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Abstract 

The system consists of a two-dissimilar components working in parallel, say A and B. Both the components are 

operative initially at time t=0.  A single repair facility is available for the repair.  Upon failure of a component 

the repair facility, if not busy, is available with some fixed probability p.  If repair facility is not available at the 

time of a failure of a component, it is called for repair.  The repair facility appearance time distribution is 

exponential. When repair facility is busy in repair of the failed component, the other failed component waits for 

its repair.  After repair, the components become as good as new.  The repair time of both the components are 

arbitrary functions of time. Failure time distributions are assumed to be exponential.  

Key words: Reliability, Mean time to system failure, Availability, Exponential distribution. 

Introduction 

Two-unit standby redundant systems have been extensively studied by several authors in the past.  Said and 

Sherbeny (2010) analyzed a two-unit cold standby system with two stage repair and waiting time. In this paper a 

two dis-similar component system is considered.  The system operates even if a single component operates.  A 

single repair facility is available with some fixed probability for the repair of failed components.  

System Assumption and Description 
 

The system consists of a two-dissimilar components working in parallel, say A and B. Both the components are 

operative initially at time t=0.  A single repair facility is available for the repair.  Upon failure of a component 

the repair facility, if not busy, is available with some fixed probability p.  If repair facility is not available at the 

time of a failure of a component, it is called for repair.  The repair facility appearance time distribution is 

exponential. When repair facility is busy in repair of the failed component, the other failed component waits for 

its repair.  After repair, the components become as good as new.  The repair time of both the components are 

arbitrary functions of time. Failure time distributions are assumed to be exponential. Several measures of system 

effectiveness such as MTSF, A, B etc. are obtained by using regenerative point technique. 

Notations and States of the System 

E  set of regenerative states {S0, S1, S2, S4, S6 } 

E   set of non-regenerative states {S3, S4} 

  failure rate of component A. 

  failure rate of component B. 

  rate of appearance of repair facility. 

f(.)  Pdf of repair rate of component A. 

g(.)  Pdf of repair rate of component B. 
p  = (1–q)=probability that the repairman is available for repairs. 

 
The system may be in one of the following states: 

 

S0 (ANBN)   The components A and B both are in normal operative mode. 

S1 (AFBN)   Failed component A is waiting for repair and component B is operative. 

S3 (ARBN)   Component A is under repair and B is operative. 

S4 (ANBR)   Component A is in operative mode and component B is under repair. 

S5 (AWRBR)   Component A waits for repair and component B is under repair. 
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S6(ARBWR)   Component A is under repair and component B waits for its repair. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Analysis of two dissimilar component with uncertain availability of repairman+ 

Transition Probabilities and Sojourn Times 

Let T0 (=0), T1, T2 … be the epochs at which the system enters the state SiE, and 

Let Xn denotes the state entered at epoch Tn+1, i.e. just after the transition at Tn. Then 

{Xn, Tn} constitutes a Markov-renewal process with the state space E and  

Qij(t) = Pr[Xn+1 = Sj | Tn+1 – Tn  t|xn = Si]. 

The transition probability matrix of the embedded Markov chain is: 

P = (pij) = { ij

t

Q


(t)} = {Qij ()}. 

By simple probabilistic considerations, the non-zero elements of Q = {Qij(t)} can be obtained as follows: For the 

system to reach state S1 from S0 on or before time t, we suppose that the system transits from S0 to S1 during (u, 

u+du); u t while it does not transits to any of the state‟s S2, S3 and S4 up to the time u.  The probability of 

this event is: 

 qe-udu.(p + q)e-u = qe-udu. 

Since u varies from 0 to 1, therefore 

 Q01(t) = 

t

( )u

0

q e du       

Taking limit t tends to infinity, we have 

 ij ij
t

p limQ (t).


  

The non-zero elements of pij are given below: 

 01p q / ,       02p q / ,      
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 03p p / ,       04p p / ,      

 13p / ,        16p / ,      

 24p / ,        25p / ,      

  30p F ,       (6)

34 36p 1 F p ,     
 

  40p G ,      (5)

43 45p 1 G p .     
   

We observe the following relationships among the above study state probabilities: 

01 02 03 04p p p p 1,     

13 16p p 1,   

24 25p p 1,   

6

30 36 36 34p p p p 1,     

(5)

40 45 40 43p p p p 1.          

Mean sojourn timei in state Si is defined as the time that the system continues in state Si before 

transiting to any state.  If T denotes the sojourn timein Si theniin Si is:-
i

0

E(T) P(T t)dt


    . 

Using this we can obtain the following expressions, 

   t

0

0

e dt 1/ ,


 
       

   t

1

0

e dt 1/ ,


 
       

   t

2

0

e dt 1/ ,


 
       

3

0

F(t)dt,


    

4

0

G(t)dt.


           

In terms of Laplace-Stieltje‟s transform of Qi (t), we define mij as follows:- 


ijij ij

s 0

d
m Q (0) lim Q (s).

ds
         

    s u

01

0

Q (s) q e du q / s ,


 
         

    s u

02

0

Q (s) q e du q / s ,


 
         

    s u

03

0

Q (s) p e du p / s ,


 
         
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    s u

04

0

Q (s) p e du p / s ,


 
         

    s u

13

0

Q (s) e du / s ,


 
         

    s u

16

0

Q (s) e du / s ,


 
         

    s u

24

0

Q (s) e du / s ,


 
         

    s u *

30

0

Q (s) e dF(u) F s ,


 
      

    s u *

40

0

Q (s) e dG(u) G s ,


 
      

  
(6) st t * *

34

0

Q (s) e 1 e dF(t), f (s) f (s )


       

  
(5) st t * *

43

0

Q (s) e 1 e dG(t), g (s) g (s ).


       

We have, 

   
' 2

0101m Q (s) q /       , 

   
02

' 2

02m Q (0) q / ,        

   
03

' 2

03m Q (0) p / ,        

   
04

' 2

04m Q (0) p / ,        

   
13

' 2

13m Q (0) / ,        

   
16

' 2

16m Q (0) / ,        

   
24

' 2

24m Q (0) / ,        

  
25

' 2

25m Q (0) / ,        

 '(6)(6) t t

3434

0 0

m Q (0) te dF(t) te E(t)dt,
 

        

 '(5)(5) t t

4343

0 0

m Q (0) te dG(t) te G(t)dt,
 

        

 ' t

3030

0

m Q (0) te dF(t),


     
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 ' t

4040

0

m Q (0) te dG(t).


     

It can be easily seen that, 

01 02 03 04 0m m m m ,      

16 13 1m m ,    

24 25 2m m ,    

(6)

30 34 3m m ,    

(5)

40 43 4m m .           

Reliability and Mean Time to System Failure (MTSF) 

 Let the random variable Ti be the time to system failure (TSF) when the system starts its operation 

from SiE, then the reliability of the system is given by, 

 Ri(t) = P (Ti> t). 

In order to determine Ri(t), we regard the failed states S5, S6 of the system as absorbing states.  By 

simple probabilistic reasoning, we observe that 0R (t) is the sum of following contingencies: 

(i) System remains up in state S0 without making any transition to any other state up to time t.  The 

probability of this contingency is, 

  
 t

0e z (t).
 

  

(ii) System first enters the regenerative state S1 during 

(u, u+du), u t and then starting from S1, it remains up without any break down for the time 

duration (t – v). The probability of this contingency is, 

  

t

01 1 01

0

q (u)duR (t u) q (t)   © R1(t). 

(iii) System first enters the regenerative state S2 during 

(u, u+du), u t and then starting from S2, it remains up without any breakdown for the time 

duration (t – v). The probability of this contingency is, 

  

t

02 2 02

0

q (u)duR (t u) q (t)   © R2(t). 

(iv)  System first enters the regenerative state S3 during 

(u, u+du), u t and then starting from S3, it remains up without any breakdown for the time duration 

(t – v). The probability of this contingency is, 

 

t

03 3 03

0

q (u)duR (t u) q (t)   © R3(t). 
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(v) System first enters the regenerative state S4 during  

(u, u+du); u t and then starting from S3, it remains up without any breakdown for the time duration 

(t – v). The probability of this contingency is, 

 

t

04 4 04

0

q (u)duR (t u) q (t)   © R4(t). 

Thus,  

 R0(t) = Z1(t) + q13(t) © R3(t) 

Similarly, 

 R1(t) = Z1(t) + q13(t) © R3(t) 

 R2(t) = Z2(t) + q24(t) © R4(t) 

 R3(t) = Z3(t) + q30(t) © R0(t) 

 R4(t) = Z4(t) + q40(t) © R0(t),        

Where,  

 
 t

0Z (t) e ,
 

  
 t

1Z (t) e ,
 

  

 
 t

2Z (t) e ,
 

  
t

3Z (t) e F(t),  

 
t

4Z (t) e G(t).  

For brevity, we have omitted the argument„s‟ from 
*

ijq (s), *

iZ (s)  and
*

iR (s). Solving the above equation for

*

0R (s) , we get 

* 1
0

1

N (s)
R (s) ,

D (s)
          

Where,   * * * * * * * * *

1 0 01 1 01 13 02 2 24 4N (s) Z q Z q q q Z q Z    


  * * * * * *

01 13 24 3 34 4q q q Z q Z   


     

* * * * * * * * *

1 01 13 30 02 24 03 30 04 40D (s) 1 q q q q q q q q q .           

Taking the inverse Laplace transform (ILT) of the above equation, we can get the reliability of the 

system when it starts from state S0, the mean time to system failure (MTSF) can be obtained on using the 

formula 

 0 0

0

E T R (t)dt


   

 
*

0
s 0
limR (s)


  

 
1

1

N (0)
.

D (0)
  
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To determine N1 (0) and D1 (0), we must first obtain 
*

iZ (s),using the result 

*

i i
s 0

0

limZ (s) Z (t)dt.



   

Therefore,  

 
*

0 0Z (0) ,    
*

1 1Z (0) ,   

 
*

2 3Z (0) ,    
*

4 4Z (0) .    

Thus, using 
*

ij ijq (0) p  and above
*

iZ (s) , we get,  

  1 0 01 1 01 13 02 2 24 4N (0) p p p p p          

  01 13 24 3 34 4p p p p          

And,  1 01 13 30 02 24 03 30 04 40D (0) 1 p p p p p p p p p .        

Availability Analysis 

 Let 
1

1A (t), 2

1A (t)  and 
3

1A (t)  be the probabilities that the system is up at epoch t due to first 

component, due to second component and due to both the components in parallel respectively when initially 

system starts from SiE. 

 Using simple probabilistic laws it can be seen that A0 (t) is the sum of the following probabilities of 

mutually exclusive contingencies. 

(i) The system does not transits to state S0 till time t. The probability of this event is 

  
 t

0e Z (t).
 

  

(ii) The system transits to S1 from S0 in (u, u+du); u  t and then starting from S1, it is observed to be up 

at epoch t, with probability A1(t – u). Therefore 

  

t

01 1

0

q (u)duA (t u).  

(iii) The system transits to S2 from S0 in (u, u+du); u  t and then starting from S2, it is observed to be up 

at epoch t, with probability A2(t – u). Therefore,  

  

t

02 2

0

q (u)duA (t u).  

(iv) The system transits to S3 from S0 in (u, u+du); u  t and then starting from S3, it is observed to be up 

at epoch t, with probability A3(t – u). Therefore 

  

t

03 3

0

q (u)duA (t u).  

(v) The system transits to S4 from S0 in (u, u+du); u  t and then starting from S4, it is observed to be up 

at epoch t, with probability A4(t – u). Therefore 
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t

04 4

0

q (u)duA (t v).  

Taking Laplace Transform (L.T.) of the above relation and writing the resulting set of equation in the matrix 

form, we get 

0

1

2

3

4

5

6

1
1 *

0 01 02 0
1

*

13
1 * * *

24 25 2

1 * 6*

30 34

* (5)* *1
40 43 4

*
1

53

*
1 64

A
q q q 0 0 0 0 Z

A 0 0 0 q 0 0 0 0

A 0 0 1 0 q q 0 Z

A q 0 0 0 q 0 0 .0

q 0 0 q 1 0 0 ZA

0 0 0 q 0 0 0 0A
0 0 0 0 q 0 0 0A

 
   
        
    
          
    
        
       

 

 

For brevity, the argument„s‟ has been omitted from 
*

ijq (s), 1*

iA (s)  and
*

1Z (s) . Solving the above 

matrix for
'*

0A (s) , we get,  

'*

0 2 2A (s) N (s)/D (s),    

Where     * * * * *

2 0 02 2 34 43 01 13 34 16N (s) Z q Z 1 q Z q q q q      

And,  

    * * * * * * * * * * *

2 34 43 01 10 01 13 24 43 30 03 30D (s) 1 q q 1 q q q q q q q q q     

 * * * * * * * * * * * *

04 53 64 30 01 13 34 13 40 04 64 53q q q q q q q q q q q q     * * * * *

34 03 04 53 64 40q q q q q q .   

Now to obtain the steady-state probabilities that the system will be operative due to first component, we proceed 

as follows – 

   
*

i i iZ (0) Z (t)dt (i = 0, 2, 4) 

and using the result *

ij ijq (0) p , we have 

         2 34 43 10 01 01 13 24 43 30 03 30D (0) 1 p p 1 p p p p p p p p p

     04 53 64 30 01 13 34 13 40 04 64 53p p p p p p p p p p p p  

  34 03 04 53 64 40p p p p p p  

      34 43 01 10 01 10 34 43 01 13 30 01 24 43 301 p p p p p p p p p p p p p p p  

   03 30 04 53 64 30 01 13 34 40 01 13 40p p p p p p p p p p p p p  

 04 64 53 34 03 40 34 40 04 53 64p p p p p p p p p p p  
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            01 03 04 34 43 01 03 04 02 10 131 p p p p p 1 p p p p p p  

   02 34 43 10 13p p p p p  

   02 34 43 02 02 02 34 43p p p p p p p p  

 0.  

Therefore, the steady-state probability that the system will be operative due to first component 

is given by,  

 


' '

0 0
t

A limA (t)  

  
 

 * 2
0

s 0 s 0
2

N (s)
limsA (t) lims

D (s)
 

   2

'

2

N (0)
,

D (0)
as D2(0) = 0.       

Similarly, the steady state probabilities that the system will be operative due to second component, 


2 2

0 0
t

A limA (t)  

  
2* 3
0 's 0 s 0

2

N (s)
limsA (s) lims

D (s) 
   

   3

'

2

N (0)
,

D (0)
as D2(0) = 0.       


3 3

0 0
t

A limA (t)  

  
 

 3* 4
0 's 0 s 0

2

N (s)
limsA (t) lims

D (s)
 

   4

'

2

N (0)
,

D (0)
as D2(0) = 0,       

Where,  

          2 0 02 2 34 43 01 13 34 16N (0) p 1 p p p p p p  

         02 24 25 64 53 34 03 04 43 53 64 4p p p p p p p p p p p  

       3 0 01 13 43 64 02 24 43 25 34N (0) p p p p p p p p p  

       03 30 3 1 13 04 40 03 30p p p p p p p  

And,  

         4 01 34 43 1 02 24 40 2N (0) p 1 p p p 1 p p  
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To obtain
'

2D (0) , we collect the coefficient of   *

ij ijq (0) m in 
'

2D (0) for various values of i and j as 

follows – 

Coefficient of        01 34 43 10 13 43 30m 1 p p p p p p   13 34 24 40p p p p  

            34 43 10 13 16 30 40 30 401 p p p p p p p p p  

           34 43 10 13 16 34 431 p p p p p 1 p p  

      34 431 p p   

Coefficient of       02 24 43 25 64 30 24 25 64 34 40m p p p p p p p p p p  

      34 431 p p   

Coefficient of  03 30 34 40m p p p  

     34 431 p p  

Conclusion 

This paper describes an improvement over the Said and Sherbeny (2010).They analyzed a two-unit cold standby 

system with two stage repair and waiting time. In this paper we analyzed a two dis-similar component system.  

The system operates even if a single component operates.  A single repair facility is available with some fixed 

probability for the repair of failed components. . Several measures of system effectiveness such as MTSF, 

A,B etc. are obtained by using regenerative point technique which shows that the proposed model is 

better than Said and Sherbeny (2010). 
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