Normalization of Fuzzy B – Ideals in B – Algebra

Dr. A. Prasanna^{#1}, M. Premkumar^{*2} and Dr. A. Solairaju^{#3}

^{#1}Assistant Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

^{*2}Assistant Professor, Department of Mathematics, Mahendra Engineering College (Autonomous),

Tiruchengode,

Namakkal-637 503, Tamilnadu, India. ^{#3}Associate Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

Abstract

In this paper, we define a normal fuzzy B – sub algebra, normal fuzzy B – ideal and discuss some of their properties.

Keywords

B-algebra, B-Ideal, Fuzzy B-Ideal, Normal fuzzy B – sub algebra, Normal fuzzy B-ideal.

1. INTRODUCTION

After the introduction of fuzzy subsets by Zadeh L A [7], several researchers explored on the generalization of the notion of fuzzy subset. Biswas R [1], introduced the Fuzzy Subgroups and Anti Fuzzy Subgroups. Cho J R and Kim H S [2] discussed relations between B-algebras and other topics, especially quasi-groups. Park H K and Kim H S [3] introduced the notion of Quadratic B-algebras. Sun Shin Ahn and Keumseong Bang [5] discussed the fuzzy sub-algebra in B-algebra. Yamini C and Kailasavalli S [6] introduced the notion of Fuzzy B-ideals. Priya T and Ramachandran T [4] discussed the Normalization of Fuzzy **PS-ideals** and Fuzzy PS-Sub algebras of PS-algebras. In this paper, we introduce the concept of normal fuzzy B – sub algebras algebras normal fuzzy and ideals of В B of

B – algebras and establish some of its properties in detail.

2. PRELIMINARIES

In this section, we give some basic definitions and preliminaries of B – algebra and introduce the normal fuzzy B – ideals.

Definition 2.1: (Jung R Cho and Kim H S [2])

A B-algebra is a non-empty set X with a constant 0 and a binary operation '*' satisfying the following axioms:

(i) x * x = 0(ii) x * 0 = x(iii) (x * y) * z =

$$x * (z * (0 * y)), for all x, y, z \in X$$

For brevity, we also call X a B-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

Definition 2.2: (Jung R Cho and Kim H S [2])

A non-empty subset *M* of a B-algebra X is called a sub-algebra of X if $x * y \in M$ for any $x, y \in M$.

Definition 2.3: (Park H K and Kim H S [3])

A non-empty subset N of a B-algebra X is called a B-ideal of X if it satisfies for $x, y, z \in X$

(i) $0 \in N$

(ii) $(x * y) \in N$ and $(z * x) \in N$ implies $(y * z) \in N$

Definition 2.4: (Yamini C and Kailasavalli S [6])

Let (X, *, 0) be a B-algebra, a fuzzy set β in X is called a fuzzy B-ideal of X if it satisfies the following axioms

(i) $\beta(0) \ge \beta(x)$

(ii) $\beta(y * z) \ge \beta(x * y) \land \beta(z * x), for all x, y, z \in X$

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

The fuzzy set β given by $\beta(0) = 0.8$, $\beta(1) = 0.5, \beta(2) = 0.2$ is a fuzzy B-ideal.

Definition 2.5: (Yamini C and Kailasavalli S [6])

A fuzzy BG-Ideal β of X is said to be normal if there exists $x \in X$ such that $\beta(x) = 1$.

Lemma 2.6:

A fuzzy B-Ideal β of X is normal if and only if $\beta(0) = 1$.

Theorem 2.7:

For any fuzzy B-Ideal β of X, we can generate a normal fuzzy B-Ideal of X which contains β .

Proof:

Let β be a fuzzy B-ideal of X.

Define a fuzzy subset β^+ of X as

$$\beta^+(x) = \beta(x) + \beta^c(0) \; \forall \; x \in X$$

Let $x, y, z \in X$

(i)
$$\beta^{+}(0) = \beta(0) + \beta^{c}(0)$$

 $\geq \beta(x) + \beta^{c}(0)$
 $= \beta^{+}(x)$
(ii) $\beta^{+}(y * z) = \beta(y * z) + \beta^{c}(0)$
 $\geq \{\beta(x * y) \land \beta(z * x)\} + \beta^{c}(0)$
 $= \{\beta(x * y) + \beta^{c}(0)\} \land \{\beta(z * x) + \beta^{c}(0)\}$
 $= \beta^{+}(x * y) \land \beta^{+}(z * x)$

$$\Rightarrow \beta^+(x) \ge \beta^+(x * y) \land \beta^+(z * x)$$

and

$$\begin{aligned} \beta^+(0) &= \beta(0) + \beta^c(0) \\ &= \beta(0) + 1 - \beta(0) = 1 \\ &\implies \beta^+(0) = 1 \end{aligned}$$

 $\therefore \beta^+$ is a normal fuzzy B ideal of X.

Clearly $\beta \subset \beta^+$

Thus β^+ is a normal fuzzy B – ideal of X which contains β .

Hence the proof.

Theorem 2.8:

Let β be fuzzy B-ideal of X. If β contains a normal B-ideal of X generated by any other fuzzy B-ideal of X then β is normal.

Proof:

Let θ be a fuzzy B-ideal of X. By theorem 2.7, θ^+ is a normal fuzzy B-ideal of X.

$$\theta^+(0) = 1$$

Let β be a fuzzy B-ideal of X such that $\theta^+ \subset \beta$

$$\Rightarrow \beta(x) \ge \theta^+(x) \ \forall \ x \in X$$

Put x = 0,

$$\Rightarrow \beta(0) \ge \theta^+(0) = 1$$
$$\Rightarrow \beta(0) \ge 1$$

Hence β is normal.

Lemma 2.9:

Define a set $X_{\theta} = \{x \in X : \beta(x) = \beta(0)\}$ and let β and θ be normal fuzzy B-ideals of X. If $\beta \subset \theta$, then $X_{\beta} \subset X_{\theta}$.

Proof:

Let
$$x \in X_{\beta}$$

Then

$$\theta(x) \ge \beta(x) = \beta(0) = 1 = \theta(0)$$
$$\Rightarrow x \in X_{\theta}$$
$$\Rightarrow X_{\beta} \subset X_{\theta}$$

Hence the proof.

Theorem 2.10:

Let β be a fuzzy B-ideal of X. Let $f: [0, \beta(0)] \rightarrow [0,1]$ be an increasing function. Define a fuzzy set $\beta^f: X \rightarrow [0,1]$ by $\beta^f = f(\beta(x)) \forall x \in X$. Then,

(i) β^{f} is a fuzzy B-ideal of X. (ii) If $f(\beta(0)) = 1$, then β^{f} is normal. (iii) If $f(s) \ge s \forall s \in [0, \alpha(0)]$, then $\beta \subset \beta^{f}$

Proof:

(i)
$$\beta^{f}(0) = f(\beta(0))$$

 $\geq f(\beta(x))$
 $= \beta^{f}(x)$
 $\Rightarrow \beta^{f}(0) \geq \beta^{f}(x)$

Also

$$\beta^{f}(y * z) = f(\beta(y * z))$$

$$\geq f(\beta(x * y) \land \beta(z * x))$$

$$= f(\beta(x * y)) \land f(\beta(z * x))$$

$$= \beta^{f}(x * y) \land \beta^{f}(z * x)$$

$$\Rightarrow \beta^{f}(x * y) \geq \beta^{f}(x * y) \land \beta^{f}(z * x)$$

 $\Rightarrow \beta^f$ is a fuzzy B-ideal.

(ii) If $f(\beta(0)) = 1$

$$\Rightarrow \beta^f(0) = 1$$

 $\Rightarrow \beta^f$ is normal

(iii) Let
$$f(s) \ge s \forall s \in [0, \beta(0)]$$

Then

$$\beta^{f}(x) = f(\beta(x))$$
$$\geq \beta(x), \ \forall x \in X$$

Hence

 $\beta \subset \beta^f$

Hence the proof.

3. NORMALIZATION OF FUZZY B - SUBALGEBRAS

Definition 3.1:

Let β be a fuzzy set in B - Algebra. Then β is called a fuzzy sub-algebra of X if $\beta(x * y) \ge \beta(x) \land \beta(y) \forall x, y \in X$.

Definition 3.2:

A fuzzy B-sub-algebra β of X is said to be normal if there exist $x \in X$ such that $\beta(x) = 1$.

Lemma 3.3:

A fuzzy B – sub-algebra β of X is normal if and if only $\beta(0) = 1$.

Theorem 3.4:

For any fuzzy subalgebra β of X, we can generate a normal fuzzy sub-algebra X which contains β .

Proof:

Let β be a fuzzy B-sub-algebra of X.

Define a fuzzy subset β^+ of X as $\beta^+(x) = \beta(x) + \beta^c(0) \forall x \in X$

Let $x, y \in X$

$$\beta^{+}(x * y) = \beta(x * y) + \beta^{c}(0)$$

$$\geq \{\beta(x) \land \beta(y)\} + \beta^{c}(0)$$

$$= \{\beta(x) + \beta^{c}(0)\} \land \{\beta(y) + \beta^{c}(0)\}$$

$$= \beta^{+}(x) \land \beta^{+}(y)$$

$$\Rightarrow \beta^{c}(x * y) \geq \beta^{+}(x) \land \beta^{+}(y)$$

Also

$$\beta^+(0) = \beta(0) + \beta^c(0)$$

= $\beta(0) + 1 - \beta(0)$
= 1

 $\therefore \beta^+$ is normal fuzzy B-algebra of X.

Clearly $\beta \subset \beta^+$

Thus β^+ is a normal fuzzy B-algebra of X which contains β .

Hence the proof.

Theorem 3.5:

Let β be fuzzy B – sub-algebra of X. If β contains a normal fuzzy B - sub algebra of X generated by any other fuzzy B – sub-algebra of X then β is normal.

Proof:

Let θ be a fuzzy B – sub-algebra of X. By theorem 3.4, θ^+ is a normal fuzzy B – sub algebra of X.

$$\therefore \theta^+(0) = 1$$

Let β be a fuzzy B-algebra of X such that $\theta^+ \subset \beta$

$$\Rightarrow \beta(x) \ge \theta^+(x) \ \forall \ x \in X$$

Put x = 0,

$$\Rightarrow \beta(0) \ge \theta^+(0) = 1$$
$$\Rightarrow \beta(0) \ge 1$$

Thus β is normal.

Hence the proof.

Theorem 3.6:

Let β and θ be normal fuzzy B- sub algebra of X. If $\beta \subset \theta$ then $X_{\beta} \subset X_{\theta}$.

Theorem 3.7:

Let β be a fuzzy B – sub algebra of X. Let $f: [0, \beta(0)] \rightarrow [0,1]$ be an increasing function. Define a fuzzy set $\beta^f: X \rightarrow [0,1]$ by $\beta^f = f(\beta(x)) \forall x \in X$.

Then,

(i) β^f is a fuzzy B – subalgebra of X.

(ii) If
$$f(\beta(0)) = 1$$
, then β^f is normal.

(iii) If
$$f(s) \ge s \ \forall s \in [0, \beta(0)]$$
, then $\beta \subset \beta^f$.

Proof:

(i)
$$\beta^{f}(x * y) = f(\beta(x * y))$$
$$\geq f\{\beta(x) \land \beta(y)\}$$
$$= f(\beta(x)) \land f(\beta(y))$$
$$= \beta^{f}(x) \land \beta^{f}(y)$$
$$\Rightarrow \beta^{f}(x * y) \geq \beta^{f}(x) \land \beta^{f}(y)$$

 $\Rightarrow \beta^f$ is a fuzzy B-ideal.

(ii) If
$$f(\beta(0)) = 1$$

 $\Rightarrow \beta^f(0) = 1$

 $\Rightarrow \beta^f$ is normal

(iii) Let $f(s) \ge s \forall s \in [0, \beta(0)]$

Then

$$\beta^{f}(x) = f(\beta(x))$$
$$\geq \beta(x) \forall x \in X$$

Hence $\beta \subseteq \beta^f$.

4. CONCLUSION

This paper defines Normalization of Fuzzy В ideals and Fuzzy В sub algebra of B - algebra. It adds an another dimension to the definition of B- algebras. This concept can further be generalized to n-fold fuzzy B-ideals and n-fold fuzzy B- sub algebras using fuzzy translations and fuzzy multiplications.

5. REFERENCES:

- [1] Biswas R, Fuzzy Subgroups and Anti Fuzzy Subgroups, Fuzzy Sets and Systems, 35, (1990), 121-124.
- [2] Jung R Cho and Kim H S, On B-algebras and quasi-groups, Quasi-groups and related systems 8 (2001), 1-6.
 [3] Park H K and Kim H S, On quadratic B-algebras, Quasi-groups and related systems 8 (2001), 67-72.
- [4] Priya T and Ramachandran T, Normalization of fuzzy PS-ideals and fuzzy BG-sub-algebras of PS- algebras, Research journal of Mathematics 4(2014), 1-12.
- [5] Sun Shin Ahn and Keumseong Bang, On Fuzzy Sub-algebras in B-algebras, Commun. Korean Math. Soc. 18 (2003),429-437.
- [6] Yamini C and Kailasavalli S, Fuzzy B-ideals on B-algebras, International Journal of Mathematical Archive 5(2014), 227-233.
- [7] Zadeh L A, Fuzzy Sets, Information Control, 8(1965),338-353.