Normalization of Fuzzy BG – Ideals in BG – Algebra Dr. A. Prasanna^{#1}, M. Premkumar^{*2}, Hajee. Dr. S. Ismail Mohideen^{#3}

^{#1}Assistant Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

^{*2}Assistant Professor, Department of Mathematics, Mahendra Engineering College (Autonomous),

Tiruchengode,

Namakkal--637 503, Tamilnadu, India. $^{\#3}$ Principal , Head and Associate Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

ABSTRACT

In this paper, we define a normal fuzzy BG – Sub algebra, Normal fuzzy BG – ideal and discussed some of their properties.

Keywords

Normal fuzzy BG – sub algebra, Normal fuzzy BG-ideal.

1. INTRODUCTION

initiated The concept of fuzzy by set was Zadeh L A [9]. Imai Y and Iseki K [3] introduced two classes of abstract algebras BCK - algebras and BCI – algebras. Neggers J and Kim H S [7] introduced a new notion called B - algebra. Kim C B and Kim H S [5] introduced a new notion called BG - algebra which is a generalization of B - algebra. Muthuraj R, Sridharan Sitharselvam Р [6] introduced the Μ and Μ notion of Fuzzy BG - ideals in BG - algebra. Priya T and Ramachandran T [8] discussed the Normalization of Fuzzy PS ideals and Fuzzy PS Sub algebras of PS - algebras. Ahn S S and Lee D [1] introduced a new concept Fuzzy sub-algebras of BG algebras. Akram M [2] and Dar Κ Η discussed the notion of Fuzzy dalgebras. Jun Y B, Roh E H and Kim S H [4] introduced a new notion on BH-algebras. In this paper, we introduce the fuzzy BG algebras concept of normal sub of ideals BG algebras and normal fuzzy BG of BG – algebras and establish some of its properties.

2. PRELIMINARIES

In this section, we give some basic definitions and preliminaries of BG – algebra and introduce normal fuzzy BG – ideals.

Definition 2.1: (Kim C B and Kim H S [5])

A non-empty set X with a constant 0 and a binary operation '*' is called a BG – Algebra, if it satisfies the following axioms

x * x = 0(i)

(ii) x * 0 = x

(iii) $(x * y) * (0 * y) = x, \forall x, y \in X$

Definition 2.2: (Kim C B and Kim H S [5])

Let S be non-empty subset of a BG-Algebra X, then S is called a BG –sub-algebra of X, if $x * y \in S \forall x, y \in S$

Definition 2.3: (Kim C B and Kim H S [5])

Let X be a BG – Algebra and I be a subset of X, then I is called a BG-Ideal of X, if is satisfies following conditions,

 $0 \in I$ (i)

(ii)
$$x * y \in I \text{ and } y \in I \implies x \in I$$

(iii)
$$x \in I \text{ and } y \in I \Longrightarrow x * y \in I, I \times I \subseteq I$$

Definition 2.4: (Muthuraj R et.al. [6])

A fuzzy set α in X is called fuzzy BG-Ideal of X, if it satisfies the following inequalities,

(i) $\alpha(0) \ge \alpha(x)$,

- (ii) $\alpha(x) \ge \min\{\alpha(x * y), \alpha(y)\},\$
- (iii) $\alpha(x * y) \ge \min\{\alpha(x), \alpha(y)\} \ \forall x, y \in X.$

Definition 2.5: (Muthuraj R et.al. [6])

A fuzzy BG-Ideal α of X is said to be normal if there exists $x \in X$ such that $\alpha(x) = 1$.

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then (X, *, 0) is a BG – algebra. Define a fuzzy set α in X by $\alpha(0) = 1$, $\alpha(1) = 0.7$, $\alpha(2) = 0.4$, $\alpha(3) = 0.2$. Then α is a normal fuzzy BG – ideal of X.

Lemma 2.6:

A fuzzy BG-Ideal α of X is normal, if and only if $\alpha(0) = 1$.

Theorem 2.7:

For any fuzzy BG-Ideal α of X, we can generate a normal fuzzy BG-Ideal of X which contains α .

Proof:

Let α be a fuzzy BG-ideal of X.

Define a fuzzy subset α^+ of X as

$$\alpha^+(x) = \alpha(x) + \alpha^c(0) \ \forall x \in X$$

Let $x, y \in X$

(i)
$$\alpha^+(0) = \alpha(0) + \alpha^c(0) \ge \alpha(x) + \alpha^c(0)$$

 $= \alpha^+(x).$

(ii) $\alpha^+(x) = \alpha(x) + \alpha^c(0)$

$$\geq \min\{\alpha(x * y), \alpha(y)\} + \alpha^{c}(0)$$

$$\geq \min\{\alpha(x * y) + \alpha^{c}(0), \alpha(y) + \alpha^{c}(0)\}$$

$$= \min\{\alpha^{+}(x * y), \alpha^{+}(y)\}$$

$$\Rightarrow \alpha^{+}(x) \geq \min\{\alpha^{+}(x * y), \alpha^{+}(y)\}.$$
(iii) $\alpha^{+}(x * y) = \alpha(x * y) + \alpha^{c}(0)$

$$\geq \min\{\alpha(x), \alpha(y)\} + \alpha^{c}(0)$$

$$= \min\{\alpha(x) + \alpha^{c}(0), \alpha(y) + \alpha^{c}(0)\}$$

 $= \min\{\alpha^+(x), \alpha^+(y)\}$

 $+ \alpha^{c}(0)$

 $\Rightarrow \alpha^+(x * y) \ge \min\{\alpha^+(x), \alpha^+(y)\}.$

Also

$$\alpha^{+}(0) = \alpha(0) + \alpha^{c}(0)$$
$$= \alpha(0) + 1 - \alpha(0) = 1$$

 $\Rightarrow \alpha^+(0) = 1.$

 $\therefore \alpha^+$ is a normal fuzzy BG ideal of X.

Clearly,

 $\alpha \subset \alpha^+$

Thus α^+ is a normal fuzzy BG – ideal of X which contains α .

Hence the proof.

Corollary 2.8:

 α^+ fuzzy defined Let be а set in Х by $\alpha^+ = \alpha(x) + \alpha^c(0) \forall x \in X$. If there is an element $x \in X$ such that $\alpha^+(x) = 0$ then $\alpha(x) = 0$.

Corollary 2.9:

If α itself is normal then $(\alpha^+)^+ = \alpha$ (i)

If α is a fuzzy BG - ideal of X then $(\alpha^+)^+ = \alpha^+$ (ii)

Theorem 2.10:

Let α be fuzzy BG-ideal of X. If α contains a normal BG-ideal of X generated by any other fuzzy BG-ideal of X then α is normal.

Proof:

Let γ be a fuzzy BG-ideal of X. By theorem 2.7, γ^+ is a normal fuzzy BG-ideal of X.

$\therefore \gamma^+(0)=1$ (by lemma 2.6)

Let α be a fuzzy BG-ideal of X such that $\gamma^+ \subset \alpha$

$$\Rightarrow \alpha(x) \ge \gamma^+(x) \forall x \in X$$

Put x = 0,

$$\Rightarrow \alpha(0) \ge \gamma^+(0) = 1$$
$$\Rightarrow \alpha(0) \ge 1$$

Hence α is normal.

Lemma 2.11:

Define a set $X_{\alpha} = \{x \in X : \alpha(x) = \alpha(0)\}$ and let α and γ be normal fuzzy BG-ideal of X. If $\alpha \subset \gamma$, then $X_{\alpha} \subset X_{\gamma}$.

Proof:

Let $x \in X_{\alpha}$

Then

$$\gamma(x) \ge \alpha(x) = \alpha(0) = 1 = \gamma(0)$$

 $\Rightarrow x \in X_{\gamma}$
 $\Rightarrow X_{\alpha} \subset X_{\gamma}$

Hence the proof.

Theorem 2.12:

Let α be a fuzzy BG-ideal of X. Let $f: [0, \alpha(0)] \rightarrow [0,1]$ be an increasing function. Define a fuzzy set $\alpha^f: X \rightarrow [0,1]$ by $\alpha^f = f(\alpha(x)) \forall x \in X$. Then,

(i) α^f is a fuzzy BG-ideal of X.

(ii) If $f(\alpha(0)) = 1$, then α^f is normal.

(iii) If $f(t) \ge t \forall t \in [0, \alpha(0)]$, then $\alpha \subset \alpha^f$

Proof:

(i)
$$\alpha^f(0) = f(\alpha(0))$$

$$\geq f(\alpha(x))$$
$$= \alpha^{f}(x)$$
$$\Rightarrow \alpha^{f}(0) \geq \alpha^{f}(x)$$

Also

$$\alpha^{f}(x) = f(\alpha(x))$$
$$\geq f\{\min\{\alpha(x * y), \alpha(y)\}\}$$

$$= \min\{f\{\alpha(x * y)\}, f\{\alpha(y)\}\}$$
$$= \min\{\alpha^f(x * y), \alpha^f(y)\}$$
$$\Rightarrow \alpha^f(x) \ge \min\{\alpha^f(x * y), \alpha^f(y)\}$$

And

$$\alpha^{f}(x * y) = f(\alpha(x * y))$$

$$\geq f\{\min\{\alpha(x), \alpha(y)\}\$$

$$= \min\{f(\alpha(x), f(\alpha(y))\}\$$

$$= \min\{\alpha^{f}(x), \alpha^{f}(y)\}\$$

 $\Rightarrow \alpha^f(x * y) \ge \min\{\alpha^f(x), \alpha^f(y)\}\$

 $\Rightarrow \alpha^f$ is a fuzzy BG-ideal.

(ii) If
$$f(\alpha(0)) = 1 \Longrightarrow \alpha^f(0) = 1$$

 $\Rightarrow \alpha^f$ is normal

(iii) Let
$$f(t) \ge t \forall t \in [0, \alpha(0)]$$

Then

$$\alpha^{f}(x) = f(\alpha(x))$$
$$\geq \alpha(x) \forall x \in X$$

Hence

 $\alpha \subseteq \alpha^f$

Hence the proof.

3. NORMALIZATION OF FUZZY BG - SUB-ALGEBRAS

Definition 3.1:

Let α be a fuzzy set in BG - Algebra. Then α is called a fuzzy sub-algebra of X if $\alpha(x * y) \ge \min\{\alpha(x), \alpha(y)\}, \forall x, y \in X$.

Definition 3.2:

A fuzzy BG-sub-algebra α of X is said to be normal, if there exist $x \in X$ such that $\alpha(x) = 1$.

Lemma 3.3:

A fuzzy BG – sub-algebra α of X is normal, if and if only $\alpha(0) = 1$.

Theorem 3.4:

For any fuzzy sub-algebra α of X, we can generate a normal fuzzy subalgebra X which contains α .

Proof:

Let α be a fuzzy BG-sub-algebra of X.

Define a fuzzy subset α^+ of X as $\alpha^+(x) = \alpha(x) + \alpha^c(0) \forall x \in X$

Let $x, y \in X$

$$\alpha^{+}(x * y) = \alpha(x * y) + \alpha^{c}(0)$$

$$\geq \min\{\alpha(x), \alpha(y)\} + \alpha^{c}(0)$$

$$= \min\{\alpha(x) + \alpha^{c}(0), \alpha(y) + \alpha^{c}(0)\}$$

$$= \min\{\alpha^{+}(x), \alpha^{+}(y)\}$$

$$\Rightarrow \alpha^{c}(x * y) \geq \min\{\alpha^{+}(x), \alpha^{+}(y)\}$$

Also

$$\alpha^{+}(0) = \alpha(0) + \alpha^{c}(0)$$

= $\alpha(0) + 1 - \alpha(0)$
- 1

 $\therefore \alpha^+$ is normal fuzzy BG-algebra of X.

Clearly $\alpha \subset \alpha^+$

Thus α^+ is a normal fuzzy BG-algebra of X which contains α .

Corollary 3.5:

```
(i) If \alpha itself is normal then \alpha = \alpha^+
```

(ii) If α is a fuzzy BG sub-algebra of X then $(\alpha^+)^+ = \alpha^+$.

Theorem 3.6:

Let α be fuzzy BG-subalgebra of X. If α contains a normal fuzzy BG-subalgebra of X generated by any other fuzzy BG-sub-algebra of X then α is normal.

Proof:

Let γ be a fuzzy BG-sub-algebra of X. By theorem 3.4, γ^+ is a normal fuzzy BG-sub-algebra of X. $\therefore \gamma^+(0)=1$ (by lemma 3.3)

Let α be a fuzzy BG-algebra of X such that $\gamma^+ \subset \alpha$

$$\Rightarrow \alpha(x) \ge \gamma^+(x) \forall x \in X$$

Put x = 0,

$$\Rightarrow \alpha(0) \ge \gamma^+(0) = 1$$
$$\Rightarrow \alpha(0) \ge 1$$

Hence α is normal.

Theorem 3.7:

Let α and γ be normal fuzzy BG-sub-algebra of X. If $\alpha \subset \gamma$, then $X_{\alpha} \subset X_{\gamma}$.

Theorem 3.8:

Let α be a fuzzy BG-sub-algebra of X. Let $f: [0, \alpha(0)] \rightarrow [0,1]$ be an increasing function. Define a fuzzy set $\alpha^f: X \rightarrow [0,1]$ by $\alpha^f = f(\alpha(x)) \forall x \in X$. Then

- (i) α^f is a fuzzy BG-sub-algebra of X.
- (ii) If $f(\alpha(0)) = 1$, then α^f is normal.
- (iii) If $f(t) \ge t$, $\forall t \in [0, \alpha(0)]$, then $\alpha \subset \alpha^f$

Proof:

$$\alpha^{f}(x * y) = f(\alpha(x * y))$$

$$\geq f\{\min\{\alpha(x), \alpha(y)\}\$$

$$= \min\{f(\alpha(x), f(\alpha(y))\}\$$

$$= \min\{\alpha^{f}(x), \alpha^{f}(y)\}\$$

$$\Rightarrow \alpha^{f}(x * y) \geq \min\{\alpha^{f}(x), \alpha^{f}(y)\}\$$

 $\Rightarrow \alpha^f$ is a fuzzy BG-ideal.

(iv) If
$$f(\alpha(0)) = 1 \Longrightarrow \alpha^f(0) = 1$$

 $\Rightarrow \alpha^f$ is normal

(v) Let
$$f(t) \ge t \forall t \in [0, \alpha(0)]$$

Then

$$\alpha^{f}(x) = f(\alpha(x))$$
$$\geq \alpha(x) \ \forall x \in X$$

Hence

$$\alpha \subseteq \alpha^f$$

Hence the proof.

4. CONCLUSION

	Hence	we	have	discussed	the	Normalizatio	on of	Fuzzy	BG	_	ideals	and
Fuzzy BG - sub	algebra	over	BG –	algebra. It	adds an	another dim	ension t	o the d	efined	BG-	algebras.	This
concept	cai	n		further		be		gen	eralize	d		to
n-fold			fuz	zy]	BG-idea	ls				in
n-fold fuzzy BG- algebra using fuzzy translation and fuzzy multiplication.												

5. REFERENCE

- [1] Ahn S S and Lee D, Fuzzy sub-algebras of BG algebras, Commun. Korean Math.Soc, 19, (2004), 243 251.
- [2] Akram M and Dar K H, On Fuzzy d- algebras, Journal of mathematics, 37, (2005),61 76.
- [3] Iami Y and Iesi K, On Axiom Systems of Propositional Calculi XIV, Proc. Japan Academy 42,1(1966),19-22.
- [4] Jun Y B, Roh E H and Kim S H, On BH algebras , sci. mathematical, 1 ,(1998), 347 354.
- [5] Kim C B and Kim H S, On BG-Algebras, Demostration Mathematica, 41, 3(2008),497-505.
- [6] Muthuraj R, Sridharan M and Sithar Selvam P M, Fuzzy BG-Ideals in BG-Algebra, International Journal of Computer Applications ,2,1(2010),0975 8887.
- [7] Neggers J and Kim H S, On B-Algebras, Mate, Vesnik, 54, (2002), 21-29.
- [8] PriyaT and Ramachandran T, Normalization of Fuzzy PS-ideals and Fuzzy PS-sub algebras of PS-algebras, Research journal's Journal of Mathematics, 1,4(2014),1-12.
- [9] Zadeh L A, Fuzzy Sets, Information and Control, 8 (1965),338-353.