Deriving Shape Functions and Verified for One Dimensional Hermite Polynomials by Taking Natural Coordinate System 0 To 1

P. Reddaiah ${ }^{\# 1}$
\# Professor of Mathematics, Global College of Engineering and Technology, kadapa, Andhra Pradesh, India.

> Abstract- In this paper, I derived shape functions for one dimensional Hermite Polynomials by taking natural coordinate system 0 to 1 and also I verified three verification conditions for shape functions. First verification condition is at node 1 is $N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0 \quad$ and also $\frac{\partial N_{2}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \quad \frac{\partial N_{3}}{\partial x}=0, \quad \frac{\partial N_{4}}{\partial x}=0$, Second Verification condition is at node 2 $N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0 \quad$ and also $\frac{\partial N_{4}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \quad \frac{\partial N_{2}}{\partial x}=0, \quad \frac{\partial N_{3}}{\partial x}=0$. Third Verification condition is $N_{1}+N_{3}=1$. For computational purpose I used Mathematica 9 Software [2].

Keywords - Hermite Polynomials, Natural Coordinate System, Shape functions.

I. INTRODUCTION

In Finite Element Analysis any domain of geometry can be split into finite number of domains. Each domain has a particular shape of geometry for example like Rectangular shape, Triangle shape, Circular shape. To study the analysis of these geometries first we need shape functions.
II. GEOMETRICAL DESCRIPTION

Figure. 1 Beam element with natural coordinates varying from 0 to 1

A two noded beam element shown in Figure. 1 in which nodal unknowns are the displacement W and Slope $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}$.

III. DERIVING SHAPE FUNCTIONS FOR ONE DIMENSIONAL HERMITE POLYNOMIALS

Since the element in figure. 1 has four degrees of freedom, We have to select the polynomial with only 4 constants. In this polynomial after boundary conditions we get shape functions this we can take as first order (cubic) Hermitian Polynomials as shape functions.
$W(x)=A_{1}+A_{2} x+A_{3} x^{2}+A_{4} x^{3}$

Where W is the transverse displacement and $\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$ are polynomial Coefficients

Differentiating eq(1) w.r.t. 'x'
(1) $\Rightarrow \frac{\partial W}{\partial x}=0+A_{2}(1)+A_{3}(2 x)+A_{4}\left(3 x^{2}\right)$
$\frac{\partial W}{\partial x}=A_{2}+2 A_{3} x+3 A_{4} x^{2}$
Applying the nodal conditions such that $\mathrm{W}=\mathrm{W}_{1}$ and $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}=\theta_{1}$ at $\mathrm{x}=0$
and $\mathrm{W}=\mathrm{W}_{2}$ and $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}=\theta_{2}$ at $\mathrm{x}=l$
in equations (1) and (2), we get

When $\mathrm{W}=\mathrm{W}_{1}$ and $\mathrm{x}=0$
(1) $\Rightarrow W_{1}=A_{1}+A_{2}(0)+A_{3}(0)^{2}+A_{4}(0)^{3}$
$W_{1}=A_{1}+0+0+0$
$W_{1}=A_{1}$
When $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}=\theta_{1}$ and $\mathrm{x}=0$
(2) $\Rightarrow \theta_{1}=A_{2}+2 A_{3}(0)+3 A_{4}(0)^{2}$
$\theta_{1}=A_{2}+0+0$
$\theta_{1}=A_{2}$
When $\mathrm{W}=\mathrm{W}_{2}$ and $\mathrm{x}=l$
(1) $\Rightarrow W_{2}=A_{1}+A_{2}(l)+A_{3} l^{2}+A_{4} l^{3}$

When $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}=\theta_{2}$ and $\mathrm{x}=l$
(2) $\Rightarrow \theta_{2}=A_{2}+2 A_{3} l+3 A_{4} l^{2}$
$U \sin g$ Mathematica 9 Software Solving (3),(4),(5) and (6) we get $\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$

Input

Solve $\left[A_{1}-W_{1}=0 \& \& A_{2}-\theta_{1}=0\right.$
$\& \& A_{1}+\left(A_{2} * l\right)+\left(A_{3} * l^{2}\right)+\left(A_{4} * l^{3}\right)-W_{2}=0$
$\& \& A_{2}+\left(2 * A_{3} * l\right)+\left(3 * A_{4} * l^{2}\right)-\theta_{2}=0$,
$\left.\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\right]$
Output
$\left\{\left\{A_{1}->W_{1}, A_{2}->\theta_{1}\right.\right.$,
$A_{3}->-\frac{3 W_{1}-3 W_{2}+2 l \theta_{1}+l \theta_{2}}{l^{2}}$,
$\left.\left.A_{4}->-\frac{-2 W_{1}+2 W_{2}-l \theta_{1}-l \theta_{2}}{l^{3}}\right\}\right\}$

Substituting $\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$ in eq(1)
$A_{1}:=W_{1}$
$A_{2}:=\theta_{1}$
$A_{3}:=-\frac{3 W_{1}-3 W_{2}+2 l \theta_{1}+l \theta_{2}}{l^{2}}$
$A_{4}:=-\frac{-2 W_{1}+2 W_{2}-l \theta_{1}-l \theta_{2}}{l^{3}}$
$W(\xi):=A_{1}+A_{2} * x+A_{3} * x^{2}+A_{4} * x^{3}$
$\operatorname{Expand}[W(x)]$

Output

$W_{1}-\frac{3 x^{2} W_{1}}{l^{2}}+\frac{2 x^{3} W_{1}}{l^{3}}+\frac{3 x^{2} W_{2}}{l^{2}}-\frac{2 x^{3} W_{2}}{l^{3}}$
$+x \theta_{1}-\frac{2 x^{2} \theta_{1}}{l}+\frac{x^{3} \theta_{1}}{l^{2}}-\frac{x^{2} \theta_{2}}{l}+\frac{x^{3} \theta_{2}}{l^{2}}$

$$
\begin{align*}
& W(x)=W_{1}\left(1-\frac{3 x^{2}}{l^{2}}+\frac{2 x^{3}}{l^{3}}\right) \\
& +\theta_{1}\left(x-\frac{2 x^{2}}{l}+\frac{x^{3}}{l^{2}}\right) \\
& +W_{2}\left(\frac{3 x^{2}}{l^{2}}-\frac{2 x^{3}}{l^{3}}\right)+\theta_{2}\left(-\frac{x^{2}}{l}+\frac{x^{3}}{l^{2}}\right) \tag{7}
\end{align*}
$$

$$
\text { i.e., } \left.\begin{array}{rl}
\mathrm{W}=\mathrm{N}_{1} W_{1}+N_{2} \theta_{1}+N_{3} W_{2}+N_{4} \theta_{2} \tag{8}\\
& =\mathrm{N}_{1} \delta_{1}+N_{2} \delta_{2}+N_{3} \delta_{3}+N_{4} \delta_{4}
\end{array}\right\}
$$

Where $\mathrm{N}_{1}, N_{2}, N_{3}, N_{4}$ are shape functions for the beam elements and $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ are the nodal displacements
i.e., $\{\delta\}=\left\{\begin{array}{l}\delta_{1} \\ \delta_{2} \\ \delta_{3} \\ \delta_{4}\end{array}\right\}=\left\{\begin{array}{l}W_{1} \\ \theta_{1} \\ W_{2} \\ \theta_{2}\end{array}\right\}$

Comparing (7) and (8) we get
$N_{1}=1-\frac{3 x^{2}}{l^{2}}+\frac{2 x^{3}}{l^{3}}$
$N_{2}=x-\frac{2 x^{2}}{l}+\frac{x^{3}}{l^{2}}$
$N_{3}=\frac{3 x^{2}}{l^{2}}-\frac{2 x^{3}}{l^{3}}$
$N_{4}=-\frac{x^{2}}{l}+\frac{x^{3}}{l^{2}}$
Substituting length $l=1-0=1$ and $x=s$ in eqs (9),(10),(11), and (12) in general we get

$$
\begin{equation*}
N_{1}=H_{01}^{1}(s)=1-3 s^{2}+2 s^{3} \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
N_{2}=H_{11}^{1}(s) & =s-2 s^{2}+s^{3} \\
& =l s(s-1)^{2}
\end{aligned}
$$

(Including length of beam element)

$$
\begin{equation*}
N_{2}=H_{11}^{1}(s)=s(s-1)^{2} \quad(\because l=l) \tag{14}
\end{equation*}
$$

$N_{3}=H_{02}^{1}(s)=3 s^{2}-2 s^{3}$

$$
\begin{equation*}
N_{3}=H_{02}^{1}(s)=s^{2}(3-2 s) \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
N_{4}=H_{12}^{1}(s) & =-s^{2}+s^{3} \\
& =l s^{2}(s-1)
\end{aligned}
$$

(Including length l of beam element)

$$
\begin{equation*}
=s^{2}(s-1) \quad(\because l=1) \tag{16}
\end{equation*}
$$

In $\mathrm{H}_{01}^{1}(s), 0$ represents Zero ${ }^{\text {th }}$ order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $\mathrm{H}_{11}^{1}(s)$, 1 represents first order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $\mathrm{H}_{02}^{1}(s), 0$ represents Zero ${ }^{\text {th }}$ order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

In $\mathrm{H}_{12}^{1}(s)$, 1 represents first order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

IV. VERIFICATION

(i). $1^{\text {st }}$ VERIFICATION CONDITION

First verification condition at node 1 is

$N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0$ and also	$N_{4}:=s^{2}(s-1)$
$\frac{\partial N_{2}}{\partial s}=1$ and $\frac{\partial N_{1}}{\partial s}=0, \frac{\partial N_{3}}{\partial s}=0, \frac{\partial N_{4}}{\partial s}=0$	$\partial_{s}\left(N_{1}\right)$
At Node $1 \mathrm{~s}=0$	$\partial_{s}\left(N_{2}\right)$
$N_{1}:=1-3 * s^{2}+2 * s^{3}$	$\partial_{s}\left(N_{3}\right)$
$N_{2}:=s(s-1)^{2}$	(17)
$N_{3}:=s^{2}(3-2 s)$	$\partial_{s}\left(N_{4}\right)$
$N_{4}:=s^{2}(s-1)$	Output
$s:=0$	$-6 s+s^{2}$
N_{1}	$(-1+s)^{2}+2(-1+s) s$
N_{2}	$2(3-2 s) s-2 s^{2}$
N_{3}	$2(-1+s) s+s^{2}$
N_{4}	$\therefore \partial_{s}\left(N_{1}\right)=-6 s+s^{2}$
Output	$\therefore \partial_{s}\left(N_{2}\right)=(-1+s)^{2}+2(-1+s) s$
1	

$\therefore \partial_{s}\left(N_{4}\right)=2(-1+s) s+s^{2}$
Partial derivative condition at node 1, $\mathrm{s}=0$

0

0

$$
\frac{\partial N_{1}}{\partial s}:=-6 s+s^{2}
$$

Finding first derivatives for (17),(18),
(19) and (20)
$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$\frac{\partial N_{2}}{\partial s}:=(-1+s)^{2}+2(-1+s) s$
$\frac{\partial N_{3}}{\partial s}:=2(3-2 s) s-2 s^{2}$
$N_{2}:=s(s-1)^{2}$
$\frac{\partial N_{4}}{\partial s}:=2(-1+s) s+s^{2}$
$N_{3}:=s^{2}(3-2 s)$

$$
s=0
$$

$\frac{\partial N_{1}}{\partial s}$	N_{2}
$\frac{\partial N_{2}}{\partial s}$	N_{3}
$\frac{\partial N_{3}}{\partial s}$	N_{4}
$\frac{\partial N_{4}}{\partial s}$	Output
Output	0
0	0

Partial derivative condition at node $2, \mathrm{~s}=1$

0

$$
\frac{\partial N_{1}}{\partial s}:=-6 s+s^{2}
$$

0

(ii) $2^{\text {nd }}$ VERIFICATION CONDITION

$\frac{\partial N_{2}}{\partial s}:=(-1+s)^{2}+2(-1+s) s$
Second Verification condition is at node 2
$N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0$ and also

$$
\frac{\partial N_{3}}{\partial s}:=2(3-2 s) s-2 s^{2}
$$

$$
\frac{\partial N_{4}}{\partial x}=1 \text { and } \frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0 .
$$

$\frac{\partial N_{4}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0$.

$$
\begin{aligned}
& \frac{\partial N_{4}}{\partial s}:=2(-1+s) s+s^{2} \\
& s:=1
\end{aligned}
$$

At Node 2, s = 1
$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$\frac{\partial N_{1}}{\partial s}$
$N_{2}:=s(s-1)^{2}$
$N_{3}:=s^{2}(3-2 s)$
$\frac{\partial N_{2}}{\partial s}$
$N_{4}:=s^{2}(s-1)$
$\frac{\partial N_{3}}{\partial s}$
$s:=1$
$\frac{\partial N_{4}}{\partial s}$
N_{1}

Output

0
0
0
1

Third Verification Condition

$3^{r d}$ verification condition is $\mathrm{N}_{1}+N_{3}=1$
$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$N_{3}:=s^{2}(3-2 s)$

FullSimplify $\left[N_{1}+N_{3}\right]$

Output

1

V. CONCLUSIONS

1. Derived Shape Functions for Hermite

Polynomials.
2. Verified First verification condition at node $1, N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0$ and also

$$
\frac{\partial N_{2}}{\partial x}=1 \text { and } \frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0, \frac{\partial N_{4}}{\partial x}=0
$$

3. Verified Second Verification condition at node $2 N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0$ and also

$$
\frac{\partial N_{4}}{\partial x}=1 \text { and } \frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0 .
$$

4. Verified Third verification condition

$\mathrm{N}_{1}+N_{3}=1$.
rectangular serendipity element in horizontal channel geometry and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 50, Number 2 , October 2017.
[6]. P. Reddaiah, Deriving shape functions for 9 -noded rectangular element by using lagrange functions in natural coordinate system and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[7]. P. Reddaiah, Deriving shape functions for Hexahedral element by natural coordinate system and Verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[8]. P. Reddaiah, Deriving shape functions for hexahedron element by lagrange functions and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[9]. P. Reddaiah, Deriving shape functions for 2,3,4,5 noded line element by lagrange functions and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[10]. P. Reddaiah and D.R.V. Prasada Rao, Deriving Vertices, Shape Functions for Elliptic Duct Geometry and Verified Two Verification Conditions, International Journal of Scientific \& Engineering Research, Volume 8, Issue 5, May-2017.
[11]. P. Reddaiah, Deriving shape functions for cubic 12noded serendipidty family element and verified, International Journal of Creative Research Thought, Volume 5, Issue 4, November 2017.

REFERENCES

[1]. S.S. Bhavikatti, Finite Element Analysis, New Age International (P) Limited, Publishers, $2^{\text {nd }}$ Edition, 2010.
[2]. Mathematica 9 Software, Wolfram Research, Version number 9.0.0.0, 1988-2012.
[3]. J.N.Reddy, An introduction to Finite Element Method, $2^{\text {nd }}$ Edition, McGraw Hill International Editions, 1993.
[4]. S.Md.Jalaludeen, Introduction of Finite Element Analysis, Anuradha Publications, 2012.
[5]. P. Reddaiah, Deriving shape functions for 8 -noded

