Deriving Shape Functions and Verified for One Dimensional Hermite Polynomials by Taking Natural Coordinate System 0 To 1

P. Reddaiah^{#1}

[#] Professor of Mathematics, Global College of Engineering and Technology, kadapa, Andhra Pradesh, India.

Abstract — In this paper, I derived shape functions for one dimensional Hermite Polynomials by taking natural coordinate system 0 to 1 and also I verified three verification conditions for shape functions. First verification condition is at node 1 is $N_1 = 1$ and $N_2 = 0$, $N_3 = 0$, $N_4 = 0$ and also $\frac{\partial N_2}{\partial x} = 1$ and $\frac{\partial N_1}{\partial x} = 0$, $\frac{\partial N_3}{\partial x} = 0$, $\frac{\partial N_4}{\partial x} = 0$, Second Verification condition is at node 2 $N_3 = 1$ and $N_1 = 0$, $N_2 = 0$, $N_4 = 0$ and also $\frac{\partial N_4}{\partial x} = 1$ and $\frac{\partial N_1}{\partial x} = 0$, $\frac{\partial N_2}{\partial x} = 0$, $\frac{\partial N_3}{\partial x} = 0$. Third Verification condition is $N_1 + N_3 = 1$. For

computational purpose I used Mathematica 9 Software [2].

Keywords — Hermite Polynomials, Natural Coordinate System, Shape functions.

I. INTRODUCTION

In Finite Element Analysis any domain of geometry can be split into finite number of domains. Each domain has a particular shape of geometry for example like Rectangular shape, Triangle shape, Circular shape. To study the analysis of these geometries first we need shape functions.

II. GEOMETRICAL DESCRIPTION

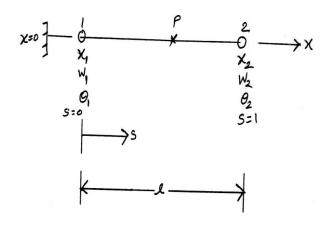


Figure.1 Beam element with natural coordinates varying from 0 to 1

A two noded beam element shown in Figure.1 in which nodal unknowns are

the displacement W and Slope $\frac{\partial W}{\partial x}$.

III. DERIVING SHAPE FUNCTIONS FOR ONE DIMENSIONAL HERMITE POLYNOMIALS

Since the element in figure.1 has four degrees of freedom, We have to select the polynomial with only 4 constants. In this polynomial after boundary conditions we get shape functions this we can take as first order (cubic) Hermitian Polynomials as shape functions.

$$W(x) = A_1 + A_2 x + A_3 x^2 + A_4 x^3$$
(1)

Where W is the transverse displacement and A_1, A_2, A_3, A_4 are polynomial Coefficients

Differentiating eq(1) w.r.t. 'x'

$$(1) \Longrightarrow \frac{\partial W}{\partial x} = 0 + A_2(1) + A_3(2x) + A_4(3x^2)$$

$$\frac{\partial W}{\partial x} = A_2 + 2A_3x + 3A_4x^2 \tag{2}$$

Applying the nodal conditions such that

W=W₁ and
$$\frac{\partial W}{\partial x} = \theta_1$$
 at x= 0

and W=W₂ and
$$\frac{\partial W}{\partial x} = \theta_2$$
 at x=l

- in equations (1) and (2), we get
- When $W=W_1$ and x = 0

$$(1) \Longrightarrow W_{1} = A_{1} + A_{2}(0) + A_{3}(0)^{2} + A_{4}(0)^{3}$$
$$W_{1} = A_{1} + 0 + 0 + 0$$
$$W_{1} = A_{1}$$
(3)

When
$$\frac{\partial W}{\partial x} = \theta_1$$
 and $x = 0$
(2) $\Rightarrow \theta_1 = A_2 + 2A_3(0) + 3A_4(0)^2$
 $\theta_1 = A_2 + 0 + 0$
 $\theta_1 = A_2$ (4)

When $W=W_2$ and x = l

$$(1) \Longrightarrow W_2 = A_1 + A_2(l) + A_3 l^2 + A_4 l^3 \qquad (5)$$

When
$$\frac{\partial W}{\partial x} = \theta_2$$
 and $x = l$
(2) $\Rightarrow \theta_2 = A_2 + 2A_3l + 3A_4l^2$ (6)

U sin g Mathematica 9 Software Solving (3),(4),(5) and (6) we get A_1, A_2, A_3, A_4

Input

 $Solve[A_1 - W_1 == 0 \& \& A_2 - \theta_1 == 0$ & & A₁ + (A₂*l) + (A₃*l²) + (A₄*l³) - W₂ == 0 & & $A_2 + (2 * A_3 * l) + (3 * A_4 * l^2) - \theta_2 == 0,$ $\{A_1, A_2, A_3, A_4\}$]

$$Output \\ \{ \{ A_1 - > W_1, A_2 - > \theta_1, \\$$

{

$$A_{3} - > -\frac{3W_{1} - 3W_{2} + 2l\theta_{1} + l\theta_{2}}{l^{2}},$$

$$A_{4} - > -\frac{-2W_{1} + 2W_{2} - l\theta_{1} - l\theta_{2}}{l^{3}}\}$$

Substituting A_1, A_2, A_3, A_4 in eq(1)

$$A_1 := W_1$$

$$A_2 \coloneqq \theta_1$$
$$A_3 \coloneqq -\frac{3W_1 - 3W_2 + 2l\theta_1 + l\theta_2}{l^2}$$

$$A_4 := -\frac{-2W_1 + 2W_2 - l\theta_1 - l\theta_2}{l^3}$$

$$W(\xi) := A_1 + A_2 * x + A_3 * x^2 + A_4 * x^3$$

Output

$$W_{1} - \frac{3x^{2}W_{1}}{l^{2}} + \frac{2x^{3}W_{1}}{l^{3}} + \frac{3x^{2}W_{2}}{l^{2}} - \frac{2x^{3}W_{2}}{l^{3}} + x\theta_{1} - \frac{2x^{2}\theta_{1}}{l} + \frac{x^{3}\theta_{1}}{l^{2}} - \frac{x^{2}\theta_{2}}{l} + \frac{x^{3}\theta_{2}}{l^{2}}$$

$$W(x) = W_{1}\left(1 - \frac{3x^{2}}{l^{2}} + \frac{2x^{3}}{l^{3}}\right)$$
$$+ \theta_{1}\left(x - \frac{2x^{2}}{l} + \frac{x^{3}}{l^{2}}\right)$$
$$+ W_{2}\left(\frac{3x^{2}}{l^{2}} - \frac{2x^{3}}{l^{3}}\right) + \theta_{2}\left(-\frac{x^{2}}{l} + \frac{x^{3}}{l^{2}}\right)$$
(7)

i.e., W=N₁W₁ + N₂
$$\theta_1$$
 + N₃W₂ + N₄ θ_2
=N₁ δ_1 + N₂ δ_2 + N₃ δ_3 + N₄ δ_4 (8)

Where N_1, N_2, N_3, N_4 are shape functions for the beam elements and $\delta_1, \delta_2, \delta_3, \delta_4$ are the nodal displacements

$$i.e., \ \{\delta\} = \begin{cases} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \end{cases} = \begin{cases} W_1 \\ \theta_1 \\ W_2 \\ \theta_2 \end{cases}$$

Comparing (7) and (8) we get

$$N_1 = 1 - \frac{3x^2}{l^2} + \frac{2x^3}{l^3} \tag{9}$$

$$N_2 = x - \frac{2x^2}{l} + \frac{x^3}{l^2} \tag{10}$$

$$N_3 = \frac{3x^2}{l^2} - \frac{2x^3}{l^3} \tag{11}$$

$$N_4 = -\frac{x^2}{l} + \frac{x^3}{l^2} \tag{12}$$

Substituting length l = 1 - 0 = 1 and x = sin eqs (9),(10),(11), and (12) in general we get

$$N_1 = H_{01}^1(s) = 1 - 3s^2 + 2s^3 \tag{13}$$

$$N_{2} = H_{11}^{1}(s) = s - 2s^{2} + s^{3}$$
$$= ls(s - 1)^{2}$$
(Including length of beam element)

$$N_2 = H_{11}^1(s) = s(s-1)^2 \quad (:: l = 1) \quad (14)$$

$$N_3 = H_{02}^1(s) = 3s^2 - 2s^3$$

$$N_3 = H_{02}^1(s) = s^2(3 - 2s) \tag{15}$$

$$N_4 = H_{12}^1(s) = -s^2 + s^3$$
$$= ls^2(s-1)$$
(Including length *l* of beam element)

$$=s^{2}(s-1)$$
 (:: $l=1$) (16)

In $H_{01}^1(s)$, 0 represents Zeroth order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $H_{11}^1(s)$, 1 represents first order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $H_{02}^1(s)$, 0 represents Zeroth order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

In $H_{12}^{1}(s)$, 1 represents first order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

IV. VERIFICATION

(i). 1st VERIFICATION CONDITION

First verification condition at node 1 is

$N_1 = 1$ and $N_2 = 0$, $N_3 = 0$, $N_4 = 0$ and also		$N_4 \coloneqq s^2(s-1)$	
$\frac{\partial N_2}{\partial s} = 1$ and $\frac{\partial N_1}{\partial s} = 0, \frac{\partial N_3}{\partial s} = 0, \frac{\partial N_4}{\partial s} = 0$		$\partial_s(N_1)$	
At Node 1 s = 0		$\partial_s(N_2)$	
$N_1 := 1 - 3 * s^2 + 2 * s^3$	(17)	$\partial_s(N_3)$	
$N_2 \coloneqq s \left(s - 1 \right)^2$	(18)	$\partial_s(N_4)$	
$N_3 \coloneqq s^2(3-2s)$	(19)	Output	
$N_4 := s^2(s-1)$	(20)	$-6s+s^2$	
s := 0	(20)	$(-1+s)^2 + 2(-1+s)s$	
N_1		$2(3-2s)s-2s^2$	
N_1		$2(-1+s)s+s^2$	
N ₃		$\therefore \partial_s(N_1) = -6s + s^2$	(2
		:: $\partial_s(N_2) = (-1+s)^2 + 2(-1+s)s$	(22
N ₄ Output		$\therefore \partial_s(N_3) = 2(3-2s)s - 2s^2$	(2
1		$\therefore \partial_s(N_4) = 2(-1+s)s + s^2$	(2
0		<i>Partial</i> derivative condition at node 1,	
0 0		s = 0	
		$\frac{\partial N_1}{\partial s} \coloneqq -6s + s^2$	
<i>Finding</i> first derivatives for (17),(18), (19) and (20)		$\frac{\partial N_2}{\partial s} \coloneqq (-1+s)^2 + 2(-1+s)s$	
$N_1 := 1 - 3 * s^2 + 2 * s^3$		$\frac{\partial N_3}{\partial s} \coloneqq 2(3-2s)s - 2s^2$	
$N_2 \coloneqq s \left(s - 1 \right)^2$		$\frac{\partial N_4}{\partial s} \coloneqq 2(-1+s)s + s^2$	
$N_3 \coloneqq s^2(3-2s)$		s = 0	

(21)

(22)

(23)

(24)

an	N
$\frac{\partial N_1}{\partial s}$	N
$\frac{\partial N_2}{\partial s}$	N
$\frac{\partial N_3}{\partial s}$	0
CS	0
$\frac{\partial N_4}{\partial s}$	0
Output	1
0	0
1	P

(ii) 2nd VERIFICATION CONDITION

Second Verification condition is at node 2

 $N_3 = 1$ and $N_1 = 0$, $N_2 = 0$, $N_4 = 0$ and also

 $\frac{\partial N_4}{\partial x} = 1$ and $\frac{\partial N_1}{\partial x} = 0$, $\frac{\partial N_2}{\partial x} = 0$, $\frac{\partial N_3}{\partial x} = 0$.

N₂ N₃ N₄ Output 0 0 1

Partial derivative condition at node 2, s = 1

 $\frac{\partial N_1}{\partial s} := -6s + s^2$

$$\frac{\partial N_2}{\partial s} := (-1+s)^2 + 2(-1+s)s$$

$$\frac{\partial N_3}{\partial s} \coloneqq 2(3-2s)s - 2s^2$$

$$\frac{\partial N_4}{\partial s} \coloneqq 2(-1+s)s + s^2$$

$$s:=1$$

$$N_{1} \coloneqq 1 - 3 * s^{2} + 2 * s^{3}$$

$$N_{2} \coloneqq s (s - 1)^{2}$$

$$N_{3} \coloneqq s^{2} (3 - 2s)$$

$$\frac{\partial N_{1}}{\partial s}$$

$$\frac{\partial N_{2}}{\partial s}$$

 $N_4 \coloneqq s^2(s-1)$

$$s := 1 \qquad \qquad \frac{\partial N}{\partial t}$$

$$\frac{\partial v_2}{\partial s}$$

$$\frac{\partial N_3}{\partial s}$$

 $\frac{V_4}{\partial s}$

At Node 2, s = 1

0

0

- 0
- 1

Third Verification Condition

 3^{rd} verification condition is N₁ + N₃ = 1

$$N_1 := 1 - 3 * s^2 + 2 * s^3$$

$$N_3 := s^2(3-2s)$$

FullSimplify[$N_1 + N_3$]

Output

1

V. CONCLUSIONS

- 1. Derived Shape Functions for Hermite Polynomials.
- 2. Verified First verification condition at node 1, $N_1 = 1$ and $N_2 = 0$, $N_3 = 0$, $N_4 = 0$ and also

$$\frac{\partial N_2}{\partial x} = 1$$
 and $\frac{\partial N_1}{\partial x} = 0, \frac{\partial N_3}{\partial x} = 0, \frac{\partial N_4}{\partial x} = 0$

3. Verified Second Verification condition at node 2 $N_3 = 1$ and $N_1 = 0$, $N_2 = 0$, $N_4 = 0$ and also

$$\frac{\partial N_4}{\partial x} = 1$$
 and $\frac{\partial N_1}{\partial x} = 0$, $\frac{\partial N_2}{\partial x} = 0$, $\frac{\partial N_3}{\partial x} = 0$.

4. Verified Third verification condition

$$N_1 + N_3 = 1.$$

REFERENCES

- [1]. S.S. Bhavikatti, Finite Element Analysis, New Age International (P) Limited, Publishers,
 - 2 Edition, 2010.
- [2]. Mathematica 9 Software, Wolfram Research, Version number 9.0.0.0, 1988-2012.
- [3]. J.N.Reddy, An introduction to Finite Element Method, 2nd Edition, McGraw Hill International Editions, 1993.
- [4]. S.Md.Jalaludeen, Introduction of Finite Element Analysis, Anuradha Publications, 2012.
- [5]. P. Reddaiah, Deriving shape functions for 8-noded

rectangular serendipity element in horizontal channel geometry and verified, *International Journal of Mathematics Trends and Technology (IJMTT)*, *Volume 50, Number 2, October 2017.*

- [6]. P. Reddaiah, Deriving shape functions for 9-noded rectangular element by using lagrange functions in natural coordinate system and verified, *International Journal of Mathematics Trends and Technology (IJMTT)*, *Volume 51, Number 6, November 2017.*
- [7]. P. Reddaiah, Deriving shape functions for Hexahedral element by natural coordinate system and Verified, *International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.*
- [8]. P. Reddaiah, Deriving shape functions for hexahedron element by lagrange functions and verified, *International Journal of Mathematics Trends and Technology (IJMTT)*, *Volume 51, Number 6, November 2017.*
- [9]. P. Reddaiah, Deriving shape functions for 2,3,4,5 noded line element by lagrange functions and verified, *International Journal of Mathematics Trends and Technology (IJMTT)*, *Volume 51, Number 6, November 2017.*[10]. P. Reddaiah and D.R.V. Prasada Rao, Deriving Vertices,
- [10]. P. Reddaiah and D.R.V. Prasada Rao, Deriving Vertices, Shape Functions for Elliptic Duct Geometry and Verified Two Verification Conditions, International Journal of Scientific & Engineering Research, Volume 8, Issue 5, May-2017.
- [11]. P. Reddaiah, Deriving shape functions for cubic 12noded serendipidty family element and verified, International Journal of Creative Research Thought, Volume 5, Issue 4, November 2017.