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I. INTRODUCTION

Wavelets have found their way into many different fields of science and engineering. Wavelets theory is a
pretty new and a budding tool in applied mathematical research area. It has been applied in a broad range of
engineering disciplines; particularly, signal analysis for waveform representation and segmentations, time-
frequency analysis and quick algorithms for easy implementation. Wavelets permit the accurate representation
of a variety of functions and operators. Moreover, wavelets establish a connection with quick numerical
algorithms [1, 2]. Since from 1991 the various types of wavelet method have been applied for the numerical
solution of different kinds of integral equations, a detailed survey on these papers can be found in [3].
Integral and integro-differential equation is one of the important topics in applied mathematics and also found
its applications in various fields of science and engineering. There are several numerical methods for
approximating the solution of integral and integro-differential equations is known and many different basic
functions have been used. Application of different wavelets has been introduced for solving integral and integro-
differential equations. For solving these equations, such as Lepik and tamme [4-10] applied the Haar wavelet
method. Maleknejad has introduced rationalized haar wavelets [11, 12], Legendre wavelets [13], Hermite Cubic
spline wavelet [14], and Coifman wavelet [15]. Babolian and Fattahzadeh [16] have applied chebyshev wavelet
operational matrix of integration. Galerkin methods for the constructions of orthonormal wavelet bases approach
by Liang et al. [17]. Yousefi and Banifatemi [18] have introduced a new CAS wavelet. Gao and Jiang [19],
proposed the trigonometric Hermite wavelet approximation for solving integral equations of second kind with
weakly singular kernel. Abdalrehman [20] has solved an algorithm for n order integro-differential equations by
using Hermite Wavelets Functions. Ali et al. [21], have introduced the Hermite Wavelet Method for Boundary
Value Problems, Saeed and Rehman [22], applied the Hermite Wavelet Method for Fractional Delay
Differential Equations. Ramane et al. [31] have applied a new Hosoya polynomial of path graphs for the
numerical solution of Fredholm integral equations. In this paper, we proposed the Hermite wavelet (HW)
collocation method for the numerical solution of integral and integro-differential equations. The proposed
method is explained and demonstrated the efficiency of the scheme than the others existing method by
presenting some of the illustrative examples.

1. Properties of Hermite Wavelets

2.1 Wavelets

Recently, wavelets have been applied extensively for signal processing in communications and physics research,
and have proved to be a wonderful mathematical tool. Wavelets can be used for algebraic manipulations in the
system of equations obtained which leads to better resulting system. Wavelets constitute a family of functions
constructed from dilation and translation of a single function called the mother wavelet. When the dilation
parameter ‘a’ and the translation parameter ‘6’ vary continuously, we have the following family of continuous
wavelets [13];
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Wap(t) = |a|7% w(%), a,beR, a=#0 (2.1)

If we restrict the parameters a and b to discrete values as a = agk,b =phb, a(;",a0 >1,b, >0 and p, and k
positive integer, from Eqg. (2.1) we have the following family of discrete wavelets:

l//k, p (t) = |a
b, =1, then y, (t) forms an orthonormal basis.

-1
“ w(ast - phy,) where W, , (t) form wavelet basis for L*(R) . In particular, when a, = 2 and

2.2 Hermite wavelet
Hermite  wavelet H 0. (t) =H (k, n, q,t) has  four arguments; k=2,3,..., A=2p-1

p=123,.., 2k_l, q is the order of the Hermite polynomials and t is the normalized time. They are defined

on the interval [0, 1) by:
1 e ky @ = j
B ’q+—2 h,(2°t-n), LE<t<i,
H p.q (t) - 2 ? ’ (2.2)

0, otherwise.

f 1
where =0,1,2,....M -1, p=12, 3,...,2" The coefficient q+§ is for orthonormality, the dilation

parameter is a = 27%and translation parameter is b = A27% .
Here, h, (t) is the well-known Hermite polynomial of order g, which are orthogonal with respect to the weight

function w(t) = e " in the interval [—o0, 0] and satisfy the following recursive formula [22],
hy(t) =1, hy(t) =2t
h,., () =2th (t)-2mh (), m=123,....
The six basis functions are given by:

H,o () =2 ]

H,, (t) = 2/6 (4t —1) >;0§t<%,
H,, (t) = V10 (4(4t —1)* —2) |

Hoo (1) =2 ]

H,, (t) = 2/6 (4t —3) >;%St<1
Ho, (1) =10 (4(4t —3)° —2)

For k = 2 implies g = 1, 2 and M=3 implies p = 0, 1, 2 then using collocation points

t, = J_TO'S, j=12,...,N, Eq. (2.2) gives the Hermite wavelet matrix of order (N = 2“M) 6x6 as,
(14142 14142 1.4142 0 0 0 ]
-3.2660 0 3.2660 0 0 0
H (D), = -0.7027 -6.3246 -0.7027 0 0 0
) 0 0 0 1.4142 1.4142 1.4142
0 0 0 -3.2660 0 3.2660
0 0 0 -0.7027 -6.3246 -0.7027 |

and for k = 2 implies q = 1, 2 and M=4 implies p = 0, 1, 2, 3 of order 8x8,
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14142 14142 14142 14142 0 0 0 0 |
-3.6742 -1.2247 12247 3.6742 0 0 0 0
0.7906 -5.5340 -5.5340 0.7906 0 0 0 0
H (1), = 21.0468 10.7573 -10.7573 -21.0468 0 0 0 0
" 0 0 0 0 14142 14142 14142 14142
0 0 0 0 -3.6742  -1.2247 1.2247  3.6742
0 0 0 0 0.7906 -5.5340 -5.5340 0.7906
i 0 0 0 0 21.0468 10.7573 -10.7573 -21.0468 |

111. Hermite Wavelet Collocation Method of Solution
In this section, we present a Hermite wavelet (HW) collocation method for solving integral and integro-
differential equations.
3.1 Integral Equations
Fredholm Integral equations:
Consider the Fredholm integral equations,

u(t) = £ (1) + [k, (t,s)u(s) ds, 3.1)

where f (t) € L°[0,1), K, (t,s) € L*([0,1)x[0,1)) and u(t) is an unknown function.

Let us approximate T (), u(t), and K, (t, S) by using the collocation points {; as given in the above section
2.2. Then the numerical procedure as follows:

STEP 1: Let us first approximate f (t) ] X TW¥(t), and U(t) 1 Y W (1), (3.2)
Let the function f (t) € L*[0,1] may be expanded as:
F)=2"D XumHan (), (3.3)
n=1 m=0
where
Xom = (£ (0, H, 1 (0)). (34)

In (3.4), (., .) denotes the inner product.
If the infinite series in (3.3) is truncated, then (3.3) can be rewritten as:
2 M

fF) =D X mHym () = XTW(1), (3.5)
n=1 m=0
where X and W(t) are N =<1 matrices given by:

T
X = [X10’ Xpgsees Xy por Xogreees Xp pgo e sz-l,o""’ Xz"-l,M—l]

= [% X e Xy I

(3.6)
and
() =[Hio(0), Hyg (), s By 1 (0, Hog (0, e Hy gy (0,0 Hye 00 Hy O
=[H, (), H, (1), .. Hyer,, Q1"
STEP 2: Next, approximate the kernel function as: K, (t,s) e L*([0,1]x[0,1])
k,(t,s) 0 ¥ (H)K,'F(s), (3.8)
where K, is 25M x 2 M matrix, with

(3.7)
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[Ky.J; = (H; (1), (k. (t,5), H;(5))).
ie, K,O[¥' 0] [kt.9][¥OG]" 5.9)
STEP 3: Substituting Eq. (3.2) and Eq. (3.8) in Eq. (3.1), we have:
W)Y = P ()X + jj\{ﬂ (O)K, P (s)¥T (s)vds

WY =T )X + ¥ (DK, ( [[E()¥ (s) ds)Y

PT()Y =W (t)(X +KY),
Then we get a system of equations as,
(I1-K)Y =X, where, | = j:‘P(s)‘PT (s)ds is the identity matrix.  (3.10)

By solving this system obtain the vector Hermite wavelet coefficients ‘Y’ and substituting in step 4.
STEP4: U(t) Y "W (t)
This is the required approximate solution of Eq. (3.1).

Volterra Integral equations:
Consider the Volterra integral equations with convolution but non-symmetrical kernel

u(t) = f(t) +j‘k2 (t,s)u(s)ds, te[0,1] (3.12)

where f(t) € L°[0,2), k,(t,s) € L?([0,1)x[0,1)) and u(t) is an unknown function.

Let us approximate f (t) ,u(t), and k2 (t, S) by using the collocation points t; as given in the above section
2.2. Then the numerical procedure as follows:

STEP 1: The Eq. (3.11) can be rewritten in Fredholm integral equations, with a modified kernel kz (t,S) and
solved in Fredholm form [23] as,

t
u(t) = £ 1)+ [k, (t,s)u(s)ds, (3.12)
0
. k(ts), O0<s<t
uere, 1(15)= {02 t<s<1.

STEP 2: Let us first approximate f (t)and U(t) asgiven in Eq. (3.2),
STEP 3: Next, we approximate the kernel function as: IZZ (t,s) e L*([0,1]x[0,1])
Ky (t,5) 0 W' (1)K, - W(s), (3.13)

where K, is 2"M x 2'M matrix, with
(Ky)y = (H; (), (ky (&, 8), H, (5))).

ie, K,0[¥T0) ] [kt9)][¥E)] (3.14)
STEP 4: Substituting Eqg. (3.2) and Eq. (3.13) in Eq. (3.12), we have:

Y)Y =W ()X + j:\{ﬂ (0K, ()P (s)Yds
WY =T )X + ¥ (DK, ( [ ¥ ) ds)Y

P )Y =P (1)(X +K,Y),

Then we get a system of equations as,
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(I -K,)Y =X, where, | = E‘P(S)‘PT (S)ds, is the identity matrix. (3.15)
By solving this system obtain the vector Hermite wavelet coefficients ‘Y’ and substituting in step 5.
STEPS5: U(t) Y "W (t)
This is the required approximate solution of Eq. (3.11).

Fredholm-Volterra integral equations:
Consider the Fredholm-Volterra integral equation of the second kind,

u(t)=f(t)+ Jl' k, (t,s)u(s)ds+ JX' k,(t,s)u(s)ds, (3.16)

where f (t) € L*[0,1), k,(t,s)andk, (t, s) € L*([0,1) x[0,1)) are known function and u(t) is an unknown
function.
Let us approximate f (t),u(t), K, (t,s)andKk, (t, S) by using collocation points as follows:

STEP 1: Let us first approximate f (t)and U(t) as given in Eq. (3.2),
STEP 2: Substituting Eq. (3.2), Eq. (3.9) and Eq. (3.14) in Eqg. (3.16), we get a system of N equations with N
unknowns,
e, (I -K —K,)Y =X. (3.17)
where, 1 is an identity matrix.
By solving this system we obtain the Hermite wavelet coefficient ‘Y’ and then substitute in step 3.
STEP3: u(t) [ Y "W (t)
This is the required approximate solution of Eqg. (3.16).

Abel integral equations:
Consider the Abel integral equation,

t
First kind: f (t) = j(u(s))ads O<a<l 0<t<l, (3.18)

Second kind: u(t) = f (t) _,_I u(s)

\/_
Numerical procedure as follows:
STEP 1: We first approximate u(t) as truncated series defined in Eq. (3.5). That is,
u(t) =Y "\(t) (3.20)
where Y and W (t) are defined similarly to Egs. (3.6) and (3.7).
STEP 2: Then substituting Eq. (3.20) in Egs. (3.18) and (3.19), we get

ds, 0<ts<1 (3.19)

t\yT
First kind: f (t) :J’YL(S)ds, (3.21)
5 (t—9)°
t
second kind: YTW(t) = f (t) j \P(S) ds, O<ts<1 (3.22)

0
STEP 3: Substituting the collocation point t; in Egs. (3.21) and (3.22), we obtain,

First kind: f(ti)=J‘\({ :P()Sa) s (3.23)
YT¥(s)
f(t)=Y'G,, where G, = ds
(t)= ., Where j( s
Second kind: YT (t.) = f(t)+ JY ‘P(S)d (3.24)

s
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YT P(s) ds

s

STEP 4: Now, we get the system of algebraic equations with unknown coefficients.
Firstkind: f =Y'G,
Second kind: YK = f, where K =(¥(t)-G,)

STEP 5: By solving the above system of equations, we obtain the Hermite wavelet coefficients ‘Y’ and then
substitute in Eq. (3.20), we obtain the approximate solution of Eq. (3.18) and Eq. (3.19).

3.2 Integro-differential Equations

Fredholm Integro-differential equations:

In this section, we concerned about a technique that will reduce Fredholm integro-differential equation to an
equivalent Fredholm integral equation. This can be easily done by integrating both sides of the integro-
differential equation as many times as the order of the derivative involved in the equation from 0 to t for every
time we integrate, and using the given initial conditions. It is worth noting that this method is applicable only if
the Fredholm integro-differential equation involves the unknown function u(t) only, and not any of its
derivatives, under the integral sign [24].

Consider the Fredholm integro-differential equations,

YT(P(t)-G,)=f, where G, j

1
uP(t) = f (1) + [k (t.s)u(s)ds, u® =b, (3.25)
0

where f (t) € L’[0,1), Kk, (t,s) € L?([0,1)x[0,1)) and u‘™ (t) is an unknown function.
Where u‘™ (t) is the ™ derivative of u(t) w.r.t t and b, are constants that define the initial conditions.

Let us first, we convert the Fredholm integro-differential equation into Fredholm integral equation, then we
reduce it into a system of algebraic equations as given in Eq. (3.10), using this system we solve the Eg. (3.25).
Then we obtain the approximate solution of equation.

Volterra Integro-differential equations:

In this section, we concerned with converting to Volterra integral equations. We can easily convert the Volterra
integro-differential equation to equivalent Volterra integral equation, provided the kernel is a difference kernel
defined by Kk(t, s) = k(t — s). This can be easily done by integrating both sides of the equation and using the initial
conditions. To perform the conversion to a regular Volterra integral equation, we should use the well-known
formula, which converts multiple integrals into a single integral [24].

i.e.
tt t 1 t
j j ........ j u)dt" = ——— j (t—s)"u(s)ds
00 0 (n-D! 0

Consider the Volterra integro-differential equations,

t
U ()= f (1) + [k, (t,5)u(s)ds, u® =h, (3.26)
0

where f (t) € L?[0,1), k,(t,s) e L?>([0,1) x[0,1)) and u™ (t) is an unknown function.

where u®™ (t) is the n" derivative of u(t) with respect to t and b, are constants that define the initial

conditions.
Let us first, we convert the Volterra integro-differential equation into Volterra integral equation, then we reduce
it into a system of algebraic equations as given in Eq. (3.15), using this system we solve the Eq. (3.26). Then we
obtain the approximate solution of equation.

Iv. Convergence Analysis

Theorem: The series solution U(t) = Zp 12 o XpqH

collocation method converges to u(t) as given in [25].

0.q(t) defined in Eq. (3.5) using Hermite wavelet

Proof: Let L*(R) be the Hilbert space and H .., defined in Eq. (3.2) forms an orthonormal basis.

Let U(t) = Z:\io_l XpiH i (1) where X ; = <u(t), H,, (1')> for a fixed .
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Letus denote H _ (t) = H (t) and let & = <U(t), H (t)>
Now we define the sequence of partial sums S _of (a;H(t;)); Let S  and S be the partial sums with
P = Q. we have to prove S, is a Cauchy sequence in Hilbert space.

p
Let S, =" aH(,).

p p 2
Now <u(t), Sp> = <U(t)1ZaJH (tj)> = Z|ai| :

2 P 2
we claim that ‘Sp—SqH = Z ‘aj‘ , p>q.
j=q+1
Now B
p ? p p p )
> aH(t,) =<Z aHt) > ajH(tj)>: Y e[ for p>a
j=a+ j=an j=an =+
2
Therefore, Zp:ajH(tj) :Zp:‘ajr, for p>q.
j=g+1 =l

. . P 2
From Bessel’s inequality, we have Z ‘0{ ‘

| is convergent and hence

2

Zp: a;H (L)

j=q+1

—>0as q,powx

So, Zp: a;H(t)

j=a+1
We assert that u(t) =s

Now <s—u(t), H(tj)>:<s,H(tj)>—<u(t), H(tj)>=<!)i_rllosp, H(tj)>—otj =a; —q;

— 0 and {Sp} is a Cauchy sequence and it converges to s (say).

This implies,
(s—u(t),H(t;))=0

Hence u(t) =s and zip:lajH (t;) convergesto u(t) as p —> oo and proved.

V. Numerical experiments
In this section, we present Hermite wavelet (HW) collocation method for the numerical solution of integral and
integro-differential equations in comparison with existing method to demonstrate the capability of the present
method and error analysis are shown in tables and figures. Error function is presented to verify the accuracy and
efficiency of the following numerical results:

E..x = Error function =|ju,(t;)—u, ()|, = \/Zn:(ue(ti)—ua(ti))z

i=1

where, u, and u, are the exact and approximate solution respectively.
Example 5.1 Let us consider the linear Fredholm integral equation [12],
t+1

e
u(t) =e' - .

+1

1
+Iet3u(s)ds, o<t<1 (5.1)
0

t+1

e
which has the exact solution U(t) =exp(t). where f(t) =¢' - 1 and kernel K, (t,s) =¢€".
+

Firstly, we approximate f (t) ] X TP'(t),and U(t) 1 Y T (1),
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Next, approximate the kernel function as: k, (t, s) e L?([0,1]<[0,1])

k,(t,s) 1 W' (1)K, F(s),
where K, is 2°'M x 2 M matrix, with [K.J; = (H; @), (k. (t,8), H;(s))).
KO[¥ O] [kt [Te)]

Next, substituting the function f (t),u(t),and K, (t,S) in Eq. (5.1), then using the collocation points t, , we

get the system of algebraic equations with unknown coefficients for k =2 and M = 4 (N = 8), as an order 8x8
as follows:

By sol_ving this system of equations, we obtain the Hermite wavelet coefficients,

0.5336
0.0099
0.0002
0.0000
0.6094
0.0120
0.0002
0.0000

PT)Y =T ()X + Eqﬂ (K, P(s)¥ (s)Vds

WY =T (O)X + ¥ (DK, ( (¥ (s) ds)Y

PTR)Y =T ({1)(X +K.Y),

1
(I-K)Y =X,  where, | = L‘P(S)‘PT (S) ds is the identity matrix.
We get, X =[-0.4963 0.0048 0.0010 0.0001 -0.4152

0.0099
0.0030
0.0001
0.0000
0.0334
0.0038
0.0001
0.0000

0.0002
0.0001
0.0000
0.0000
0.0013
0.0003
0.0000
0.0000

0.0000 0.6094
0.0000 0.0334
0.0000 0.0013
0.0000 0.0000
0.0000 0.8940
0.0000 0.0499
0.0000 0.0019
0.0000 0.0001

0.0203
0.0120

0.0038
0.0003
0.0000
0.0499
0.0074
0.0005
0.0000

0.0020 0.0001],

0.0002
0.0001
0.0000
0.0000
0.0019
0.0005
0.0000
0.0000

Y =1[0.9343 0.0656 0.0032 0.0001 1.5261 0.1088 0.0053 0.0002]

and substituting these coefficients in U(t) J Y TW(t), we get the approximate solution U(t) , which is
compared with existing method (Haar wavelet) and exact solutions are shown in table 1. Graphically presented

in figure 1 in comparison of numerical solutions with exact solutions and existing method.

Table 1 Numerical results of the example 5.1.

0.0000 |

0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0000

Meth'Od HW Erro_r Error

t (Maleknejad and Exact (N=32) (Maleknejad and (HW)

Mirzaee (2005)) Mirzaee (2005))

0 1.01642 1 1.00142 1.64e-02 1.42e-03
0.1 1.11627 1.10517 1.10648 1.11e-02 1.31e-03
0.2 1.22593 1.22140 1.22261 4.53e-03 1.20e-03
03 1.34637 1.34986 1.35095 3.49e-03 1.09-03
0.4 1.47864 1.49182 1.49280 1.31e-02 9.84e-04
0.5 1.62391 1.64872 1.64958 2.48e-02 8.67e-04
0.6 1.84004 1.82212 1.82286 1.79e-02 7.49e-04
0.7 2.02082 2.01375 2.01438 7.07e-03 6.30e-04
0.8 2.21936 2.22554 2.22605 6.18¢-03 5.11e-04
0.9 2.43742 2.45960 2.45999 2.21e-02 3.95¢-04

1 2.67690 2.71828 2.71856 4.13e-02 2.82e-04
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2.8 ‘
26l | HW e
. . . =
Method(Maleknejad and Mirzaee(2005)) e

c |+ EXACT - .
2 22t g :
=
(/O) 2 - ~ 7
C_ﬁ ///
S 1.8f :
@ _
€ 16f i
S
z A

1.4} — :

1.2} :

1 _— | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Fig. 1 Comparison of HW solution with exact solution and existing method.
Example 5.2 Next, consider [12]
1
u(t) =t+ [k(t,s)u(s)ds, 0<t<1 (5.2)
0

t, t<s

S, s<t.

which has the exact solution U(t) =sec(l)-sin(t). We apply the Hermite wavelet approach and solved Eq.
(5.2) yields the approximate values of u(t) with the help of Hermite wavelet coefficient ‘Y > fork =2, M =4 (N

= 8) as an order 8x 8 as follows,
X=[0.1768 0.0510 0 0.0000 0.5303 0.0510 0.0000 0],

where, K(t,s) 2{

[0.0786 0.0180 -0.0009 0.0000 0.1250 0.0000 0 0
0.0180 0.0558 -0.0000 0.0085 0.0361 0.0000 0 0
-0.0009 -0.0000 0.0016 -0.0000 0 0 0 0

0.0000 0.0085 0.0000 0.0015 0.0000 0.0000 0 0.0000
0.1250 0.0361 0 0.0000 0.3286 0.0180 -0.0009 0.0000
0.0000 -0.0000 -0.0000 -0.0000 0.0180 0.0558 0.0000 0.0085

0 0 0 0 -0.0009 0.0000 0.0016 -0.0000

| 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0085 -0.0000 0.0015
Y =[0.3096 0.0926 -0.0003 0.0008 0.8544 0.0704 -0.0007 0.0006]. Then substituting these

coefficients in U(t) [] YT‘P('[), we obtain the approximate solutions and compared with existing method

(Haar wavelet) and exact solutions are shown in table 2 for k = 4 and M =4 (N = 32). In figure 2, as compared
the numerical results with exact solutions and existing method.
Table 2 Numerical results of the example 5.2.

Method HW Error Error

t (Maleknejad and Mirzaee Exact (N =32) (Maleknejad and (HW)

(2005)) B Mirzaee (2005))

0 0.02892 0 0.00319 2.89e-02 3.19e-03
0.1 0.20205 0.18477  0.18138 1.72e-02 3.38e-03
0.2 0.37341 036770  0.36639 5.71e-03 1.30e-03
03 0.54148 054695  0.54555 5.47e-03 1.40e-03
0.4 0.70480 072074  0.71933 1.59e-02 1.40e-03
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0.5 0.86192 0.88733  0.88587 2.54e-02 1.44e-03
0.6 1.05943 1.04505  1.04295 1.43e-02 2.09e-03
0.7 1.19686 119233  1.18931 4.53¢-03 3.01e-03
0.8 1.32378 132769  1.32472 3.91e-03 2.96e-03
0.9 1.43908 144979  1.44586 1.07e-02 3.92e-03
1 154173 155741  1.55269 1.56e-02 4.72¢-03

1.6 T L

L

— Method(Maleknejad and Mirzaee(2005))
12| * EXACT i

0.6 - b

Numerical Solution
o
[o¢]
T
\\
\\
|

0.4 b

0 \ \ \ \ \ \ \ \ \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Fig. 2 Comparison of HW solution with exact solution and existing method.
Example 5.3 Next, consider [14]

. 1
u(t) =sin(2zt) + jo cos(t) u(s)ds (5.3)
which has the exact solution u(t) =sin(2xt) . We applied the present method and solved Eq. (5.3), we get the

approximate values of U(t) with the help of Hermite wavelet coefficients. In table 3, error analysis shows the
comparison of Hermite Wavelet with existing method.

Example 5.4 Next, consider [14]
i 1
u(t) =sin(2zt) +j0 (t* —t—s*+s)u(s)ds (5.4)
which has the exact solution u(t) =sin(2xt) . Solving Eq. (5.4), using the above method, we obtain the

approximate values of U(t) with the help of Hermite wavelet coefficients. In table 3, error analysis shows the

comparison of Hermite Wavelet with existing method.
Example 5.5 Next, consider [14]

u(t)=—2t3+3t2—t+j:(t2—t—52+s)u(s)ds (5.5)

which has the exact U(t) =—2t> +3t* —t . Solving Eq. (5.5), we get the approximate solution U(t) with the

help of Hermite wavelet coefficients. In table 3, error analysis shows the comparison of Hermite Wavelet with
the existing method.
Table 3 Comparison of the Error analysis.

Example 5.3 Example 5.4 Example 5.5
Method Method Method

(Maleknejad and  E,,, (HW)  (Maleknejadand  E,,, (HW) (Maleknejadand  E,,,, (HW)

Yousefi (2006b)) Yousefi (2006b)) Yousefi (2006b))
4 2.84e-02 6.66e-16 2.84e-02 1.11e-16 1.33e-10 1.38e-17
8 2.38e-03 7.21e-16 2.38e-03 2.22e-16 3.79%-10 6.93e-17
16 2.09e-04 7.77e-16 2.10e-04 7.77e-16 3.26e-10 4.85e-17
32 1.20e-04 8.88e-16 2.00e-04 6.66e-16 4.83e-10 1.24e-16
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Example 5.6 Let us consider the linear Volterra integral equation [26],

t
u(t):t+%_[tsu(s)ds,, o<t<1 (5.6)
0

which has the exact solution U(t) =texp(t®/15). Where f (t) =t and kernel k,(t,s) = %ts :

Firstly, we approximate f (t) 0 X TW(t),and U(t) 1 YT P(t),
Next, approximate the kernel function as: k, (t, s) € L*([0,1]x[0,1])

K, (t,s) [ W' (t)K,P(s),
where K, is 2°' M x 2 M matrix, with [K,1; = (H; @), (K, (t,8), H,(s))).

-1 1
K, O[T ®)] [k, (t.5)]-[¥(5)]
Next, substituting the f (t),u(t), and K, (t,S) in Eq. (5.6) using the collocation point, we get the system of

algebraic equations with unknown coefficients for k =2 and M = 4 (N = 8), as an order 8x 8 as follows:

qﬂ®Y:TWDX+ﬂTW0@T@Hﬂ@Wm
WY =W (X + ¥ (0K, ( [[w(&¥ (5) ds)Y

P ()Y =P (1)(X +K,Y),

(I =K,)Y =X, where, | =.[01‘P(s)‘PT (S) ds is the identity matrix.
Where,_X:[O.1768 0.0510 0 0.0000 0.5303 0.0510 0.0000 0],
0.0012 -0.0030 -0.0010 -0.0005 0
0.0007 -0.0105 -0.0006 -0.0018 0
0.0001 -0.0013 -0.0002 -0.0002 0
0.0000 -0.0016 -0.0000 -0.0003 0 0 0 0
0.0188 0.0054 0 0.0000 0.0165 -0.0175 -0.0041 -0.0021
0.0018 0.0005 -0.0000 -0.0000 0.0105 -0.0844 0.0005 -0.0140
-0.0000 -0.0000 -0.0000 -0.0000 -0.0010 -0.0062 -0.0015 -0.0012
0.0000 0.0000 0.0000 0.0000 0.0008 -0.0133 0.0004 -0.0023

By sol;fing this system of equations, we get the Hermite wavelet coefficients ‘Y’,
Y =[0.1768 0.0506 -0.0001 -0.0001 0.5419 0.0526 -0.0008 -0.0003]
and substituting these coefficients in U(t) [] YT‘P('[), we obtain the approximate solution U(t) as shown in

table 4. Maximum error analysis is shown in table 6.
Table 4 Numerical results of the example 5.6.

o O o

0 0
0 0
0 0

t Exact HW Absolute Error
0.0625 0.0625  0.0625 1.07e-06
0.1875 0.1876  0.1876 6.06e-07
0.3125 0.3131 0.3132 4.54e-05
0.4375 0.4399 0.4376 2.33e-03
0.5625 05692  0.5663 2.90e-03
0.6875 0.7026 0.7035 9.67e-04
0.8125 0.8421  0.8386 3.46e-03
0.9375 0.9904  0.9652 2.52e-02
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Example 5.7 Consider, linear Fredholm integro-differential equations [27],
1
u'(t) = texp(t) +exp(t) —t +jtu(s) ds, u(0)=0, 0<t<1 (.7)
0

which has the exact solution U(t) =t exp(t).
Integrating Eq. (5.7) w.r.t t, we get Fredholm integral equation,

gy - H=2200D %j u(s) ds,

0
We applied the Hermite wavelet collocation method and solved the above equation yields the values of U(t)

with the help of Hermite wavelet coefficients. Maximum error analysis is shown in table 6.
Example 5.8 Let us consider the linear Volterra integro-differntial equation [28],

u"(t)=—1+j(t—s)u(s)ds, u(@)=14,u'(0)=0, o=<t<1 (5.8)

which has the exact solution U(t) =cos(t).
Integrating Eq. (5.8) twice w.r.t t, we get Volterra integral equation,

u(t) =1—%t2 +%;|:(t —s)%u(s)ds

We applied the Hermite wavelet collocation method and solved the above equation yields the values of u(t)

with the help of Hermite wavelet coefficients. Maximum error analysis is shown in table 6.
Example 5.9 Next, consider the linear Volterra-Fredholm integral equation [24],
1 1 1

t 1
u(t) =t? _Et4 —Z—gt+!(t—s)u(s)ds+_(|)'(t+s)u(s)ds, o<t<1 (5.9)

which has the exact solution U(t)=t>. Where f(t)=t and the kernels K (t,S)=(t+S) and
K, (t,s)=(t-s).

Let us approximate f (t),u(t), K, (t,s)andk, (t,S) as given in Eq. (3.5), Eq. (3.9) and Eq. (3.14) using
the collocation points, we get an system of N equations with N unknowns,
ie, (I -K, -K,)Y =X where, | is an identity matrix,

we find, X =[-0.1704 0.0078 0.0048 -0.0000 0.0414 0.0512 0.0035 -0.0001],

0.2500 0.0361 0.0000 0.0000 0.5000 0.0361 -0.0000 0.0000
0.0361 0.0000 0.0000 0.0000 0.0361 0.0000 0 0
-0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.0000 -0.0000 0 -0.0000 0.0000 0.0000 0.0000 0.0000

K= 0.5000 0.0361 -0.0000 0.0000 0.7500 0.0361 0 0.0000
0.0361 0.0000 0 0 0.0361 0.0000 -0.0000 0.0000
-0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
[ 0.0464 -0.0180 0.0009 -0.0000 0 0 0 0 |
0.0180 -0.0558 -0.0000 -0.0085 0 0 0 0
0.0009 0 -0.0016 0 0 0 0 0
K - 0.0000 -0.0085 0.0000 -0.0015 0 0 0 0
, =

0.2500 -0.0361 0.0000 -0.0000 0.0464 -0.0180 0.0009 -0.0000
0.0361 -0.0000 0.0000 -0.0000 0.0180 -0.0558 -0.0000 -0.0085
-0.0000 -0.0000 0.0000 -0.0000 0.0009 0 -0.0016 0

| 0.0000 0.0000 0 0.0000 0.0000 -0.0085 0.0000 -0.0015 |

By solving this system, we obtain the Hermite wavelet coefficient,
Y =[0.0549 0.0243 0.0048 -0.0003 0.4118 0.0733 0.0039 -0.0008],
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Then, substituting in U(t) ] Y TP (t), we get the approximate solution of Eq. (5.9) as shown in table 5.

Maximum error analysis is shown in table 6.
Table 5 Numerical results of the example 5.2, for N = 16.

t Exact HW Absolute Error
0.0313 0.0010 -0.0030 4.01e-03
0.0313 0.0010 -0.0031 4.00e-03
0.0313 0.0010 -0.0032 3.85e-03
0.0313 0.0010 -0.0033 3.94e-03
0.0313 0.0010 -0.0034 4.00e-03
0.0313 0.0010 -0.0035 3.61e-03
0.0313 0.0010 -0.0036 3.10e-03
0.0313 0.0010 -0.0037 3.55e-03
0.0313 0.0010 -0.0038 3.63e-03
0.0313 0.0010 -0.0039 2.50e-03
0.0313 0.0010 -0.0040 1.61e-03
0.0313 0.0010 -0.0041 2.78e-03
0.0313 0.0010 -0.0042 2.88e-03
0.0313 0.0010 -0.0043 6.32e-04
0.0313 0.0010 -0.0044 6.43e-04
0.0313 0.0010 -0.0045 1.59e-03
Table 6 Maximum of the Error analysis E, ... (HW).
N Example 5.6 Example 5.7 Example 5.8 Example 5.9
4 1.43e-02 5.27e-03 1.28e-03 1.43e-01
8 2.52e-02 1.20e-02 1.36e-03 1.71e-02
16 1.47e-02 3.24e-03 3.73e-04 4.01e-03
32 7.94e-03 8.3%e-04 9.59e-05 9.94e-04
64 4.12e-03 2.13e-04 2.42e-05 2.47e-04
128 2.10e-03 5.37e-05 6.07e-06 6.17e-05
Example 5.10 Consider the Abel’s integral equation of first kind [29],
t
exp(t)—1= j i)mds. (5.10)
o (t—s)
Firstly, consider u(t) =Y " (t) (5.11)
substituting u(t) in Eq. (5.10), we get
t T
exp(t)-1= j Yi(ﬂszds. (5.12)
o (t—s)
Next, we collocate the point t, and substitute in Eq. (5.12),
t
exp(t)—1= J'YTL(?Z S.
5 (t; —s) (5.13)

Now, we get the system of algebraic equations with unknown coefficients. By solving this system of equations
fork=1and M =5 as given,
f = [0.1052 0.3499 0.6487 1.0138 1.4596]

0.6325 1.0954 1.4142 1.6733 1.8974
-1.8988 -2.2768 -1.6330 -0.3864 1.3145
G, = 1.4406 -1.0582 -3.7947 -4.8093 -2.9189
8.5628 14.4390 10.6904 0.6517 -8.7525
-28.3334 -11.3738 17.7248 23.7824 -5.8776
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Next, we obtain the Hermite wavelet coefficients,
=[0.6422 0.1827 -0.0070 0.0030 -0.0011]
and then substituting these coefficients in Eq. (5.11), we get the approximate solution of Eq. (5.10) with exact

exp(t
solution U(t) = \}Jﬁ) erf (\/t_) as shown in table 7. Error analysis is shown in figure 3.
T

Table 7 Numerical result of the example 5.10.

E Luti Hermite wavelet
t xact solution (k=1,M=5) (k=1,M=8)
0.1 0.2153 0.2097 0.2137
0.2 0.3259 0.3244 0.3261
0.3 0.4276 0.4284 0.4274
0.4 0.5293 0.5298 0.5293
0.5 0.6350 0.6344 0.6350
0.6 0.7470 0.7464 0.7470
0.7 0.8672 0.8677 0.8672
0.8 0.9971 0.9984 0.9970
0.9 1.1383 1.1364 1.1380
0.025 T \
. 0021 —k=1,M=3
i k=1, M=5
< 0015 k=1, M=8 7
c
©
5 ool
& 0.005
0 —_ .~ |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t

Fig. 3 Error analysis of the example 5.10.
Example 5.11 Next, consider [29],

u(s)
(5.14)
J. (t S)4/5
Applying the above method, we obtain the approximate solution u(t) of Eq. (5.14) with the help of Hermite
| _ o _ _ _55in(%) . us _
wavelet coefficients. Numerical solution is compared with exact solution U(t) _Z—t as shown in
T

table 8. Error analysis is shown in figure 4.
Table 8 Numerical result of the example 5.11.

t Exact solution Hermite wavelet (k=1, M = 8)
0.1 0.0371 0.0369
0.2 0.0645 0.0645
0.3 0.0893 0.0893
0.4 0.1124 0.1124
0.5 0.1343 0.1343
0.6 0.1554 0.1554
0.7 0.1758 0.1758
0.8 0.1956 0.1956
0.9 0.2150 0.2149
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x10°
1.5 T
— k=1, M=3
2
2 1 =1, M=5
s =1, M=8
3+
2 05 .
L
0 — : o~ N - | A —
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t
Fig. 4 Error analysis of the example 5.11.
Example 5.12 Consider the Abel’s integral equation of the second kind [30]
4 (s)
4u(t) = J_l—arcsm I—ds 0<t<l. (5.15)
t+

x/t+1'

Eq. (5.15) with k =1 and M =3, we find,
f =[4.4785 4.4969 4.4340]

4.8165 5.4142 5.8257
-11.4375 -1.6330 9.9403
-1.1491 -21.6833 -5.9189
Next, we get the Hermite wavelet coefficients,

Y = [0.8344 -0.0406 0.0040]

and substituting these coefficients in Eq. (5.11), we get the approximate solution of Eq. (5.15) with exact
solution as shown in table 9 and the error analysis is shown in table 10.
Table 9 Numerical result of the example 5.12.
Hermite Wavelet

which has the exact solution U(t) = Applying the Hermite Wavelet Collocation Method for solving

K —

t Exact Absolute Error

(k=1, M=8)
0.0625 0.9701 0.9701 1.12e-07
0.1875 0.9177 0.9177 2.47¢-08
0.3125 0.8729 0.8729 2.61e-08
0.4375 0.8341 0.8341 1.76e-08
0.5625 0.8000 0.8000 1.68e-08
0.6875 0.7698 0.7698 1.20e-08
0.8125 0.7428 0.7428 1.566-08
0.9375 0.7184 0.7184 8.33e-09

Table 10 Maximum error analysis of the example 5.12

N =2%1M  Hermite Wavelet
k= 1, M 3 3.15e-04
=1,M=5 1.17e-05
k=1, :8 1.12e-07
Example 5.13 Lastly, consider [30],
S
u(t) =2t - j y( ) ds, 0<t<1. (5.16)

which has the exact solution U(t) =1—exp(st) erfc(\/nt ) . We solved the Eq. (5.16) by approaching the

present method for k = 1 and M = 5 with the help of Hermite wavelet coefficients, we get the approximate
solution as shown in table 11 and the error analysis is shown in table 12.
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Table 11 Numerical result of the example 5.13.

¢ Exact Hermite Wavelet Absolute Error
(k=1, M=8)
0.0625 0.3539 0.3539 5.36e-03
0.1875 0.4994 0.4994 1.28e-03
0.3125 0.5699 0.5699 8.73e-04
0.4375 0.6153 0.6153 5.70e-04
0.5625 0.6481 0.6481 4.47e-04
0.6875 0.6734 0.6734 3.32e-04
0.8125 0.6937 0.6937 3.11e-04
0.9375 0.7105 0.7105 9.40e-05

Table 12 Maximum error analysis of the example 5.13

N =21 M Hermite Wavelet
k=1,M=3 1.61e-02
k=1,M=5 9.16e-03
k=1,M=8 5.36e-03

V1. Conclusion

In this paper, we introduced the Hermite wavelet collocation method for the numerical solution of integral and
integro-differential equations. Hermite wavelet reduces an integral equation into a system of algebraic
equations. Our numerical results are highly accuracy with exact ones; subsequently other examples are also
same in the nature. Error analysis shows the accuracy gives better, with increasing the level of resolution N, for
better accuracy, and then the larger N is recommended. The experimental results are obtained by the proposed
method and compared with the existing methods and with exact solutions. Thus the present scheme is very easy,
accurate and effective.
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