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Abstract — Hermite wavelet collocation method for the numerical solution of Volterra, Fredholm, mixed 

Volterra-Fredholm integral equations, integro-differential equations and Abel’s integral equations. The method 

is based upon Hermite polynomials and Hermite wavelet approximations. The properties of Hermite wavelet is 

first presented and the resulting Hermite wavelet matrices are utilized to reduce the integral and integro-

differential equations into system of algebraic equations to get the required Hermite coefficients are computed 

using Matlab. This technique is tested, some numerical examples and compared with the exact and existing 

method. Error analysis is worked out, which shows the efficiency of the proposed method. 
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I. INTRODUCTION 

Wavelets have found their way into many different fields of science and engineering. Wavelets theory is a 

pretty new and a budding tool in applied mathematical research area. It has been applied in a broad range of 

engineering disciplines; particularly, signal analysis for waveform representation and segmentations, time-

frequency analysis and quick algorithms for easy implementation. Wavelets permit the accurate representation 

of a variety of functions and operators. Moreover, wavelets establish a connection with quick numerical 

algorithms [1, 2]. Since from 1991 the various types of wavelet method have been applied for the numerical 

solution of different kinds of integral equations, a detailed survey on these papers can be found in [3].  

Integral and integro-differential equation is one of the important topics in applied mathematics and also found 

its applications in various fields of science and engineering. There are several numerical methods for 

approximating the solution of integral and integro-differential equations is known and many different basic 

functions have been used. Application of different wavelets has been introduced for solving integral and integro-

differential equations. For solving these equations, such as Lepik and tamme [4-10] applied the Haar wavelet 

method. Maleknejad has introduced rationalized haar wavelets [11, 12], Legendre wavelets [13], Hermite Cubic 

spline wavelet [14], and Coifman wavelet [15]. Babolian and Fattahzadeh [16] have applied chebyshev wavelet 

operational matrix of integration. Galerkin methods for the constructions of orthonormal wavelet bases approach 

by Liang et al. [17]. Yousefi and Banifatemi [18] have introduced a new CAS wavelet. Gao and Jiang [19], 

proposed the trigonometric Hermite wavelet approximation for solving integral equations of second kind with 

weakly singular kernel. Abdalrehman [20] has solved an algorithm for n
th

 order integro-differential equations by 

using Hermite Wavelets Functions. Ali et al. [21], have introduced the Hermite Wavelet Method for Boundary 

Value Problems, Saeed and Rehman [22], applied the Hermite Wavelet Method for Fractional Delay 

Differential Equations. Ramane et al. [31] have applied a new Hosoya polynomial of path graphs for the 

numerical solution of Fredholm integral equations. In this paper, we proposed the Hermite wavelet (HW) 

collocation method for the numerical solution of integral and integro-differential equations. The proposed 

method is explained and demonstrated the efficiency of the scheme than the others existing method by 

presenting some of the illustrative examples.  

 

II. Properties of Hermite Wavelets
 

2.1 Wavelets 

Recently, wavelets have been applied extensively for signal processing in communications and physics research, 

and have proved to be a wonderful mathematical tool. Wavelets can be used for algebraic manipulations in the 

system of equations obtained which leads to better resulting system. Wavelets constitute a family of functions 

constructed from dilation and translation of a single function called the mother wavelet. When the dilation 

parameter ‘a’ and the translation parameter ‘b’ vary continuously, we have the following family of continuous 

wavelets [13]; 
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If we restrict the parameters a and b to discrete values as 
0 0 0 0 0, , 1, 0k ka a b pb a a b      and p, and k 

positive integer, from Eq. (2.1) we have the following family of discrete wavelets: 
1
2

, 0 0( ) ( )k

k p t a a t pb 


  where 
, ( )k p t form wavelet basis for

2 ( )L R . In particular, when 
0 2a 

 
and 

0 1b  , then 
, ( )k p t forms an orthonormal basis. 

2.2 Hermite wavelet 

Hermite wavelet ,
ˆ( ) ( , , , )p qH t H k n q t

 
has four arguments; ˆ2,3,..., 2 1,k n p  

 
11,2,3,...,2 ,kp q  is the order of the Hermite polynomials and t  is the normalized time. They are defined 

on the interval [0, 1) by: 

/2 ˆ ˆ1 1

2 2
,

1
ˆ2 (2 ), ,

( ) 2

0, .

k k

k k n n
q

p q

q h t n t
H t
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     (2.2) 

where 0,1,2,..., 1,q M 
11,2,3,...,2kp  . The coefficient 

1

2
q   is for orthonormality, the dilation 

parameter is 2 ka  and translation parameter is ˆ2 kb n  .  

Here, ( )qh t is the well-known Hermite polynomial of order q, which are orthogonal with respect to the weight 

function 
2

( ) tw t e  in the interval [ , ]   and satisfy the following recursive formula [22], 

0 1( ) 1, ( ) 2h t h t t 
 

1 1( ) 2 ( ) 2 ( ), 1,2,3,....m m mh t th t mh t m   
 

The six basis functions are given by: 
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For k = 2 implies q = 1, 2 and M=3 implies p = 0, 1, 2 then using collocation points  

0.5
, 1,2, ,j

j
j Nt

N


   , Eq. (2.2) gives the Hermite wavelet matrix of order 

1( 2 )kN M  6x6 as, 

6 6

1.4142      1.4142    1.4142         0              0              0

-3.2660         0    3.2660         0              0              0

-0.7027   -6.3246   -0.7027         0              0     
( )H t  

         0

      0         0         0    1.4142     1.4142     1.4142

      0         0         0   -3.2660         0         3.2660

      0         0         0   -0.7027    -6.3246   -0.7027

 







 









 
and for k = 2 implies q = 1, 2 and M=4 implies p = 0, 1, 2, 3 of order 8 8 , 
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8 8

    1.4142      1.4142      1.4142     1.4142           0               0              0               0

   -3.6742     -1.2247     1.2247      3.6742           0               0              0

( )H t  

               0

    0.7906     -5.5340     -5.5340     0.7906           0               0              0               0

   21.0468    10.7573   -10.7573  -21.0468          0               0              0               0

         0               0               0              0           1.4142      1.4142     1.4142      1.4142

         0               0               0              0          -3.6742     -1.2247     1.2247      3.6742

         0               0               0              0           0.7906     -5.5340     -5.5340     0.7906

         0               0               0              0         21.0468    10.7573    -10.7573  -21.0468

 
 
 
 
 
 
 
 
 
 
 
  

 

 

III. Hermite Wavelet Collocation Method of Solution 

In this section, we present a Hermite wavelet (HW) collocation method for solving integral and integro-

differential equations. 

3.1 Integral Equations 

Fredholm Integral equations: 

Consider the Fredholm integral equations, 

1

1

0

( ) ( ) ( , ) ( ) ,u t f t k t s u s ds        (3.1) 

where 
2 2

1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 1( , )k t s by using the collocation points it  as given in the above section 

2.2. Then the numerical procedure as follows:  

STEP 1: Let us first approximate ( ) ( ),Tf t X t and ( ) ( ),Tu t Y t               (3.2) 

Let the function 
2( ) [0,1]f t L may be expanded as: 

, ,

1 0

( ) ( ),n m n m

n m

f t x H t
 

 

  
   (3.3) 

where 

                     , ,( ( ), ( )).n m n mx f t H t         (3.4) 

In (3.4), (. , .) denotes the inner product. 

If the infinite series in (3.3) is truncated, then (3.3) can be rewritten as: 
12 1

, ,

1 0

( ) ( ) ( ),

k M
T

n m n m

n m

f t x H t X t

 

 

      (3.5) 

where X and ( )t are 1N  matrices given by: 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1
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[ , ,..., , ,..., ,..., ,..., ]

[ , ,..., ] ,

k k

k

T

M M M
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X x x x x x x x

x x x

 



  



   (3.6) 

and 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

( ) [ ( ), ( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )]

[ ( ), ( ),..., ( )] .

k k

k

T

M M M

T

M

t H t H t H t H t H t H t H t

H t H t H t

 



  
 

   
(3.7) 

STEP 2: Next, approximate the kernel function as: 
2

1( , ) ([0,1] [0,1])k t s L   

     1 1( , ) ( ) ( ),Tk t s t K s           
(3.8) 

where 1K  is 
1 12 2k kM M  matrix, with  
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         1 1[ ] ( ( ),( ( , ), ( ))).ij i jK H t k t s H s
 

i.e., 
         (3.9) 

STEP 3: Substituting Eq. (3.2) and Eq. (3.8)
 
in Eq. (3.1), we have:

 

 

1

1
0

1

1
0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 Then we get a system of equations as, 

1( ) ,I K Y X    where,
1

0
( ) ( )TI s s ds    is the identity matrix.      (3.10) 

By solving this system obtain the vector Hermite wavelet coefficients ‘Y’ and substituting in step 4.  

STEP 4: ( ) ( )Tu t Y t
 

This is the required approximate solution of Eq. (3.1). 

Volterra Integral equations: 

Consider the Volterra integral equations with convolution but non-symmetrical kernel 

2

0

( ) ( ) ( , ) ( ) , [0,1]

t

u t f t k t s u s ds t        (3.11) 

where 
2 2

2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 2 ( , )k t s by using the collocation points 
it  as given in the above section 

2.2. Then the numerical procedure as follows:    

STEP 1: The Eq. (3.11) can be rewritten in Fredholm integral equations, with a modified kernel 2 ( , )k t s
 and 

solved in Fredholm form [23] as, 

2

0

( ) ( ) ( , ) ( ) ,

t

u t f t k t s u s ds        (3.12) 

where, 
2

2

( , ), 0
( , )

0, 1.

k t s s t
k t s

t s

 
 

 



 

STEP 2:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 3:  Next, we approximate the kernel function as: 
2

2( , ) ([0,1] [0,1])k t s L   

         2 2( , ) ( ) ( ),Tk t s t K s   
            

(3.13) 

where 2K  is 
1 12 2k kM M   matrix, with  

2 2( ) ( ( ), ( ( , ), ( ))).ij i jK H t k t s H s 
 

i.e.,  
1 1

2 2( ) ( , ) ( )TK t k t s s
 

        
        (3.14) 

STEP 4: Substituting Eq. (3.2) and Eq. (3.13)
 
in Eq. (3.12), we have:

 

 

1

2
0

1

2
0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 Then we get a system of equations as, 

   
1 1

1 1( ) ( , ) ( )TK t k t s s
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2( ) ,I K Y X   where,
1

0
( ) ( ) ,TI s s ds    is the identity matrix.   (3.15)

 

By solving this system obtain the vector Hermite wavelet coefficients ‘Y’ and substituting in step 5.  

STEP 5: ( ) ( )Tu t Y t
 

This is the required approximate solution of Eq. (3.11). 

Fredholm-Volterra integral equations: 

Consider the Fredholm-Volterra integral equation of the second kind, 
1

1 2

0 0

( ) ( ) ( , ) ( ) ( , ) ( ) ,

x

u t f t k t s u s ds k t s u s ds                     (3.16) 

where 2 2

1 2( ) [0,1), ( , )and ( , ) ([0,1) [0,1))f t L k t s k t s L    are known function and ( )u t is an unknown 

function.  

Let us approximate ( )f t , ( )u t , 1 2( , )and ( , )k t s k t s by using collocation points as follows:  

STEP 1:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 2: Substituting Eq. (3.2), Eq. (3.9) and Eq. (3.14) in Eq. (3.16), we get a system of N equations with N 

unknowns,
 

i.e., 
1 2( ) .I K K Y X        (3.17) 

where, I is an identity matrix. 

By solving this system we obtain the Hermite wavelet coefficient ‘Y’ and then substitute in step 3. 

STEP 3: ( ) ( )Tu t Y t                     

This is the required approximate solution of Eq. (3.16). 

Abel integral equations:
 

Consider the Abel integral equation, 

First kind:

0

( )
( ) , 0 1, 0 1,

( )

t
u s

f t ds t
t s 

    
             (3.18) 

           Second kind: 

0

( )
( ) ( ) , 0 1

t
u s

u t f t ds t s
t s

   


         (3.19) 

Numerical procedure as follows:  
STEP 1: We first approximate u(t) as truncated series defined in Eq. (3.5). That is, 

 ( ) ( )Tu t Y t      (3.20) 

where Y  and ( )t are defined similarly to Eqs. (3.6) and (3.7).  

STEP 2: Then substituting Eq. (3.20) in Eqs. (3.18) and (3.19), we get 

    First kind:

0

( )
( ) ,

( )

t TY s
f t ds

t s 




                                     (3.21) 

   Second kind: 

0

( )
( ) ( ) , 0 1

t T
T Y s

Y t f t ds t s
t s


    


             (3.22) 

STEP 3: Substituting the collocation point 
it  in Eqs. (3.21) and (3.22), we obtain,  

   First kind:

0

( )
( )

( )

it T

i

i

Y s
f t ds

t s 




                                       (3.23) 

    

1 1

0

( )
( ) , where

( )

it T
T

i

i

Y s
f t Y G G ds

t s 


 

  

Second kind: 

0

( )
( ) ( ) ,

it T
T

i i

i

Y s
Y t f t ds

t s


  


                   (3.24) 
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2 2

0

( )
( ( ) ) , where

t T
T

i

i

Y s
Y t G f G ds

t s


   


  

STEP 4: Now, we get the system of algebraic equations with unknown coefficients.  

First kind: 1

Tf Y G
 

Second kind:  2, where ( ( ) )T

iY K f K t G     

STEP 5: By solving the above system of equations, we obtain the Hermite wavelet coefficients ‘Y’ and then 

substitute in Eq. (3.20), we obtain the approximate solution of Eq. (3.18) and Eq. (3.19). 

3.2 Integro-differential Equations 

Fredholm Integro-differential equations: 

In this section, we concerned about a technique that will reduce Fredholm integro-differential equation to an 

equivalent Fredholm integral equation. This can be easily done by integrating both sides of the integro-

differential equation as many times as the order of the derivative involved in the equation from 0 to t for every 

time we integrate, and using the given initial conditions. It is worth noting that this method is applicable only if 

the Fredholm integro-differential equation involves the unknown function u(t) only, and not any of its 

derivatives, under the integral sign [24]. 

Consider the Fredholm integro-differential equations, 

1

( ) ( )

1

0

( ) ( ) ( , ) ( ) , ,n l

lu t f t k t s u s ds u b      (3.25) 

where 
2 2

1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and 
( ) ( )nu t is an unknown function.  

Where 
( ) ( )nu t  is the n

th
 derivative of ( )u t  w. r. t  t  and 

lb  are constants that define the initial conditions. 

Let us first, we convert the Fredholm integro-differential equation into Fredholm integral equation, then we 

reduce it into a system of algebraic equations as given in Eq. (3.10), using this system we solve the Eq. (3.25). 

Then we obtain the approximate solution of equation. 

Volterra Integro-differential equations: 

In this section, we concerned with converting to Volterra integral equations. We can easily convert the Volterra 

integro-differential equation to equivalent Volterra integral equation, provided the kernel is a difference kernel 

defined by k(t, s) = k(t − s). This can be easily done by integrating both sides of the equation and using the initial 

conditions. To perform the conversion to a regular Volterra integral equation, we should use the well-known 

formula, which converts multiple integrals into a single integral [24].  

i.e., 

1

0 0 0 0

1
........ ( ) ( ) ( )

( 1)!

t t t t

n nu t dt t s u s ds
n

 
     

Consider the Volterra integro-differential equations, 

( ) ( )

2

0

( ) ( ) ( , ) ( ) , ,

t

n l

lu t f t k t s u s ds u b     (3.26) 

where 2 2

2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and 
( ) ( )nu t is an unknown function.  

where 
( ) ( )nu t  is the n

th
 derivative of ( )u t  with respect to t and 

lb  are constants that define the initial 

conditions. 

Let us first, we convert the Volterra integro-differential equation into Volterra integral equation, then we reduce 

it into a system of algebraic equations as given in Eq. (3.15), using this system we solve the Eq. (3.26). Then we 

obtain the approximate solution of equation. 

IV. Convergence Analysis 

Theorem: The series solution , ,1 0
( ) ( )p q p qp q

u t x H t
 

 
   defined in Eq. (3.5) using Hermite wavelet 

collocation method converges to ( )u t as given in [25]. 

Proof: Let 
2 ( )L R be the Hilbert space and 

,p qH defined in Eq. (3.2) forms an orthonormal basis. 

Let 
1

, ,0
( ) ( )

M

p i p ii
u t x H t




 , where , ,( ), ( )p i p ix u t H t for a fixed .p  
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Let us denote 
, ( ) ( )p iH t H t and let ( ), ( ) .j u t H t   

Now we define the sequence of partial sums 
pS of ( ( ));j jH t Let 

pS  and 
qS be the partial sums with 

.p q  we have to prove 
pS  is a Cauchy sequence in Hilbert space. 

Let 
1

( ).
p

p j ji
S H t


  

Now 
2

1 1

( ), ( ), ( ) .
p p

p j j j

i j

u t S u t H t 
 

    

we claim that 
2 2

1

, .
p

p q j

j q

S S p q
 

    

Now 
2

2

1 1 1 1

( ) ( ), ( ) , .
p p p p

j j j j j j j

j q j q j q j q

H t H t H t for p q   
       

       

Therefore,  

2

2

1 1

( ) , .
p p

j j j

j q j

H t for p q 
  

    

From Bessel’s inequality, we have 
2

1

p

jj


 is convergent and hence 

2

1

( ) 0 ,
p

j j

j q

H t as q p
 

   

So, 

1

( ) 0
p

j j

j q

H t
 

  and { }pS  is a Cauchy sequence and it converges to s (say). 

We assert that ( )u t s  

Now ( ), ( ) , ( ) ( ), ( ) lim , ( )j j j p j j j j
p

s u t H t s H t u t H t S H t   


      
,

 

This implies, 

( ), ( ) 0js u t H t   

Hence ( )u t s  and 
1

( )
p

j ji
H t

  converges to ( )u t  as p  and proved. 

 

V. Numerical experiments 

In this section, we present Hermite wavelet (HW) collocation method for the numerical solution of integral and 

integro-differential equations in comparison with existing method to demonstrate the capability of the present 

method and error analysis are shown in tables and figures. Error function is presented to verify the accuracy and 

efficiency of the following numerical results:  

 
2

max

1

( ) ( ) ( ) ( )
n

e i a i e i a i

i

E Error function u t u t u t u t




      

where,
 
𝑢𝑒  and

 
𝑢𝑎  are the exact and approximate solution respectively.  

Example 5.1 Let us consider the linear Fredholm integral equation [12], 

  

   

11

0

1
( ) ( )

1

t
t tse

u t e e u s ds
t

 
  

  ,  0 1t                                   (5.1) 

which has the exact solution ( ) exp( )u t t . Where 

1 1
( )

1

t
t e

f t e
t

 
 


 and kernel 1( , ) tsk t s e . 

Firstly, we approximate ( ) ( ),Tf t X t and ( ) ( ),Tu t Y t   
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Next, approximate the kernel function as: 2

1( , ) ([0,1] [0,1])k t s L 
 

  1 1( , ) ( ) ( ),Tk t s t K s          
 

where 1K  is 1 12 2k kM M  matrix, with 
1 1[ ] ( ( ),( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

1 1( ) ( , ) ( )TK t k t s s
 

     
 

 Next, substituting the function ( )f t , ( )u t , and 1( , )k t s in Eq. (5.1), then using the collocation points 
it , we 

get the system of algebraic equations with unknown coefficients for k = 2 and M = 4 (N = 8), as an order 8 8  

as follows:
 

 

1

1
0

1

1
0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 

1( ) ,I K Y X        where,
1

0
( ) ( )TI s s ds    is the identity matrix.

 

We get, X = [-0.4963    0.0048    0.0010    0.0001   -0.4152    0.0203    0.0020    0.0001],  

1

    0.5336    0.0099    0.0002    0.0000    0.6094    0.0120    0.0002    0.0000

    0.0099    0.0030    0.0001    0.0000    0.0334    0.0038    0.0001    0.0000

    0.0002    0.0001    0.0000    0.0

K 

000    0.0013    0.0003    0.0000    0.0000

    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

    0.6094    0.0334    0.0013    0.0000    0.8940    0.0499    0.0019    0.0001

    0.0120    0.0038    0.0003    0.0000    0.0499    0.0074    0.0005    0.0000

    0.0002    0.0001    0.0000    0.0000    0.0019    0.0005    0.0000    0.0000

    0.0000    0.0000    0.0000    0.0000    0.0001    0.0000    0.0000    0.0000

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system of equations, we obtain the Hermite wavelet coefficients, 

Y = [0.9343    0.0656    0.0032    0.0001    1.5261    0.1088    0.0053    0.0002]  

and substituting these coefficients in ( ) ( ),Tu t Y t  we get the approximate solution ( )u t , which is 

compared with existing method (Haar wavelet) and exact solutions are shown in table 1. Graphically presented 

in figure 1 in comparison of numerical solutions with exact solutions and existing method.   

 

Table 1 Numerical results of the example 5.1. 

t 

Method 

(Maleknejad and 

Mirzaee (2005)) 

Exact 
HW 

(N = 32) 

Error 

 (Maleknejad and 

Mirzaee (2005)) 

Error  

(HW) 

0 1.01642 1 1.00142 1.64e-02 1.42e-03 

0.1 1.11627 1.10517 1.10648 1.11e-02 1.31e-03 

0.2 1.22593 1.22140 1.22261 4.53e-03 1.20e-03 

0.3 1.34637 1.34986 1.35095 3.49e-03 1.09e-03 

0.4 1.47864 1.49182 1.49280 1.31e-02 9.84e-04 

0.5 1.62391 1.64872 1.64958 2.48e-02 8.67e-04 

0.6 1.84004 1.82212 1.82286 1.79e-02 7.49e-04 

0.7 2.02082 2.01375 2.01438 7.07e-03 6.30e-04 

0.8 2.21936 2.22554 2.22605 6.18e-03 5.11e-04 

0.9 2.43742 2.45960 2.45999 2.21e-02 3.95e-04 

1 2.67690 2.71828 2.71856 4.13e-02 2.82e-04 
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Fig. 1 Comparison of HW solution with exact solution and existing method. 

Example 5.2 Next, consider [12] 

  

   

1

0

( ) ( , ) ( )u t t k t s u s ds   ,  0 1t                                       (5.2) 

where, 
,

( , )
, .

t t s
k t s

s s t


 


       

which has the exact solution ( ) sec(1) sin( ).u t t 
 
We apply the Hermite wavelet approach and solved Eq. 

(5.2) yields the approximate values of 𝑢(𝑡)
 
with the help of Hermite wavelet coefficient ‘Y ’ for k = 2, M = 4 (N 

= 8) as an order 8 8  as follows, 

X = [0.1768    0.0510         0    0.0000    0.5303    0.0510    0.0000         0],  

1

 0.0786    0.0180   -0.0009    0.0000    0.1250     0.0000         0              0

 0.0180    0.0558   -0.0000    0.0085    0.0361     0.0000         0              0

-0.0009   -0.0000    0.0016   -

K 

0.0000         0             0              0              0

 0.0000    0.0085    0.0000     0.0015    0.0000     0.0000         0         0.0000

 0.1250    0.0361         0         0.0000    0.3286     0.0180    -0.0009    0.0000

 0.0000   -0.0000   -0.0000   -0.0000    0.0180     0.0558     0.0000    0.0085

      0             0             0             0        -0.0009     0.0000     0.0016   -0.0000

 0.0000    0.0000    0.0000    0.0000    -0.0000     0.0085    -0.0000    0.0015

 
 
 
 
 
 
 
 
 
 
 
  

 

Y = [0.3096    0.0926   -0.0003    0.0008    0.8544    0.0704   -0.0007    0.0006]. Then substituting these 

coefficients in ( ) ( )Tu t Y t , we obtain the approximate solutions and compared with existing method 

(Haar wavelet) and exact solutions are shown in table 2 for k = 4 and M = 4 (N = 32). In figure 2, as compared 

the numerical results with exact solutions and existing method. 

Table 2 Numerical results of the example 5.2. 

t 

Method 

(Maleknejad and Mirzaee 

(2005)) 

Exact 
HW 

(N = 32) 

Error  

(Maleknejad and 

Mirzaee (2005)) 

Error  

(HW) 

0 0.02892 0 0.00319 
2.89e-02 3.19e-03 

0.1 0.20205 0.18477 0.18138 
1.72e-02 3.38e-03 

0.2 0.37341 0.36770 0.36639 5.71e-03 1.30e-03 

0.3 0.54148 0.54695 0.54555 
5.47e-03 1.40e-03 

0.4 0.70480 0.72074 0.71933 
1.59e-02 1.40e-03 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
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N
u

m
e
ri

c
a
l 

S
o

lu
ti
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n

 

 

 

HW

Method(Maleknejad and Mirzaee(2005))

EXACT
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0.5 0.86192 0.88733 0.88587 
2.54e-02 1.44e-03 

0.6 1.05943 1.04505 1.04295 
1.43e-02 2.09e-03 

0.7 1.19686 1.19233 1.18931 
4.53e-03 3.01e-03 

0.8 1.32378 1.32769 1.32472 3.91e-03 2.96e-03 

0.9 1.43908 1.44979 1.44586 
1.07e-02 3.92e-03 

1 1.54173 1.55741 1.55269 1.56e-02 4.72e-03 

 
Fig. 2 Comparison of HW solution with exact solution and existing method. 

Example 5.3 Next, consider [14] 
1

0
( ) sin(2 ) cos( ) ( )u t t t u s ds  

  
      (5.3) 

which has the exact solution ( ) sin(2 )u t t  . We applied the present method and solved Eq. (5.3), we get the 

approximate values of ( )u t
 
with the help of Hermite wavelet coefficients. In table 3, error analysis shows the 

comparison of Hermite Wavelet with existing method.    

Example 5.4 Next, consider [14] 
1

2 2

0
( ) sin(2 ) ( ) ( )u t t t t s s u s ds        (5.4) 

which has the exact solution ( ) sin(2 )u t t . Solving Eq. (5.4), using the above method, we obtain the 

approximate values of ( )u t
 
with the help of Hermite wavelet coefficients. In table 3, error analysis shows the 

comparison of Hermite Wavelet with existing method.   

Example 5.5 Next, consider [14] 
1

3 2 2 2

0
( ) 2 3 ( ) ( )u t t t t t t s s u s ds          (5.5) 

which has the exact 
3 2( ) 2 3u t t t t    . Solving Eq. (5.5), we get the approximate solution ( )u t  with the 

help of Hermite wavelet coefficients. In table 3, error analysis shows the comparison of Hermite Wavelet with 

the existing method.  

Table 3 Comparison of the Error analysis. 

N 

Example 5.3 Example 5.4 Example 5.5 

Method 

(Maleknejad and 

Yousefi (2006b)) 

(HW)MaxE
 

Method 

(Maleknejad and 

Yousefi (2006b)) 

(HW)MaxE  

Method 

(Maleknejad and 

Yousefi (2006b)) 

(HW)MaxE  

4 2.84e-02 6.66e-16 2.84e-02 1.11e-16 1.33e-10 1.38e-17 

8 2.38e-03 7.21e-16 2.38e-03 2.22e-16 3.79e-10 6.93e-17 

16 2.09e-04 7.77e-16 2.10e-04 7.77e-16 3.26e-10 4.85e-17 

32 1.20e-04 8.88e-16 2.00e-04 6.66e-16 4.83e-10 1.24e-16 
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EXACT
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Example 5.6 Let us consider the linear Volterra integral equation [26], 

  

   

0

1
( ) ( ) ,

5

t

u t t tsu s ds   ,  0 1t                                             (5.6) 

which has the exact solution 
3( ) exp( /15).u t t t Where ( )f t t  and kernel 

1

1
( , )

5
k t s ts .

 

Firstly, we approximate ( ) ( ),Tf t X t and ( ) ( ),Tu t Y t   

Next, approximate the kernel function as: 2

2( , ) ([0,1] [0,1])k t s L 
 

  2 2( , ) ( ) ( ),Tk t s t K s          
 

where 2K  is 1 12 2k kM M  matrix, with 
2 2[ ] ( ( ),( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

2 2( ) ( , ) ( )TK t k t s s
 

     
 

 Next, substituting the ( )f t , ( )u t , and 2 ( , )k t s in Eq. (5.6) using the collocation point, we get the system of 

algebraic equations with unknown coefficients for k = 2 and M = 4 (N = 8), as an order 8 8  as follows:
 

 

1

2
0

1

2
0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 

2( ) ,I K Y X    where, 
1

0
( ) ( )TI s s ds    is the identity matrix. 

where, X = [0.1768    0.0510         0    0.0000    0.5303    0.0510    0.0000         0],  

2

    0.0012   -0.0030   -0.0010   -0.0005         0            0             0              0

    0.0007   -0.0105   -0.0006   -0.0018         0            0             0              0

    0.0001   

K 

-0.0013   -0.0002   -0.0002         0            0             0              0

    0.0000   -0.0016   -0.0000   -0.0003         0             0            0              0

    0.0188    0.0054         0         0.0000    0.0165   -0.0175   -0.0041   -0.0021

    0.0018    0.0005   -0.0000   -0.0000    0.0105   -0.0844    0.0005    -0.0140

   -0.0000   -0.0000   -0.0000   -0.0000   -0.0010   -0.0062   -0.0015   -0.0012

    0.0000    0.0000     0.0000    0.0000    0.0008   -0.0133    0.0004    -0.0023

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system of equations, we get the Hermite wavelet coefficients ‘Y’, 

Y = [0.1768    0.0506   -0.0001   -0.0001    0.5419    0.0526   -0.0008   -0.0003]  

and substituting these coefficients in ( ) ( ),Tu t Y t  we obtain the approximate solution ( )u t as shown in 

table 4. Maximum error analysis is shown in table 6. 

Table 4 Numerical results of the example 5.6. 

t Exact HW Absolute Error 

0.0625 0.0625 0.0625 1.07e-06 

0.1875 0.1876 0.1876 6.06e-07 

0.3125 0.3131 0.3132 4.54e-05 

0.4375 0.4399 0.4376 2.33e-03 

0.5625 0.5692 0.5663 2.90e-03 

0.6875 0.7026 0.7035 9.67e-04 

0.8125 0.8421 0.8386 3.46e-03 

0.9375 0.9904 0.9652 2.52e-02 
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Example 5.7 Consider, linear Fredholm integro-differential equations [27], 

  

   

1

0

'( ) exp( ) exp( ) ( ) , (0) 0,u t t t t t t u s ds u       0 1t                      (5.7) 

which has the exact solution ( ) exp( ).u t t t
  

Integrating Eq. (5.7) w.r.t  t, we get Fredholm integral equation, 
12

0

( ( 2exp( )))
( ) ( ) ,

2 2

t t t t
u t u s ds


     

We applied the Hermite wavelet collocation method and solved the above equation yields the values of ( )u t
 

with the help of Hermite wavelet coefficients. Maximum error analysis is shown in table 6. 

Example 5.8 Let us consider the linear Volterra integro-differntial equation [28], 

  

   

0

''( ) 1 ( ) ( ) , (0) 1, '(0) 0,

t

u t t s u s ds u u        0 1t                  (5.8) 

which has the exact solution ( ) cos( ).u t t
 

Integrating Eq. (5.8) twice w.r.t t, we get Volterra integral equation, 

2 3

0

1 1
( ) 1 ( ) ( )

2 6

t

u t t t s u s ds     

We applied the Hermite wavelet collocation method and solved the above equation yields the values of ( )u t
 

with the help of Hermite wavelet coefficients. Maximum error analysis is shown in table 6. 

Example 5.9 Next, consider the linear Volterra-Fredholm integral equation [24], 

  

   

1

2 4

0 0

1 1 1
( ) ( ) ( ) ( ) ( ) ,

12 4 3

t

u t t t t t s u s ds t s u s ds           0 1t              (5.9) 

which has the exact solution 
2( ) .u t t

 
Where ( )f t t  and the kernels 1( , ) ( )k t s t s  and 

2( , ) ( )k t s t s  .
 

Let us approximate ( )f t , ( )u t , 1 2( , )and ( , )k t s k t s as given in Eq. (3.5), Eq. (3.9) and Eq. (3.14) using 

the collocation points, we get an system of N equations with N unknowns,  

i.e., 
1 2( )I K K Y X            where, I is an identity matrix, 

we find,  X = [-0.1704    0.0078    0.0048   -0.0000    0.0414    0.0512    0.0035   -0.0001], 

1

 0.2500    0.0361    0.0000    0.0000    0.5000    0.0361   -0.0000    0.0000

 0.0361    0.0000    0.0000    0.0000    0.0361    0.0000         0              0

-0.0000    0.0000    0.0000    0.0000 

K 

  -0.0000   -0.0000   -0.0000   -0.0000

 0.0000   -0.0000         0       -0.0000    0.0000    0.0000    0.0000    0.0000

 0.5000    0.0361   -0.0000    0.0000    0.7500    0.0361         0         0.0000

 0.0361    0.0000         0             0         0.0361    0.0000   -0.0000    0.0000

-0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000

 0.0000    0.0000    0.0000     0.0000    0.0000    0.0000    0.0000    0.0000

 
 
 
 
 
 
 
 
 
 
 
    

2

 0.0464   -0.0180    0.0009   -0.0000       0             0              0             0

 0.0180   -0.0558   -0.0000   -0.0085       0             0              0             0

 0.0009         0    

K 

    -0.0016        0            0             0              0             0

 0.0000   -0.0085    0.0000   -0.0015        0             0              0             0

 0.2500   -0.0361    0.0000   -0.0000    0.0464   -0.0180    0.0009   -0.0000

 0.0361   -0.0000    0.0000   -0.0000    0.0180   -0.0558   -0.0000   -0.0085

-0.0000   -0.0000    0.0000   -0.0000    0.0009         0       -0.0016         0

 0.0000    0.0000         0         0.0000    0.0000   -0.0085    0.0000   -0.0015

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system, we obtain the Hermite wavelet coefficient, 

Y = [0.0549    0.0243    0.0048   -0.0003    0.4118    0.0733    0.0039   -0.0008], 
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Then, substituting in ( ) ( ),Tu t Y t
 
we get the approximate solution of Eq. (5.9) as shown in table 5. 

Maximum error analysis is shown in table 6. 

Table 5 Numerical results of the example 5.2, for N = 16. 

t Exact HW Absolute Error 

0.0313 0.0010 -0.0030 4.01e-03 

0.0313 0.0010 -0.0031 4.00e-03 

0.0313 0.0010 -0.0032 3.85e-03 

0.0313 0.0010 -0.0033 3.94e-03 

0.0313 0.0010 -0.0034 4.00e-03 

0.0313 0.0010 -0.0035 3.61e-03 

0.0313 0.0010 -0.0036 3.10e-03 

0.0313 0.0010 -0.0037 3.55e-03 

0.0313 0.0010 -0.0038 3.63e-03 

0.0313 0.0010 -0.0039 2.50e-03 

0.0313 0.0010 -0.0040 1.61e-03 

0.0313 0.0010 -0.0041 2.78e-03 

0.0313 0.0010 -0.0042 2.88e-03 

0.0313 0.0010 -0.0043 6.32e-04 

0.0313 0.0010 -0.0044 6.43e-04 

0.0313 0.0010 -0.0045 1.59e-03 

Table 6  Maximum of the Error analysis (HW)maxE . 

N Example 5.6
 

Example 5.7 Example 5.8 Example 5.9 

4 1.43e-02 5.27e-03 1.28e-03 1.43e-01 

8 2.52e-02 1.20e-02 1.36e-03 1.71e-02 

16 1.47e-02 3.24e-03 3.73e-04 4.01e-03 

32 7.94e-03 8.39e-04 9.59e-05 9.94e-04 

64 4.12e-03 2.13e-04 2.42e-05 2.47e-04 

128 2.10e-03 5.37e-05 6.07e-06 6.17e-05 

Example 5.10 Consider the Abel’s integral equation of first kind [29],  

1/2

0

( )
exp( ) 1 .

( )

t
u s

t ds
t s

 
     (5.10) 

Firstly, consider    ( ) ( )Tu t Y t 
                    

(5.11) 

substituting ( )u t  in Eq. (5.10), we get  

1/2

0

( )
exp( ) 1 .

( )

t TY s
t ds

t s


 

     (5.12) 

Next, we collocate the point 
it and substitute in Eq. (5.12),  

1/2

0

( )
exp( ) 1 .

( )

it T

i

i

Y s
t ds

t s


 

                (5.13)
 

Now, we get the system of algebraic equations with unknown coefficients. By solving this system of equations 

for k = 1 and M = 5 as given, 

 0.1052    0.3499    0.6487    1.0138    1.4596f   

1

    0.6325    1.0954    1.4142    1.6733    1.8974

   -1.8988   -2.2768   -1.6330   -0.3864    1.3145

    1.4406   -1.0582   -3.7947   -4.8093   -2.9189

    8.5628   14.4390   10.6904    0.6517   -8.7

G 

525

  -28.3334  -11.3738   17.7248   23.7824   -5.8776
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 Next, we obtain the Hermite wavelet coefficients,   

 0.6422    0.1827   -0.0070    0.0030   -0.0011Y 
 

and then substituting these coefficients in Eq. (5.11), we get the approximate solution of Eq. (5.10) with exact 

solution 
exp( )

( ) ( )
t

u t erf t


  as shown in table 7. Error analysis is shown in figure 3.  

Table 7 Numerical result of the example 5.10.

 t Exact solution 
Hermite wavelet 

(k = 1, M = 5) (k = 1, M = 8) 

0.1 0.2153 0.2097 0.2137 

0.2 0.3259 0.3244 0.3261 

0.3 0.4276 0.4284 0.4274 

0.4 0.5293 0.5298 0.5293 

0.5 0.6350 0.6344 0.6350 

0.6 0.7470 0.7464 0.7470 

0.7 0.8672 0.8677 0.8672 

0.8 0.9971 0.9984 0.9970 

0.9 1.1383 1.1364 1.1380 

 
Fig. 3 Error analysis of the example 5.10. 

Example 5.11 Next, consider [29],  

4/5

0

( )
.

( )

t
u s

t ds
t s


                   (5.14) 

Applying the above method, we obtain the approximate solution ( )u t  of Eq. (5.14) with the help of Hermite 

wavelet coefficients. Numerical solution is compared with exact solution 
4/55

sin( )5
( )

4
u t t




 as shown in 

table 8. Error analysis is shown in figure 4. 

Table 8 Numerical result of the example 5.11.

 t Exact solution Hermite wavelet (k = 1, M = 8) 

0.1 0.0371 0.0369 

0.2 0.0645 0.0645 

0.3 0.0893 0.0893 

0.4 0.1124 0.1124 

0.5 0.1343 0.1343 

0.6 0.1554 0.1554 

0.7 0.1758 0.1758 

0.8 0.1956 0.1956 

0.9 0.2150 0.2149 
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Fig. 4 Error analysis of the example 5.11.

 

Example 5.12 Consider the Abel’s integral equation of the second kind [30],  

0

4 1 ( )
4 ( ) arcsin , 0 1.

1 21

t
t u s

u t ds t
tt t s

 
      

  
  (5.15) 

which has the exact solution 
1

( ) .
1

u t
t




  Applying the Hermite Wavelet Collocation Method for solving 

Eq. (5.15) with k =1 and M =3, we find,  

[4.4785    4.4969    4.4340]

   4.8165    5.4142    5.8257

-11.4375   -1.6330    9.9403

-1.1491  -21.6833   -5.9189

f

K



 
 


 
  

 

Next, we get the Hermite wavelet coefficients,   

 0.8344   -0.0406    0.0040Y   

and substituting these coefficients in Eq. (5.11), we get the approximate solution of Eq. (5.15) with exact 

solution as shown in table 9 and the error analysis is shown in table 10.  

Table 9 Numerical result of the example 5.12.

 t Exact 
Hermite Wavelet  

(k=1, M=8) 

Absolute Error 

0.0625 0.9701 0.9701 1.12e-07 

0.1875 0.9177 0.9177 2.47e-08 

0.3125 0.8729 0.8729 2.61e-08 

0.4375 0.8341 0.8341 1.76e-08 

0.5625 0.8000 0.8000 1.68e-08 

0.6875 0.7698 0.7698 1.20e-08 

0.8125 0.7428 0.7428 1.56e-08 

0.9375 0.7184 0.7184 8.33e-09 

Table 10 Maximum error analysis of the example 5.12 
12kN M  Hermite Wavelet 

k = 1, M = 3 3.15e-04 

k = 1, M = 5 1.17e-05 

k = 1, M = 8 1.12e-07 

Example 5.13 Lastly, consider [30],  

0

( )
( ) 2 , 0 1.

t
y s

u t t ds t
t s

   


             (5.16) 

which has the exact solution  ( ) 1 exp( )u t t erfc t   . We solved the Eq. (5.16) by approaching the 

present method for k = 1 and M = 5 with the help of Hermite wavelet coefficients, we get the approximate 

solution as shown in table 11 and the error analysis is shown in table 12.  
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Table 11 Numerical result of the example 5.13.

 t Exact 
Hermite Wavelet  

(k=1, M=8) 

Absolute Error 

0.0625 0.3539 0.3539 5.36e-03 

0.1875 0.4994 0.4994 1.28e-03 

0.3125 0.5699 0.5699 8.73e-04 

0.4375 0.6153 0.6153 5.70e-04 

0.5625 0.6481 0.6481 4.47e-04 

0.6875 0.6734 0.6734 3.32e-04 

0.8125 0.6937 0.6937 3.11e-04 

0.9375 0.7105 0.7105 9.40e-05 

 

Table 12 Maximum error analysis of the example 5.13 
12kN M  Hermite Wavelet 

k = 1, M = 3 1.61e-02 

k = 1, M = 5 9.16e-03 

k = 1, M = 8 5.36e-03 

VI. Conclusion 

In this paper, we introduced the Hermite wavelet collocation method for the numerical solution of integral and 

integro-differential equations. Hermite wavelet reduces an integral equation into a system of algebraic 

equations. Our numerical results are highly accuracy with exact ones; subsequently other examples are also 

same in the nature. Error analysis shows the accuracy gives better, with increasing the level of resolution N, for 

better accuracy, and then the larger N is recommended. The experimental results are obtained by the proposed 

method and compared with the existing methods and with exact solutions. Thus the present scheme is very easy, 

accurate and effective. 
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