ON THE PROPERTIES OF IDEMPOTENTS OF THE MATRIX RING $M_3(\mathbb{Z}_n[x])$

Gaurav Mittal^{#1}, Kanika Singla^{#2}

^{#1}Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India;
^{#2}Department of Mathematics, Indian Institute of Science Education and Research, Mohali, India;
¹mittal.gaurav0993@gmail.com
²kanikasingla27041993@gmail.com

ABSTRACT. In this paper, we find all the idempotents of 3×3 upper (lower) triangular matrices over the commutative ring \mathbb{Z}_p , i.e., $U_3(\mathbb{Z}_p[x])$ $(L_3(\mathbb{Z}_p[x]))$ for any prime p. We also show that for the ring of upper (lower) triangular matrices over $\mathbb{Z}_n[x]$, i.e., $U_3(\mathbb{Z}_n[x])$ $(L_3(\mathbb{Z}_n[x]))$, every diagonal entry of any idempotent matrix in $U_3(\mathbb{Z}_n[x])$ $(L_3(\mathbb{Z}_n[x]))$ must be an idempotent of \mathbb{Z}_n for every n.

Keywords: Idempotents, Upper triangular matrices, Lower triangular matrices, Commutative rings, Polynomial Rings

1. INTRODUCTION

Idempotents play a very important role in the study of rings as well as modules. An element a of a ring is said to be an idempotent if $a^2 = a$. Because of their importance in various fields, the idempotents have drawn interest of many researchers. In [1], various conditions are given for an element to be an idempotent in $M_2(\mathbb{Z}_{2p}[x])$ and $M_2(\mathbb{Z}_{3p}[x])$ for any prime p > 3. So, in this article we find out all the idempotents of 3×3 upper (lower) triangular matrices over the commutative ring $\mathbb{Z}_p[x]$ for any prime p. Moreover, we also give the condition on the diagonal entries of the idempotents of $m \times m$ upper triangular matrices over $\mathbb{Z}_n[x]$ for any m and n. While finding the idempotents of $U_3(\mathbb{Z}_p[x])$, i.e., the ring of 3×3 upper triangular matrices over $\mathbb{Z}_p[x]$, we conclude via suitable example that the result already known for the idempotents of $M_2(R)$, for a commutative ring R in [1], does not hold in 3×3 case.

2. Main result

Theorem 2.1. For any commutative ring F, set of all the idempotents of the polynomial ring F[x] and F are same.

Proof. For proof, see ([2], Lemma 1].

Theorem 2.2. Diagonal entries of any idempotent of $U_3(\mathbb{Z}_n[x])$, the ring of all 3×3 upper triangular matrices, are idempotents of \mathbb{Z}_n for all $n \in \mathbb{N}$.

Proof. Let G be any arbitrary idempotent of $U_3(\mathbb{Z}_n[x])$. Then

$$G = \begin{pmatrix} p(x) & q(x) & r(x) \\ 0 & s(x) & t(x) \\ 0 & 0 & u(x) \end{pmatrix}$$

where $p(x), q(x), r(x), s(x), t(x), u(x) \in Z_n[x]$. Being an idempotent, G must satisfy $G^2 = G$ which implies that

$$\begin{pmatrix} (p(x))^2 & q(x)(p(x) + s(x)) & r(x)(u(x) + p(x)) + q(x)t(x) \\ 0 & (s(x))^2 & (s(x) + u(x))t(x) \\ 0 & 0 & (u(x))^2 \end{pmatrix} = \begin{pmatrix} p(x) & q(x) & r(x) \\ 0 & s(x) & t(x) \\ 0 & 0 & u(x) \end{pmatrix}$$

Comparing diagonal entries, we get

$$(p(x))^2 = p(x), \quad (q(x))^2 = q(x), \quad (r(x))^2 = r(x)$$

Thus p(x), q(x) and r(x) are idempotents of $Z_n[x]$ and so, by theorem 2.1, these must be elements of Z_n . Thus, idempotents of $U_3(\mathbb{Z}_n[x])$ must have idempotents of \mathbb{Z}_n on diagonal.

Theorem 2.3. All the idempotents of $U_3(\mathbb{Z}_p[x])$, where p is a prime can be classified into 8 classes of 3×3 upper triangular matrices.

Proof. From theorem 2.2, if G is any idempotent of $U_3(\mathbb{Z}_p[x])$, then all its diagonal elements must be the idempotents of \mathbb{Z}_p . As the only idempotents of \mathbb{Z}_p are 0 and 1, so diagonal entries of G must be 0 or 1. Hence

$$G = \begin{pmatrix} \delta_1 & q(x) & r(x) \\ 0 & \delta_2 & t(x) \\ 0 & 0 & \delta_3 \end{pmatrix}$$

where $q(x), r(x), t(x) \in \mathbb{Z}_p[x]$ and $\delta_1, \delta_2, \delta_3 \in \{0, 1\}$. Now $G^2 = G$ implies (writing q, r, t in place of q(x), r(x), t(x) for our convenience), we get

$$\begin{pmatrix} \delta_1 & (\delta_1 + \delta_2)q & \delta_1r + qt + \delta_3r \\ 0 & \delta_2 & (\delta_2 + \delta_3)t \\ 0 & 0 & \delta_3 \end{pmatrix} = \begin{pmatrix} \delta_1 & q & r \\ 0 & \delta_2 & t \\ 0 & 0 & \delta_3 \end{pmatrix}$$
(1)

Now since each δ_i for $1 \le i \le 3$ has 2 choices, either 0 or 1 and thus the triad $(\delta_1, \delta_2, \delta_3)$ can take 8 values in all. We now consider every possible value of δ_i for each *i*.

Case-1: If $(\delta_1, \delta_2, \delta_3) = (0, 0, 0)$, then from (1), we get t = 0, q = 0, r = 0. Thus G is zero matrix in this case.

Case-2: If $(\delta_1, \delta_2, \delta_3) = (0, 0, 1)$, then from (1), we get t, r arbitrary and q = 0. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 0 & 0 & r(x) \\ 0 & 0 & t(x) \\ 0 & 0 & 1 \end{pmatrix}$$

where r(x), t(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-3: If $(\delta_1, \delta_2, \delta_3) = (0, 1, 0)$, then from (1), we get q, t arbitrary and r = qt. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 0 & q(x) & q(x)t(x) \\ 0 & 1 & t(x) \\ 0 & 0 & 0 \end{pmatrix}$$

where q(x), t(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-4: If $(\delta_1, \delta_2, \delta_3) = (0, 1, 1)$, then from (1), we get t = 0 and r, q arbitrary. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 0 & q(x) & r(x) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where r(x), q(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-5: If $(\delta_1, \delta_2, \delta_3) = (1, 0, 0)$, then from (1), we get q, r arbitrary and t = 0. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 1 & q(x) & r(x) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where q(x), r(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-6: If $(\delta_1, \delta_2, \delta_3) = (1, 0, 1)$, then from (1), we get q, r arbitrary and t = 0. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 1 & q(x) & -q(x)t(x) \\ 0 & 0 & t(x) \\ 0 & 0 & 1 \end{pmatrix}$$

where q(x), t(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-7: If $(\delta_1, \delta_2, \delta_3) = (1, 1, 0)$, then from (1), we get q = 0, r, t arbitrary. Thus any idempotent of this type is of the form

$$G = \begin{pmatrix} 1 & 0 & r(x) \\ 0 & 1 & t(x) \\ 0 & 0 & 0 \end{pmatrix}$$

where r(x), t(x) are arbitrary polynomials in $\mathbb{Z}_p[x]$.

Case-8: If $(\delta_1, \delta_2, \delta_3) = (1, 1, 1)$, then from (1), we get q, t, r = 0. Thus G is identity in this case.

So from 8 cases, we get 8 different classes of idempotent elements.

Theorem 2.4. Diagonal entries of idempotents of $L_3(\mathbb{Z}_n[x])$, the group of all 3×3 lower triangular matrices, must be the idempotents of \mathbb{Z}_n for all $n \in \mathbb{N}$.

Proof. This can be proved exactly on the similar lines of theorem 2.2.

Theorem 2.5. All the idempotents of $L_3(\mathbb{Z}_p[x])$ for any p prime can be classified into 8 classes of 3×3 lower triangular matrices.

Proof. Proof can be done similarly on the lines of theorem 2.3.

Example 2.1. With the help of theorem 2.2 or 2.3 we easily conclude that all the idempotents of 3×3 diagonal matrices over $Z_{10}[x]$ are of the form

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

where $a, b, c \in \{0, 1, 5, 6\}$. Thus this ring has total 3^4 idempotent elements.

Theorems 2.2 and 2.3 can also be proved for any ring of $n \times n$ matrices, not only 3×3 .

Theorem 2.6. For any idempotent of $U_m(\mathbb{Z}_n[x])$, the ring of all $m \times m$ upper triangular matrices over $\mathbb{Z}_n[x]$, diagonal entries must be the idempotents of \mathbb{Z}_n .

Proof. Follows on the similar lines of theorem 2.1.

3. Notable difference between idempotents of $M_2(R)$ and $M_3(R)$

In this section, we give two instances, where we can clearly notice that the results already known (cf. [1]), for the idempotents of $M_2(R)$ are not applicable for $M_3(R)$ when R is a commutative ring.

Case-1: From theorem 2.5 in [1], we know that for any commutative ring R, the trace of every non-trivial idempotent in $M_2(R)$ with determinant 0 is an idempotent. But above result does not hold in the case of 3×3 matrices in $U_3(\mathbb{Z}_n[x])$ and hence it will not hold for $M_3(R)$ as $U_3(\mathbb{Z}_n[x])$ is a subring of $M_3(R)$ when $R = \mathbb{Z}_n[x]$. To prove the above said, we give a counter example.

Example 3.1. Take the matrix ring $M = M_3(\mathbb{Z}_3[x])$. Idempotent elements of \mathbb{Z}_3 are 0,1 only.

Let $G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ be an element of M. Now $G^2 = G$ implies G is an idempotent. Also

det G = 0, but Trace G = 2, which is not an idempotent of $\mathbb{Z}_3[x]$, as only idempotents of $\mathbb{Z}_3[x]$ are 0 and 1.

Case-2: From Proposition 2.6 in [1], an element of $M_2(\mathbb{Z}_p)$ with determinant 0 is an idempotent if and only if its trace is 1. But this fails for $M_3(\mathbb{Z}_p)$. For e.g. Consider $G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ be an element of M. For this matrix det = 0, but its trace is 2.

4. Conclusion

From the above theorems we can explicitly find all the idempotents of 3×3 upper (lower) triangular matrices over the ring $\mathbb{Z}_p[x]$. Also we can easily find all the idempotents of $n \times n$ diagonal matrices over the ring $\mathbb{Z}_n[x]$ for any n. Moreover from third section, we conclude that some results that hold for $M_2(R)$ does not hold good for $M_3(R)$ when R is a commutative ring.

References

- Idempotents and units of matrix rings over polynomial rings, Pramod Kanwar, Meenu Khatkar and R. K. Sharma, International Electronic Journal of Algebra Volume 22 (2017) 147 – 169.
- [2] Idempotents in ring extensions, P. Kanwar, A. Leroy and J. Matczuk, J. Algebra, 389 (2013), 128 136.