element 

 

 

               

 
                     Figure.3:  4 noded line element 

              

 
                    Figure.4:  5 noded line element 

 

III. DERIVING SHAPE FUNCTIONS FOR 

2,3,4,5 NODED LINE ELEMENT 

(i) The typical 2 noded element is shown in Figure.1. 

1

2

Shape  function for node 1 is N  and for 

node 2 is N  



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 53 Number 3 January 2018 

 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 196 

1 2

 typical bar element in the natural 

coordinate x varying from -1 to 1 is 

shown in Figure.1.In figure.1 nodal 

unknowns are displacements u  and u  

along x-axis. For this element we have 

to select po

The

lynomial with only two 

constants to represent displacement 

at any point in the elements.Since there 

are only two nodal values, a linear 

polynomial is to be selected. Let 

displacement at any point P(x) be 
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 2 noded element shape functions are N  1
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 Condition : Sum of all the shape 

functions is equal to one

st

Verification

I
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 Condition: Each shape function has a

 value of one at its own node and zero 

at the other nodes.

ndII

 

 

1 2 Node 1 x = -1 then we get  N 1,  N 0At  

 

1 2 Node 2 x = 1 then we get  N 0,  N 1At  

 
(ii) The typical 3 noded element is shown in Figure.2. 

1

2 3

Shape function for node 1 is N  ,  for 

node 2 is N  and for node 3 is N  

 

 typical bar element in the natural 

coordinate x varying from -1 to 1 is 

shown in Figure.2. Since there are only

three nodal values, a quadratic polynomial

is to be selected. Let displacement at any 

The

point P(x) be 
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 Node 2 x = 0 then we get  N 0,  
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3

 Node 3 x = 1 then we get  N 0,  N 0,

N 1

At  

  

 
(iii) The typical 4 noded element is shown in 

 Figure.3. 

 

 typical bar element in the natural 

coordinate x varying from -1 to 1 is 

shown in Figure.3.Since there are only

 four nodal values, Hence a polynomial

 with 4 generalized coordinates

 is to be selecte

The

d. Let displacement at 

any point P(x) be 
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(iv) The typical 5 noded element is shown in  

Figure.4. 
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                        V. CONCLUSIONS 

1. Derived Shape functions for 2,3,4,5 noded line     

element by polynomial. 

2. Verified sum of all the shape functions is equal to    

one. 

3. Verified each shape function has a value of one at    

its own node and zero at the other nodes. 
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