Deriving Shape Functions and Verified for Two Dimensional Hermite Polynomials by Taking Natural Coordinate System -1 To 1

P. Reddaiah ${ }^{\# 1}$
\# Professor of Mathematics, Global College of Engineering and Technology, kadapa, Andhra Pradesh, India.

> Abstract - In this paper, I derived shape functions for two dimensional Hermite Polynomials by taking natural coordinate system -1 to l and also I verified three verification conditions for shape functions. First verification condition at node 1 is $N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0 \quad$ and also $\frac{\partial N_{2}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0, \quad \frac{\partial N_{4}}{\partial x}=0$ Second Verification condition is at node 2 $N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0$ and also $\frac{\partial N_{4}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0$.

Third verification condition is $N_{1}+N_{3}=1$. For computational purpose I used Mathematica 9 Software [2].

Keywords - Hermite Polynomials, Natural Coordinate System -1 to 1, Shape functions.

I. INTRODUCTION

Hermite Polynomials is used for c^{n} continuity elements. Notation for Hermite Polynomials in one dimension is $H^{n}(x)$. $H^{1}(x)$ is first order polynomial and which is $3^{\text {rd }}$ order in x . $H^{2}(x)$ is second order polynomial and which is $5^{\text {th }}$ order in $\mathrm{x} . H^{3}(x)$ is third order polynomial and which is $7^{\text {th }}$ order in $\mathrm{x} . H^{4}(x)$ is fourth order polynomial and which is $9^{\text {th }}$ order in x. $H^{5}(x)$ is fifth order polynomial and which is $11^{\text {th }}$ order in x . In general $H^{n}(x)$ is $\mathrm{n}^{\text {th }}$ order polynomial and which is $2 \mathrm{n}+1$ order in x . In the notation $H_{m i}^{n}(x)$, m denotes order of derivative, i denotes node number and n denotes order of Hermitian function.

II. GEOMETRICAL DESCRIPTION

Figure. 1 Beam element with natural coordinates ξ varying from -1 to 1

$$
\xi=\frac{P C}{\frac{l}{2}}=\frac{2}{l}(A P-A C)=2(s-0.5)=2 s-1
$$

A two noded beam element shown in Figure. 1 in which nodal unknowns are the displacement W and Slope $\frac{\partial \mathrm{W}}{\partial \mathrm{x}}$.

III. DERIVING SHAPE FUNCTIONS FOR ONE DIMENSIONAL
 HERMITE POLYNOMIALS

Since the element has four degrees of freedom, We have to select the polynomial with only 4 constants. In this polynomial after boundary conditions we get shape functions this we can take as first order (cubic) Hermitian Polynomials as shape functions.
$W(\xi)=A_{1}+A_{2} \xi+A_{3} \xi^{2}+A_{4} \xi^{3}$
Where W is the transverse displacement and $\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$ are polynomial
Coefficients
Differentiating eq(1) w.r.t. ' ξ '
(1) $\Rightarrow \frac{\partial W}{\partial \xi}=0+A_{2}(1)+A_{3}(2 \xi)+A_{4}\left(3 \xi^{2}\right)$
$\frac{\partial W}{\partial \xi}=A_{2}+2 A_{3} \xi+3 A_{4} \xi^{2}$
Applying the nodal coditions such that $\mathrm{W}=\mathrm{W}_{1}$ and $\frac{\partial \mathrm{W}}{\partial \xi}=\theta_{1}$ at $\xi=-1$
and $\mathrm{W}=\mathrm{W}_{2}$ and $\frac{\partial \mathrm{W}}{\partial \xi}=\theta_{2}$ at $\xi=1$
in equations (1) and (2), we get

When $\mathrm{W}=\mathrm{W}_{1}$ and $\xi=-1$
(1) $\Rightarrow W_{1}=A_{1}+A_{2}(-1)+A_{3}(-1)^{2}+A_{4}(-1)^{3}$
$W_{1}=A_{1}-A_{2}+A_{3}-A_{4}$
When $\frac{\partial \mathrm{W}}{\partial \xi}=\theta_{1}$ and $\xi=-1$
(2) $\Rightarrow \theta_{1}=A_{2}+2 A_{3}(-1)+3 A_{4}(-1)^{2}$
$\theta_{1}=A_{2}-2 A_{3}+3 A_{4}$
When $\mathrm{W}=\mathrm{W}_{2}$ and $\xi=1$
(1) $\Rightarrow W_{2}=A_{1}+A_{2}(1)+A_{3}(1)^{2}+A_{4}(1)^{3}$
$W_{2}=A_{1}+A_{2}+A_{3}+A_{4}$
(2) $\Rightarrow \theta_{2}=A_{2}+2 A_{3}(1)+3 A_{4}(1)^{2}$
$\theta_{1}=A_{2}+2 A_{3}+3 A_{4}$
$U \sin g$ Mathematica 9 Software
Solving (3),(4),(5) and (6) we get
$\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$

Input

Solve $\left[A_{1}-A_{2}+A_{3}-A_{4}-W_{1}=0 \& \&\right.$
$A_{2}-2 * A_{3}+3 * A_{4}-\theta_{1}=0 \& \& A_{1}+A_{2}$ $+A_{3}+A_{4}-W_{2}=0 \& \& A_{2}+2 * A_{3}+3 * A_{4}$ $\left.-\theta_{2}=0,\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\right]$

Output

$\left\{\left\{A_{1}->\frac{1}{4}\left(2 W_{1}+2 W_{2}+\theta_{1}-\theta_{2}\right)\right.\right.$,
$A_{2}->\frac{-3 W_{1}}{4}+\frac{3 W_{2}}{4}-\frac{\theta_{1}}{4}-\frac{\theta_{2}}{4}$,
$\left.\left.A_{3}->\frac{1}{4}\left(-\theta_{1}+\theta_{2}\right), A_{4}->\frac{W_{1}}{4}-\frac{W_{2}}{4}+\frac{\theta_{1}}{4}+\frac{\theta_{2}}{4}\right\}\right\}$

Substituting $\mathrm{A}_{1}, A_{2}, A_{3}, A_{4}$ in eq(1)
$A_{1}:=\frac{1}{4}\left(2 W_{1}+2 W_{2}+\theta_{1}-\theta_{2}\right)$
$A_{2}:=\frac{-3 W_{1}}{4}+\frac{3 W_{2}}{4}-\frac{\theta_{1}}{4}-\frac{\theta_{2}}{4}$
$A_{3}:=\frac{1}{4}\left(-\theta_{1}+\theta_{2}\right)$
$A_{4}:=\frac{W_{1}}{4}-\frac{W_{2}}{4}+\frac{\theta_{1}}{4}+\frac{\theta_{2}}{4}$
$W(\xi):=A_{1}+A_{2} * \xi+A_{3} * \xi^{2}+A_{4} * \xi^{3}$
$\operatorname{Expand}[W(\xi)]$

Output

When $\frac{\partial \mathrm{W}}{\partial \xi}=\theta_{2}$ and $\xi=1$
$\frac{W_{1}}{2}-\frac{3 \xi W_{1}}{4}+\frac{\xi^{3} W_{1}}{4}+\frac{W_{2}}{2}+\frac{3 \xi W_{2}}{4}-\frac{\xi^{3} W_{2}}{4}$
$+\frac{\theta_{1}}{4}-\frac{\xi \theta_{1}}{4}-\frac{\xi^{2} \theta_{1}}{4}+\frac{\xi^{3} \theta_{1}}{4}-\frac{\theta_{2}}{4}-\frac{\xi \theta_{2}}{4}+$
$\frac{\xi^{2} \theta_{2}}{4}+\frac{\xi^{3} \theta_{2}}{4}$
$W(\xi)=W_{1}\left(\frac{1}{2}-\frac{3 \xi}{4}+\frac{\xi^{3}}{4}\right)+$
$\theta_{1}\left(\frac{1}{4}-\frac{\xi}{4}-\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4}\right)+W_{2}\left(\frac{1}{2}+\frac{3 \xi}{4}-\frac{\xi^{3}}{4}\right)+$
$\theta_{2}\left(-\frac{1}{4}-\frac{\xi}{4}+\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4}\right)$
i.e., $\left.\mathrm{W}=\mathrm{N}_{1} W_{1}+N_{2} \theta_{1}+N_{3} W_{2}+N_{4} \theta_{2}\right\}$

Where $\mathrm{N}_{1}, N_{2}, N_{3}, N_{4}$ are shape functions for the beam elements and $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ are the nodal displacements
i.e., $\{\delta\}=\left\{\begin{array}{l}\delta_{1} \\ \delta_{2} \\ \delta_{3} \\ \delta_{4}\end{array}\right\}=\left\{\begin{array}{l}W_{1} \\ \theta_{1} \\ W_{2} \\ \theta_{2}\end{array}\right\}$

Comparing (7) and (8) we get

$$
\begin{align*}
& N_{1}=\frac{1}{2}-\frac{3 \xi}{4}+\frac{\xi^{3}}{4} \tag{9}\\
& N_{2}=\frac{1}{4}-\frac{\xi}{4}-\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4} \tag{10}\\
& N_{3}=\frac{1}{2}+\frac{3 \xi}{4}-\frac{\xi^{3}}{4} \tag{11}
\end{align*}
$$

$N_{4}=-\frac{1}{4}-\frac{\xi}{4}+\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4}$

Eqations (9),(10),(11) and (12) can be taken as first order (cubic) Hermitian Polynomials as shape functions.

$$
\begin{align*}
N_{1}=H_{01}^{1} & =\frac{1}{2}-\frac{3 \xi}{4}+\frac{\xi^{3}}{4} \\
& =\frac{2-3 \xi+\xi^{3}}{4} \tag{13}\\
N_{2}=H_{11}^{1} & =\frac{1}{4}-\frac{\xi}{4}-\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4} \\
& =\frac{1}{4}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\
& =\frac{l}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right)
\end{align*}
$$

(Including length of beam element)
Substituting length $l=1-(-1)=2$

$$
\begin{align*}
& =\frac{2}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\
& =\frac{1}{4}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\
& N_{2}=H_{11}^{1}=\frac{1}{4}-\frac{\xi}{4}-\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4} \tag{1}\\
& N_{3}=H_{02}^{1}=\frac{1}{2}+\frac{3 \xi}{4}-\frac{\xi^{3}}{4} \\
& \quad=\frac{2+3 \xi-\xi^{3}}{4} \tag{15}
\end{align*}
$$

$$
\begin{aligned}
N_{4}=H_{12}^{1} & =-\frac{1}{4}-\frac{\xi}{4}+\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4} \\
& =\frac{1}{4}\left(-1-\xi+\xi^{2}+\xi^{3}\right) \\
& =\frac{l}{8}\left(-1-\xi+\xi^{2}+\xi^{3}\right)
\end{aligned}
$$

(Including length of beam element)
Substituting length $l=1-(-1)=2$
$=\frac{2}{8}\left(-1-\xi+\xi^{2}+\xi^{3}\right)$
$=\frac{1}{4}\left(-1-\xi+\xi^{2}+\xi^{3}\right)$
$N_{4}=H_{12}^{1}=-\frac{1}{4}-\frac{\xi}{4}+\frac{\xi^{2}}{4}+\frac{\xi^{3}}{4}$
Substituting $\xi=2 \mathrm{~s}-1$ in equations (13),(14),(15) and (16) we get

Whenever you are changing ξ into s, length also changes ξ into s.
$\xi:=2 s-1$ and length $l=1-0 \Rightarrow l=1$
($\because \mathrm{s}$ varies from $\mathrm{s}=0$ to $\mathrm{s}=1$)
$N_{1}:=\frac{1}{2}-\frac{3 \xi}{4}+\frac{\xi^{3}}{4}$
$N_{2}:=\frac{1}{8}-\frac{\xi}{8}-\frac{\xi^{2}}{8}+\frac{\xi^{3}}{8}$
$N_{3}:=\frac{1}{2}+\frac{3 \xi}{4}-\frac{\xi^{3}}{4}$
$N_{4}:=-\frac{1}{8}-\frac{\xi}{8}+\frac{\xi^{2}}{8}+\frac{\xi^{3}}{8}$
Expand[FullSimplify $\left.\left[N_{1}\right]\right]$
FullSimplify $\left[N_{2}\right]$
FullSimplify $\left[N_{3}\right]$
FullSimplify $\left[N_{4}\right]$
$1-3 s^{2}+2 s^{3}$
$(-1+s)^{2} s$
$(3-2 s) s^{2}$
$(-1+s) s^{2}$
$N_{1}=H_{01}^{1}(s)=1-3 s^{2}+2 s^{3}$
$N_{2}=H_{11}^{1}(s)=s(s-1)^{2}$
$N_{3}=H_{02}^{1}(s)=s^{2}(3-2 s)$
$N_{4}=H_{12}^{1}(s)=s^{2}(s-1)$
In $\mathrm{H}_{01}^{1}(s), 0$ represents Zero ${ }^{\text {th }}$ order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $\mathrm{H}_{11}^{1}(s)$, 1 represents first order derivative, 1 represents node number one and power 1 represents first order Hermitian function.

In $\mathrm{H}_{02}^{1}(s), 0$ represents Zero ${ }^{\text {th }}$ order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

In $\mathrm{H}_{12}^{1}(s)$, 1 represents first order derivative, 2 represents node number two and power 1 represents first order Hermitian function.

IV. VERIFICATION

(i). 1 st VERIFICATION CONDITION

First verification condition at node 1 is
$N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0$ and also
$\frac{\partial N_{2}}{\partial s}=1$ and $\frac{\partial N_{1}}{\partial s}=0, \frac{\partial N_{3}}{\partial s}=0, \frac{\partial N_{4}}{\partial s}=0$
At Node $1 \mathrm{~s}=0$
$N_{1}:=1-3 * s^{2}+2 * s^{3}$

$$
\begin{equation*}
\partial_{s}\left(N_{4}\right) \tag{17}
\end{equation*}
$$

$s:=0$
N_{1}
N_{2}
N_{3}
N_{4}

Output

1

0

0

0

Finding first derivatives for (17),(18), (19) and (20)
$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$N_{2}:=s(s-1)^{2}$
$N_{3}:=s^{2}(3-2 s)$
$N_{4}:=s^{2}(s-1)$
$\partial_{s}\left(N_{1}\right)$
$\partial_{s}\left(N_{2}\right)$
$\partial_{s}\left(N_{3}\right)$

$$
\begin{aligned}
& \frac{\partial N_{3}}{\partial s} \\
& \frac{\partial N_{4}}{\partial s}
\end{aligned}
$$

Output
0
1
0

$$
\frac{\partial N_{1}}{\partial s}:=-6 s+s^{2}
$$

0
(ii) $2^{\text {nd }}$ VERIFICATION CONDITION

Second Verification condition is at node 2
$N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0$ and also
$\frac{\partial N_{4}}{\partial x}=1$ and $\frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0$.

$$
\frac{\partial N_{3}}{\partial s}:=2(3-2 s) s-2 s^{2}
$$

$$
\frac{\partial N_{4}}{\partial s}:=2(-1+s) s+s^{2}
$$

At Node 2, $\mathrm{s}=1$

$$
\frac{\partial N_{2}}{\partial s}:=(-1+s)^{2}+2(-1+s) s
$$

$$
s:=1
$$

$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$N_{2}:=s(s-1)^{2}$
$N_{3}:=s^{2}(3-2 s)$

$$
\frac{\partial N_{2}}{\partial s}
$$

$N_{4}:=s^{2}(s-1)$

$$
\frac{\partial N_{3}}{\partial s}
$$

$s:=1$
N_{1}

$$
\frac{\partial N_{4}}{\partial s}
$$

N_{2}
N_{3}
0
0
N_{4}
0
Output

Third Verification Condition

$3^{r d}$ verification condition is $\mathrm{N}_{1}+N_{3}=1$
$N_{1}:=1-3 * s^{2}+2 * s^{3}$
$N_{3}:=s^{2}(3-2 s)$
FullSimplify $\left[N_{1}+N_{3}\right]$

Output

1

V. CONCLUSIONS

1. Derived Shape Functions for Hermite

Polynomials.
2. Verified First verification condition at
node $1, N_{1}=1$ and $N_{2}=0, N_{3}=0, N_{4}=0$ and also

$$
\frac{\partial N_{2}}{\partial x}=1 \text { and } \frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0, \frac{\partial N_{4}}{\partial x}=0
$$

3. Verified Second Verification condition at node $2 N_{3}=1$ and $N_{1}=0, N_{2}=0, N_{4}=0$ and also

$$
\frac{\partial N_{4}}{\partial x}=1 \text { and } \frac{\partial N_{1}}{\partial x}=0, \frac{\partial N_{2}}{\partial x}=0, \frac{\partial N_{3}}{\partial x}=0 .
$$

4. Verified Third verification condition $\mathrm{N}_{1}+N_{3}=1$.

REFERENCES

[1]. S.S. Bhavikatti, Finite Element Analysis, New Age International (P) Limited, Publishers, 2 Edition, 2010.
[2]. Mathematica 9 Software, Wolfram Research, Version number 9.0.0.0, 1988-2012.
[3]. J.N.Reddy, An introduction to Finite Element Method, $2^{\text {nd }}$ Edition, McGraw Hill International Editions, 1993.
[4]. S.Md.Jalaludeen, Introduction of Finite Element Analysis, Anuradha Publications, 2012.
[5]. P. Reddaiah, Deriving shape functions for 8-noded rectangular serendipity element in horizontal channel geometry and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 50, Number 2 , October 2017.
[6]. P. Reddaiah, Deriving shape functions for 9-noded rectangular element by using lagrange functions in natural coordinate system and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[7]. P. Reddaiah, Deriving shape functions for Hexahedral element by natural coordinate system and Verified, International Journal of Mathematics Trends and

Technology (IJMTT), Volume 51, Number 6, November 2017.
[8]. P. Reddaiah, Deriving shape functions for hexahedron element by lagrange functions and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[9]. P. Reddaiah, Deriving shape functions for 2,3,4,5 noded line element by lagrange functions and verified, International Journal of Mathematics Trends and Technology (IJMTT), Volume 51, Number 6, November 2017.
[10]. P. Reddaiah and D.R.V. Prasada Rao, Deriving Vertices, Shape Functions for Elliptic Duct Geometry and Verified Two Verification Conditions, International Journal of Scientific \& Engineering Research, Volume 8, Issue 5, May-2017.
[11]. P. Reddaiah, Deriving shape functions for cubic 12noded serendipidty family element and verified, International Journal of Creative Research Thought, Volume 5, Issue 4, November 2017.

