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Abstract — In this paper, I derived shape functions 

for one dimensional Hermite Polynomials by taking 

natural coordinate system 0 to 1 and also I verified 

three verification conditions for shape functions. 

First verification condition is at node 1 is 

1 2 3 41 and 0,  0, 0N N N N     and also 

32 1 41 and 0,    0,    0
NN N N

x x x x

  
   

   
, 

Second Verification condition is at node 2 

3 1 2 41 and 0,  0, 0N N N N     and also 

34 1 21 and 0,    0,     0
NN N N

x x x x

  
   

   

. Third Verification condition is 1 3 1N N  .  For 

computational purpose I used Mathematica 9 

Software [2]. 

  

 

Keywords — Hermite Polynomials, Natural 

Coordinate System,  Shape  functions. 

                        

                           I. INTRODUCTION                    

                   In Finite Element Analysis any 

domain of geometry can be split into finite

 number  of   domains.   Each domain has a 

particular  shape  of  geometry for example 

like  Rectangular  shape,  Triangle   shape, 

Circular   shape.   To study  the analysis of 

these   geometries   first   we   need   shape 

functions.

 
 
                                 II. GEOMETRICAL DESCRIPTION 

 

                      

.1 Beam element with natural coordinates

               varying from 0 to 1

Figure

 

    two noded beam element shown in 

Figure.1 in which nodal unknowns are

W
 the displacement W and Slope . 

x

A





 

 

III. DERIVING SHAPE FUNCTIONS FOR 

ONE DIMENSIONAL HERMITE 

POLYNOMIALS 

         Since the element in figure.1  has four

degrees of freedom,We have to select the 

polynomial with only 4 constants. In this 

polynomial after boundary conditions we 

get shape functions this we can take as 

first order (cubic) Hermitian Polynomials

 as shape functions.

 
2 3

1 2 3 4( )             (1)W x A A x A x A x   
 

 

1 2 3 4

 W is the transverse displacement and

 A , , ,  are polynomial Coefficients

Where

A A A
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 eq(1) w.r.t. 'x' Differentiating  
 

2

2 3 4(1) 0 (1) (2 ) (3 )
W

A A x A x
x


    

  
 

2

2 3 42 3                      (2)
W

A A x A x
x


  

  
 

1 1

 the nodal conditions such that

W
W=W  and   at x= 0

x

Applying





  

 

2 2

W
 W=W  and   at  x=

x
and l




  
 

 equations (1) and (2) , we getin  
 

1 W=W  and x = 0When  
 

2 3

1 1 2 3 4(1) (0) (0) (0)W A A A A    
 

 

1 1 0 0 0W A     
 

1 1                                                 (3)W A  
 

1

W
  and x = 0

x
When 




  
 

2

1 2 3 4(2) 2 (0) 3 (0)A A A   
 

 

1 2 +0+0A   
 

1 2                                                 (4)A   
 

2 W=W  and x = When l  
 

2 3

2 1 2 3 4(1) ( )      (5)W A A l A l A l    
 

 

2

W
  and x = 

x
When l




  
 

2

2 2 3 4(2) 2 3                (6)A A l A l   
 

 

 

1 2 3 4

sin  Mathematica 9 Software Solving 

(3),(4),(5) and (6) we get A , , ,

U g

A A A  

 

1 1 2 1

2 3

1 2 3 4 2

2

2 3 4 2

1 2 3 4

[ 0 & & 0

& & ( * ) ( * ) ( * ) 0

& & (2* * ) (3* * ) 0,

{ , , , }]

Input

Solve A W A

A A l A l A l W

A A l A l

A A A A





   

    

   

 

1 1 2 1{{ , ,

Output

A W A      
 

1 2 1 2
3 2

1 2 1 2
4 3

3 3 2
,

2 2
}}

W W l l
A

l

W W l l
A

l

 

 

  
  

   
    

 

1 2 3 4 A , , ,  in eq(1)Substituting A A A
 

 

1 1

2 1

:

:

A W

A 



  

 

1 2 1 2
3 2

1 2 1 2
4 3

3 3 2
:

2 2
:

W W l l
A

l

W W l l
A

l

 

 

  
 

   
   

 
2 3

1 2 3 4( ) : * * *W A A x A x A x    
 

 

[ ( )]Expand W x  
 

Output  
 

2 3 2 3

1 1 2 2
1 2 3 2 3

2 3 2 3

1 1 2 2
1 2 2

3 2 3 2

2

x W x W x W x W
W

l l l l

x x x x
x

l l l l
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2 3

1 2 3

2 3

1 2

2 3 2 3

2 22 3 2

3 2
1

2

3 2
     (7)

x x
W x W

l l

x x
x

l l

x x x x
W

l l l l





 
   

 

 
   

 

   
       

   

 

 

1 1 2 1 3 2 4 2

1 1 2 2 3 3 4 4

. .,  W=N
  (8)

          =N

i e W N N W N

N N N

 

   

   


     
 

1 2 3 4

1 2 3 4

 N , , ,  are shape functions 

for the beam elements and , , ,  are 

the nodal displacements

Where N N N

   

 

 

1 1

2 1

3 2

24

. .,  { }=

W

i e
W



 






   
   
   

   
   
       

 

 (7) and (8) we getComparing  
 

2 3

1 2 3

3 2
1                               (9)

x x
N

l l
  

 
 

2 3

2 2

2
                              (10)

x x
N x

l l
  

 
 

2 3

3 2 3

3 2
                                  (11)

x x
N

l l
 

 
 

2 3

4 2
                                   (12)

x x
N

l l
  

 
 

 length Substituting l = 1-0 = 1 and x = s 

in eqs (9),(10),(11), and (12) in general 

we get
 

 
1 2 3

1 01( ) 1 3 2                   (13)N H s s s   
 

 
 

 

1 2 3

2 11

1

2 11

( ) 2

                    =  

(Including length of beam element)

 ( )           (14)

2

2

N H s s s s

ls(s -1)

N H s s(s -1) l = 1

   

  
 

 
1 2 3

3 02

1 2

3 02

( ) 3 2

                          

 ( ) (3 2 )                    (15)

N H s s s

N H s s s

  

  

 

 

 

1 2 3

4 12 ( )

                    = ( 1) 

(Including length  of beam element)

                   = ( 1)   =1           (16)

2

2

N H s s s

ls s

l

s s l

   



   

 
1 th

01 H ( ),  0 represents Zero  order  

derivative, 1 represents node number 

 one and power 1 represents first order 

Hermitian function.

In s

 

 
1

11 H ( ),  1 represents first order  

derivative,1 represents node number

one and power 1 represents first order

 Hermitian function.

In s

 

 
1 th

02 H ( ),  0 represents Zero  order

 derivative, 2 represents node number

 two and power 1 represents first order

 Hermitian function.

In s

 

 
1

12 H ( ),  1 represents first order 

derivative, 2 represents node number

two and power 1 represents first order

Hermitian function.

In s

 

 
              
               IV. VERIFICATION 

 

(i). 1
st
 VERIFICATION CONDITION 

 

First verification condition at node 1 is  
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1 2 3 41 and 0,  0, 0N N N N     and also 

 

 32 1 41 and 0, 0, 0
NN N N

s s s s

  
   

     
 

 Node 1 s = 0At  
 

2 3

1 : 1 3* 2*                           (17)N s s    
 

 
2

2 : 1                                     (18)N s s 
 

 
2

3 : (3 2 )                                   (19)N s s 
 

 
2

4 : ( 1)                                     (20)N s s   
 

: 0s   
 

1N  
 

2N  
 

3N
 

 

4N  
 
Output  
 

1 

 

0 

 

0 

 

0 

 
 first derivatives for (17),(18),

(19) and (20)

Finding

 

 
2 3

1 : 1 3* 2*N s s    
 

 
2

2 : 1N s s 
 

 
2

3 : (3 2 )N s s 
 

 
2

4 : ( 1)N s s   
 

1( )s N
 

 

2( )s N
 

 

3( )s N
 

 

4( )s N
 

 
Output  
 

26s s   
 

2( 1 ) 2( 1 )s s s      
 

22(3 2 ) 2s s s   
 

22( 1 )s s s    
 

2

1( ) 6                              (21)s N s s   
 

 
2

2( ) ( 1 ) 2( 1 )         (22)s N s s s      
 

 
2

3( ) 2(3 2 ) 2                  (23)s N s s s   
 

 
2

4( ) 2( 1 )                    (24)s N s s s    
 

 
 derivative condition at node 1,

 s = 0

Partial
 

 

21 : 6
N

s s
s


  

  
 

22 : ( 1 ) 2( 1 )
N

s s s
s


     

  
23 : 2(3 2 ) 2

N
s s s

s


  

  
 

24 : 2( 1 )
N

s s s
s


   

  
 

 = 0s  
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1N

s



  
 

2N

s



  
 

3N

s



  
 

4N

s



  
 

Output  
 

0 

 

1 

 

0 

 

0 

 

(ii) 2
nd

 VERIFICATION CONDITION 

 

Second Verification condition is at node 2 

 

 3 1 2 41 and 0,  0, 0N N N N     and also  

 

34 1 21 and 0, 0, 0
NN N N

x x x x

  
   

   
. 

 

 Node 2, s = 1At  
 

2 3

1 : 1 3* 2*N s s    
 

 
2

2 : 1N s s 
 

 
2

3 : (3 2 )N s s 
 

 
2

4 : ( 1)N s s   
 

: 1s   
 

1N  
 

2N  
 

3N
 

 

4N  
 
Output  
 

0 

 

0 

 

1 

 

0 

 
 derivative condition at node 2, s = 1Partial

 

21 : 6
N

s s
s


  

  
 

22 : ( 1 ) 2( 1 )
N

s s s
s


     

  
 

23 : 2(3 2 ) 2
N

s s s
s


  

  
 

24 : 2( 1 )
N

s s s
s


   

  
 

:  = 1s  
 

 

1N

s



  
 

2N

s



  
 

3N

s



  
 

4N

s



  
 

Output  
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0 

 

0 

 

0 

 

1 

 

 Verification ConditionThird  
 

1 33  verification condition is N 1rd N 
 

 
2 3

1 : 1 3* 2*N s s    
 

2

3 : (3 2 )N s s 
 

 

1 3[ ]

1

FullSimplify N N

Output



 
 
                      V. CONCLUSIONS 

 

1. Derived Shape Functions for Hermite

   Polynomials.  

2. Verified First verification condition   at     

    node 1, 1 2 3 41 and 0,  0, 0N N N N       

   and  also    

   32 1 41 and 0, 0, 0
NN N N

x x x x

  
   

   
     

3. Verified Second Verification condition at   

    node 2 3 1 2 41 and 0,  0, 0N N N N       

    and also   

    
34 1 21 and 0, 0, 0

NN N N

x x x x

  
   

   
. 

1 3

4. Verified Third verification condition  

    N 1.N 
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