# Order Statistics based on Exponential and Weibull Distributions 

Viswanathan. $\mathrm{N}^{\# 1}$, Ramakrishnan. $\mathrm{M}^{* 2}$<br>${ }^{\text {\#l }}$ Department of Statistics, Presidency College, Chennai, Tamil Nadu, India<br>$*^{2}$ Department of Mathematics, RKM Vivekananda College, Chennai, Tamil Nadu, India


#### Abstract

Order statistics are widely used in Statistical modeling and its Statistical inference, which describes the random variables that are arranged in order of magnitude, frequently with respect to time. Order statistics deals with the properties and applications of ordered random variables and their functions. This study particularly focuses on two different failure time structures with Exponential and Weibull distributions. In particular, the study uses one parameter Exponential and Three parameter Weibull distributions. Distributions of Ordered statistics based on samples from exponential distribution are derived. Also their Moments, Skewness and Kurtosis were considered. Data were simulated and using them the parameters and moments of the distributions are estimated. All the estimated parameters are found to be very close to the population parameter with which the simulation has been initiated. The parameters are estimated with better accuracy. On the whole the study uses effectively the concept of Order Statistics in the domain of Reliability with focus on estimation and testing of its crucial parameters.


Key words: Order Statistics, Moments, Simulation, Parameter Estimation.

## I. Introduction

Order statistics and its functions on statistics play an important role in numerous practical applications. The important applications of order statistics is on many diverse areas, it includes, life testing and reliability, statistical quality control, filtering theory, radar target detection, signal processing, robustness studies, and image processing. The development on order statistics fall on two main categories, they are Statistical estimation, and the testing of statistical hypotheses. Order statistics deals with the properties and applications of ordered random variables and their functions. The study of applications of order statistics on survival analysis provides the way on future possibilities in the recurrence of extreme situations.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be $n$ random variables. Define $X_{1: n}$ as $\min \left(X_{1}, X_{2}, \ldots, X_{n}\right), X_{2: n}$ the second smallest of $\left(X_{1}, X_{2}, \ldots, X_{n}\right), \quad X_{i: n}$ the $i^{\text {th }}$ smallest of $\left(X_{1}, X_{2}, \ldots, X_{n}\right), X_{n: n}$ the $n^{\text {th }}$ smallest (the largest) of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ or the $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Then we have $X_{1}: n \leq X_{2: n} \leq \cdots \leq X_{n: n}$ and these ordered
random variables i.e. $X_{1: n}, X_{2: n}, \ldots, X_{n: n}$ are known as the order statistics of the given set of random variables. In particular $\mathrm{X}_{\mathrm{i}: \mathrm{n}}$ is called the $\mathrm{i}^{\text {th }}$ order statistic.

The effects of ordering can be impressive in terms of both the value and the relative relation, and it explains the aspects of sample behavior which are employed in the effectiveness and efficiency of the resulting inferences.

The minimum and maximum are examples of extreme order statistics and they are defined by the following notation.

$$
\begin{aligned}
& \operatorname{Min}\left\{X_{n}\right\}=X_{1: n} \\
& \operatorname{Max}\left\{X_{n}\right\}=X_{n: n}
\end{aligned}
$$

In random sampling theory, the unordered X , are assumed to be statistically independent and identically distributed, because, the inequality relations among the order statistics. $\mathrm{X}_{\mathrm{i}: \mathrm{n}}$ are necessarily dependent. There is a difference between the random variables $\mathrm{X}_{\mathrm{i}: \mathrm{n}}$ and the corresponding sample observations $\mathrm{X}_{\mathrm{i}}$.

## II. Materials and Methods:

Distributions of Order Statistics
The distribution function of order statistics for maximum $X_{n, n}$ is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{n} ; \mathrm{n}}(\mathrm{x})=\mathrm{F}^{\mathrm{n}}(\mathrm{x}) \\
& \mathrm{F}_{1: \mathrm{n}}=1-\{1-\mathrm{F}(\mathrm{x})\}^{\mathrm{n}}
\end{aligned}
$$

Now the distribution function of $\mathrm{X}_{\mathrm{r}: n}$; the $r^{\text {th }}$ order statistics; is denoted as $F_{r: n}(x)$ and is given as

$$
\begin{aligned}
\mathrm{F}_{\mathrm{r}: \mathrm{n}}(\mathrm{x}) & =\mathrm{P}\left\{\mathrm{X}_{\mathrm{r}: \mathrm{n}} \leq \mathrm{x}\right\} \\
& =\mathrm{P}\left\{\text { atleast } \mathrm{r} \text { of } \mathrm{X}_{\mathrm{i}} \text { are less than or equal to } \mathrm{x}\right\}
\end{aligned}
$$

$$
=\frac{1}{B(r, n-r+1)} \int_{0}^{F(z)} t^{r-1}(1-t)^{n-r} d t
$$

$$
=I_{F(x)}(r, n-r+1)
$$

Moments
The moment of the $r^{\text {th }}$ order statistics is $\mu_{\mathrm{r}: \mathrm{n}}$.knowledge of the means, variances, and co variances of the order statistics are used to find the expected values and variances of the linear function, which are readily used to compute the estimators.
$\mu_{\mathrm{r}: \mathrm{n}}=\mathrm{E}\left(\mathrm{X}_{\mathrm{r}: \mathrm{n}}\right)=\mathrm{C}_{\mathrm{r}, \mathrm{n}} \int_{-\infty}^{\infty} x F^{r-1}(x)[1-F(x)]^{n-r} f(x) . d x$ Theorem: Suppose $\mathrm{Y}=\frac{(x-\eta)}{\theta} \sim \operatorname{Exp}(1,0)$, and
where,

$$
\mathrm{C}_{\mathrm{r}, \mathrm{n}}=\frac{n!}{(n-r)!(r-1)!}
$$

and $\mu_{\mathrm{r}: \mathrm{n}}$ holds for any $\operatorname{cdf} F(x)$

Order Statistics for Exponential Distribution
The exponential family of distributions is very rich class of distributions with extensive domain of applicability. The univariate exponential distribution is the most commonly used distribution in modeling reliability and life testing analysis. The exponential distribution is used to model the failure times of manufactured items in production.
If $X$ has cumulative distribution function $F(x)=$ $1-e^{-\lambda x}, x>0, \lambda>0$
then $1-F_{1: n}(x)=P\left(\mathrm{X}_{1: n} \geq x\right)=e^{-n \lambda x}$ and
$\mathrm{F}_{\mathrm{n}: \mathrm{n}}(x)=P\left(\mathrm{X}_{\mathrm{n}: n} \leq x\right)=\left(1-e^{-\lambda x}\right)^{\mathrm{n}}$
The probability density function of two parameter exponential distribution is given by
$f(x ; \theta ; \eta)= \begin{cases}\frac{1}{\theta} e^{-\frac{(x-\eta)}{\theta}} & ; x>\eta, 0<\theta<\infty, 0<\eta<\infty \\ 0 & ; \text { otherwise }\end{cases}$
i.e. $\quad X \sim \operatorname{Exp}(\theta, \eta)$
$\theta$ is scale parameter

## $\eta$ is location parameter

Density of the $\mathrm{r}^{\text {th }}$ order statistics
Let $x_{1: n}, x_{2: n}, \ldots, \mathrm{x}_{\mathrm{n}: n}$ be the order statistics of a random sample of size $n$ from the exponential distribution with the following pdf,
$f(x)=\mathrm{e}^{-x}, x>0$, the cumulative distributive function of $X$ is $F(x)=1-e^{-x}$, then the probability density function of $x_{r: n}$. is
consider the differences of the consecutive order statistics
$\mathbf{W}_{1}=\mathbf{Y}_{1 \mathrm{n} \mathrm{n}}, \mathbf{W}_{2}=Y_{2 \cdot \mathrm{n}}-\mathbf{Y}_{1: \mathrm{n}}, \ldots, W_{n}=Y_{n: n}-Y_{n-1: n}$ then,
i. $W_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}, \ldots, W_{n}$ are mutually independent.
ii. $W_{i} \sim \operatorname{Exp}\left(\frac{1}{n-i+1}\right)$
iii. $\quad Y_{k: n}=\sum_{j=1}^{k} \frac{Z_{j}}{(n-j+1)}$, where $Z_{j} \sim \operatorname{Exp}(1,0)$ and the $Z_{j}$ are mutually independent.
iv. $E\left(Y_{k: n}\right)=\sum_{j=1}^{k}(n-j+1)^{-1}$ and $\operatorname{Var}\left(Y_{k: n}\right)=\sum_{j=1}^{k}(n-j+1)^{-2}$

Central Moments of order Statistics
For exponential order Statistics

$$
\begin{aligned}
& Y_{1: n}, \mathrm{Y}_{2: n}, \ldots, \mathrm{Y}_{n: n}, \\
& \left(Y_{1: n}, \mathrm{Y}_{2: n}, \ldots, \mathrm{Y}_{n: n}\right) \stackrel{d}{\approx}\left(\frac{z_{1}}{n}, \frac{z_{1}}{n}+\frac{z_{2}}{n-1}, \ldots, \frac{z_{1}}{n}+\frac{z_{2}}{n-1}+\ldots+\frac{z_{n-1}}{2}+z_{n}\right)
\end{aligned}
$$

For Third central moment of kth order statistics

$$
E\left[Y_{k: n}-E\left(Y_{k: n}\right)\right]^{3}=\sum_{r=1}^{k} \frac{1}{(n-r+1)^{3}} E(z-1)^{3}
$$

$$
f_{r: n}=\frac{n!}{(r-1)!(n-r)!}\left(1-e^{-x}\right)^{r-1} e^{-(\text {similart } p) x} \underset{E\left[Y_{k: n}-E\left(Y_{k: n}\right)\right]^{4}=\sum_{r=1}^{k} \frac{1}{(n-r+1)^{4}} E(z-1)^{4}}{ }
$$

When $\mathrm{r}=1$, The minimum order density on exponential distribution is

$$
f_{1: n}(x)=n e^{-n x}, x>0
$$

When $r=n$,

$$
f_{n: n}(x)=n\left(1-e^{-x}\right)^{n-1} \cdot e^{-x}, x>0
$$

The Probability density function of first order statistics is also exponential distribution with parameters $\frac{\theta}{n}$ and $\eta$

## Generally,

$$
\begin{aligned}
& E\left(z^{r}\right)=\Gamma(r+1) \\
& E(z-1)^{3}=\Gamma(4)-3 \Gamma(3)+3 \Gamma(2)-1 \\
&=2 \\
& E\left[Y_{k: n}-E\left(Y_{k: n}\right)\right]^{3}=2 \sum_{r=1}^{k} \frac{1}{(n-r+1)^{3}}
\end{aligned}
$$

where $z$ has the $s \tan$ dard $e(1)$ exp onential distribution

$$
\begin{aligned}
E(z-1)^{4} \quad & =E\left(z^{4}\right)-4 E\left(z^{3}\right)+6 E\left(z^{2}\right)-4 E(z)+1 \\
& =\Gamma(5)-4 \Gamma(4)+6 \Gamma(3)-4 \Gamma(2)+1 \\
& =9 \\
\therefore \quad \mu_{4} \quad & =9 \sum_{r=1}^{k} \frac{1}{(n-r+1)^{4}} \\
\beta_{1} \quad & =\frac{\mu_{3}^{2}}{\mu_{2}} \\
\beta_{2} \quad & =\frac{\mu_{4}}{\mu_{2}}
\end{aligned}
$$

Corollary:

$$
\begin{aligned}
& \text { If } X_{j: n} \sim \exp (\theta) \text { then, } \\
& \text { i) } E\left(X_{r: n}\right)=\theta \sum_{j=1}^{r} \frac{1}{(n-j+1)} \\
& \text { ii) } V\left(X_{r: n}\right)=\theta^{2} \sum_{j=1}^{r} \frac{1}{(n-j+1)^{2}}
\end{aligned}
$$

## ORDER STATISTICS FOR WEIBULL

 DISTRIBUTIONThree parameter Density of Weibull Distribution A random variable X has a threeparameter WEIBULL distribution with parameters a , b and c if its probability density functions is given by
$f_{X}(x \mid a, b, c)=\frac{c}{b}\left(\frac{x-a}{b}\right)^{c-1} \exp \left\{-\left(\frac{x-a}{b}\right)^{c}\right\}, x \geq a$
i.e.

$$
\mathrm{X} \sim \mathrm{We}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

$a \rightarrow$ location parameter or failure free time
$b \rightarrow$ scale parameter
$c \rightarrow$ shape parameter (Rinne, 2009)
The CDF of a WEIBULL random variable can be transformed to a straight line.

The density of the reduced Weibull distribution is

$$
\begin{gathered}
\mathrm{f}_{\mathrm{U}}(\mathrm{u} \mid \mathrm{c})=\mathrm{c}^{\mathrm{c}-1} \exp \left(-\mathrm{u}^{\mathrm{c}}\right) ; \mathrm{c}>0, \mathrm{u} \geq 0 \\
\text { where } u=\frac{x-a}{b}
\end{gathered}
$$

General formulae
Moments and cumulants are the expected values of certain functions of random variables. It describes numerically, with respect to given characteristics such as location, variation, skewness and kurtosis.

The moments about zero plays a key role to find all other of moments, For the random variable $\quad X=a+b U$, the moments of the reduced Weibull random variable can be obtained from the transformed U - moments. The expected value of $X_{r}$ is termed the $\mathrm{r}^{\text {th }}$ moment about zero of the random variable X :

$$
\mu_{r}(X)=E\left(X^{r}\right)
$$

Where.ris any real number, but for the most part r is taken as a non-negative integer. With regard to the reduced Weibull variable we get

$$
\mu_{r}^{\prime}(U)=E\left(U^{r}\right)=\int_{0}^{\infty} u^{r} f_{U}(u \mid c) d u
$$

## Order Statistics for Weibull Distribution

Let $\mathrm{X}_{\mathrm{i}} \sim \mathrm{We}(\mathrm{a}, \mathrm{b}, \mathrm{c}) ; \mathrm{i}=1,2,3 \ldots, \mathrm{n}$; with pdf and cdf

$$
\begin{aligned}
& f(x)=\frac{c}{b}\left[\frac{(x-a)}{b}\right]^{c-1} \exp \left\{-\left(\frac{x-a}{b}\right)^{c}\right\}, \\
& F(x)=1-\exp \left\{-\left(\frac{x-a}{b}\right)^{c}\right\}
\end{aligned}
$$

First order density on Weibull
The random variable $\mathrm{X}_{1: \mathrm{n}}$ is minimum and the density function of the minimum order statistics on Weibull is

$$
\begin{aligned}
f_{1: n}(x) & =n \cdot f(x)[1-F(x)]^{n-1} \\
& =\frac{n c}{b}\left(\frac{(x-a)}{b}\right)^{c-1} \exp \left\{-n\left(\frac{(x-a)}{b}\right)^{c}\right\} \\
& =\frac{c}{b^{*}}\left(\frac{(x-a)}{b}\right)^{c-1} \exp \left\{\left(\frac{(x-a)}{b^{*}}\right)^{c}\right\}
\end{aligned}
$$

Density function of $\mathrm{r}^{\text {th }}$ Order Statistics
The density function of the $\mathrm{r}^{\text {th }}$ order statistics $1 \leq \mathrm{r}$ $\leq n$, of a Weibull variate, $\mathrm{U} \sim \mathrm{We}(0,1, \mathrm{c})$ with the distribution function
$\mathrm{X} \sim \mathrm{We}(\mathrm{a}, \mathrm{b}, \mathrm{c})$, by using the linear transformation
$X_{r: n}=a+b U_{r: n}$,
The DF of $\mathrm{U}_{\mathrm{r}: \mathrm{n}}, 1 \leq \mathrm{r} \leq \mathrm{n}$, is
$\mathrm{f}_{\mathrm{r}: \mathrm{n}}(\mathrm{u})=\mathrm{r}\binom{n}{r} \mathrm{c} \mathrm{u}^{\mathrm{c}-1} \exp \left\{-\mathrm{u}^{(\mathrm{n}-\mathrm{r}+1) \mathrm{c}}\right\}\left[1-\exp \left(-\mathrm{u}^{\mathrm{c}}\right)\right]^{\mathrm{r}-1}$
Where,

$$
\mathrm{f}(\mathrm{u})=\mathrm{cu}^{\mathrm{c}-1} \exp \left\{-u^{c}\right\}
$$

and CDF
$\mathrm{F}(\mathrm{u})=1-\exp \left\{-u^{c}\right\}$,
where,
$u=\frac{(x-a)}{b}$

$$
\begin{gathered}
E\left(U_{r: n}^{k}\right)=r\binom{n}{r} \int_{0}^{\infty} u^{k} c u^{c-1} \exp \left\{-u^{(n-r+1) c}\right\}\left[1-\exp \left(-u^{c}\right)\right]^{r-1} d u \\
=r\binom{n}{r} \sum_{i=0}^{r-1}(-1)^{i}\binom{r-1}{i} \int_{0}^{\infty} u^{k} c u^{c-1} \exp \left\{-(n-r+i+1) u^{c}\right\} d u \\
=r\binom{n}{r} \Gamma\left(1+\frac{k}{c}\right) \sum_{i=0}^{r-1} \frac{(-1)^{i}\binom{r-1}{i}}{(n-r+i+1)^{1+\frac{k}{c}}} \\
\therefore X_{1: n} \sim W e\left(a, b^{*}, c\right)
\end{gathered}
$$

When $\mathrm{X} \sim \mathrm{We}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ then $X_{1: n} \sim W e\left(a, b^{*}, c\right)$

## III. Results and Discussion:

Application of exponential order statistics for simulated data
Data have been simulated from exponential distribution with parameters $\lambda=1$ and 11 and from Three parameter Weibull distribution with parameters 15,30 and 2.5. From each distribution a sample of size 10 to 50 with constant difference 10 is taken and simulated. Using the generated data the mean, variance, the first four moments and the corresponding skewness and Kurtosis are also estimated to study the nature of the distribution. Theoretical mean and variance are also estimated
where $b^{*}=b n^{-\frac{1}{c}}$
Table I: Theoretical and sample moments of exponential distribution with parameter $\lambda=1$ for order samples of size 10 to 50

|  | $\mathrm{X}_{\mathrm{k}: \mathrm{n}}$ | Theoretical .mean | Sample .mean |  |  | Theoretical variance | Sample .variance |  |  | m3 | m4 | b1 | b2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | k |  | $\mathrm{s}=10$ | $\mathrm{s}=50$ | $\mathrm{s}=100$ |  | $\mathrm{s}=10$ | $\mathrm{s}=50$ | $\mathrm{s}=100$ |  |  |  |  |
| 10 | 1 | 0.1000 | 0.1286 | 0.0899 | 0.0980 | 0.0100 | 0.0135 | 0.0109 | 0.0074 | 0.0020 | 0.0009 | 4.0000 | 9.0000 |
|  | 5 | 0.6456 | 0.8275 | 0.5399 | 0.6516 | 0.0862 | 0.1247 | 0.0666 | 0.0696 | 0.0237 | 0.0152 | 0.8812 | 2.0426 |
|  | 10 | 2.9290 | 3.7416 | 2.8489 | 2.9408 | 1.5498 | 4.9384 | 1.5166 | 1.2864 | 2.3951 | 9.7383 | 1.5411 | 4.0546 |
| 20 | 1 | 0.0500 | 0.0227 | 0.0552 | 0.0637 | 0.0025 | 0.0007 | 0.0025 | 0.0046 | 0.0003 | 0.0001 | 4.0000 | 9.0000 |
|  | 10 | 0.6688 | 0.7322 | 0.6540 | 0.6483 | 0.0464 | 0.0673 | 0.0470 | 0.0452 | 0.0067 | 0.0022 | 0.4457 | 1.0369 |
|  | 20 | 3.5977 | 3.6785 | 3.6873 | 3.5236 | 1.5962 | 1.1531 | 2.4314 | 1.4093 | 2.4017 | 9.7406 | 1.4185 | 3.8232 |
| 30 | 1 | 0.0333 | 0.0263 | 0.0314 | 0.0302 | 0.0011 | 0.0003 | 0.0009 | 0.0013 | 0.0001 | 0.0000 | 4.0000 | 9.0000 |
|  | 15 | 0.6768 | 0.6995 | 0.7000 | 0.6829 | 0.0317 | 0.0168 | 0.0382 | 0.0402 | 0.0031 | 0.0007 | 0.2982 | 0.6944 |
|  | 30 | 3.9950 | 4.1283 | 4.0935 | 4.1539 | 1.6122 | 1.3931 | 1.2451 | 1.6530 | 2.4030 | 9.7408 | 1.3782 | 3.7479 |
| 40 | 1 | 0.0250 | 0.0317 | 0.0286 | 0.0282 | 0.0006 | 0.0016 | 0.0007 | 0.0008 | 0.0000 | 0.0000 | 4.0000 | 9.0000 |
|  | 20 | 0.6808 | 0.6097 | 0.6887 | 0.6845 | 0.0241 | 0.0175 | 0.0206 | 0.0252 | 0.0018 | 0.0003 | 0.2240 | 0.5219 |
|  | 40 | 4.2785 | 4.1284 | 4.3502 | 4.4903 | 1.6202 | 1.5437 | 1.3831 | 1.7848 | 2.4035 | 9.7409 | 1.3582 | 3.7105 |
| 50 | 1 | 0.0200 | 0.0244 | 0.0186 | 0.0174 | 0.0004 | 0.0008 | 0.0002 | 0.0003 | 0.0000 | 0.0000 | 4.0000 | 9.0000 |
|  | 25 | 0.6832 | 0.6721 | 0.7185 | 0.7038 | 0.0194 | 0.0222 | 0.0202 | 0.0206 | 0.0011 | 0.0002 | 0.1794 | 0.4181 |
|  | 50 | 4.4992 | 4.4689 | 4.5252 | 4.3036 | 1.6251 | 0.9117 | 1.9305 | 1.1616 | 2.4037 | 9.7409 | 1.3462 | 3.6883 |



Fig. 1 Comparison of Theoretical and sample mean and variance for different iterations using exponential distribution with $\quad \lambda=1, \mathrm{n}=50$


Fig. 2 Comparison of Theoretical and sample mean and variance for different iterations using exponential distribution with $\quad \lambda=11, \mathrm{n}=50$

Table II: Theoretical and sample moments of exponential distribution with parameter $\lambda=11$ for order samples of size 10 to 5


The convergence of estimated moments and that of the theoretical moments greatly depend on the number of iterations. As this number increases indefinitely the difference between the actual and estimates of the parameters (moments, skewness and kurtosis) narrow down and it vanishes after a considerable number of iterations. This number of iterations is dependent on the number of samples, from which the order statistics are estimated. As the sample size increases the
stability in the probability distribution also increases, with increased number of iterations. i.e. for a sample of size $n_{1}$ the number of iterations required namely, $s$ is a function of $n$, in order to achieve sufficient closeness between the actual and estimated values. i.e., $\mathrm{s}=\mathrm{f}(\mathrm{n})$. Going by the graphical output of the estimated values, it is seen that this function is monotonic increasing.

Table III: Theoretical parameter of Weibull distribution with parameters $a=15, b=30$ and $c=2.5$ for order samples of sizes $10.20,30,40$ and 50

|  |  | Theoretical .mean | Sample .mean |  |  | Theoretical .variance | Sample variance |  |  | m3 | m4 | b1 | b2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n |  |  | $\mathrm{s}=10$ | $\mathrm{s}=50$ | $\mathrm{s}=100$ |  | $\mathrm{s}=10$ | $\mathrm{s}=50$ | $\mathrm{s}=100$ |  |  |  |  |
| 10 | $\mathrm{x}_{1: 10}$ | 25.596 | 25.837442 | 25.868875 | 25.139533 | 20.564784 | 21.921067 | 21.044477 | 16.109595 | 33.11846 | 1216.09 | 0.12612 | 2.87553 |
|  | $\mathrm{x}_{5: 10}$ | 39.567 | 40.451782 | 39.328521 | 39.590028 | 20.522511 | 8.052504 | 18.998655 | 21.262834 | 14.26493 | 1069.085 | 0.02354 | 2.53835 |
|  | $\mathrm{x}_{10: 10}$ | 60.186 | 60.076414 | 60.828304 | 60.96414 | 56.035404 | 60.666947 | 71.11183 | 60.340262 | 179.3258 | 9939.449 | 0.18277 | 3.16546 |
| 20 | $\mathrm{X}_{1: 20}$ | 23.031 | 22.76057 | 22.159379 | 22.726682 | 11.823039 | 6.154272 | 15.525073 | 8.84258 | 15.27243 | 332.23 | 0.14113 | 2.37673 |
|  | $\mathrm{X}_{10: 20}$ | 40.224 | 38.499665 | 40.238202 | 40.194758 | 10.759824 | 12.728628 | 11.792716 | 9.979965 | 1.208159 | 379.1757 | 0.00117 | 3.27514 |
|  | $\mathrm{X}_{20: 20}$ | 64.38 | 62.362653 | 63.54724 | 64.798312 | 45.1656 | 65.960874 | 30.176174 | 59.816946 | 139.2463 | 7829.013 | 0.21045 | 3.83788 |
| 30 | $\mathrm{X}_{1: 30}$ | 21.828 | 22.949529 | 21.246454 | 21.379601 | 8.548416 | 8.764717 | 7.591909 | 7.665981 | 8.762071 | 217.8741 | 0.1229 | 2.9815 |
|  | $\mathrm{X}_{15: 30}$ | 40.449 | 41.217566 | 40.103374 | 40.435942 | 7.278399 | 7.147552 | 9.775903 | 6.653037 | 1.930478 | -2.31178 | 0.00967 | -0.0436 |
|  | $\mathrm{x}_{30: 30}$ | 66.624 | 61.905227 | 65.192632 | 65.390143 | 40.002624 | 27.779069 | 37.546575 | 41.470551 | 148.3241 | 4835.519 | 0.34368 | 3.0218 |


| 40 | $\mathrm{X}_{1: 40}$ | 21.087 | 21.756693 | 21.520428 | 21.796698 | 6.778431 | 9.351857 | 4.910249 | 8.31396 | 7.086171 | 106.73812 | 0.161226 | 2.323064 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X 20:40 | 45.777 | 40.23948 | 40.12369 | 40.297232 | -217.323729 | 4.804921 | 6.809261 | 4.479061 | 8822.1125 | -300979.3 | -7.5827 | -6.37268 |
|  | $\mathrm{X}_{40} \mathbf{4 0}$ | 68.133 | 69.73842 | 69.098811 | 67.973435 | 37.084311 | 42.300614 | 31.266623 | 36.319881 | 140.09201 | 3848.9708 | 0.384819 | 2.798751 |
| 50 | $\mathrm{X}_{1: 50}$ | 20.568 | 21.029398 | 20.499706 | 20.479494 | 5.627376 | 4.398537 | 4.773967 | 6.205172 | 6.0777009 | 43.694218 | 0.207282 | 1.379787 |
|  | $\mathrm{X}_{25: 50}$ | -84958.07 | 39.747296 | 41.216237 | 40.495275 | -7220166157 | 4.535407 | 3.828967 | 3.878593 | $-1.23 \mathrm{E}+15$ | $-1.56 \mathrm{E}+20$ | -4 | -3 |
|  | X ${ }_{50: 50}$ | 69.69 | 67.758563 | 68.980392 | 70.120236 | -10.1061 | 21.046002 | 45.600466 | 34.295147 | 3714.7311 | -256415.4 | -13369.2 | -2510.6 |




Fig. 3 Comparison of Theoretical and sample mean and variance for different iterations for Weibull three parameter distributions with parameters (15,30, and 2.5) for different iterations for 10 and 50 samples increased number of parameters (THREE) compared to that of the exponential distributions (ONE Parameter).

We observe that the estimates of skewness and kurtosis remains unchanged in case of first order statistics, for varying sample size, simulation size and the order of the statistics. This is because the first order statistics behaves more like a simple individual sample from the parent population. The Higher order statistics were decided by complex combinatoric laws and thereby have variant estimates across different sample size, simulation size and the order of the statistics. These observations, the author has tested using continuous changes in the simulation size, but the results for selected values such as $s=10,50$ and 100 were presented in the table.

## REFERENCES

[1] W. Weibull, "A statistical distribution functions with wide applicability", J. Appl. Mech. vol. 18, pp. 292-297, 1951.
[2] J. F. Lawless, Statistical Models and Methods for Lifetime Data. Wiley, New York, 1982.
[3] H. Rinne, The Weibull Distribution The Hand book. Chapman \& Hall. New York, 2009.
[4] R. Jiang and D.N.P. Murthy, "Comment on a general linear-regression analysis applied to the three-parameter Weibull distribution", IEEE Transactions on Reliability, vol. 46, pp. 389-393, 1997.
[5] V. Bartkute and L. Sakalauskas., "The method of threeparameter Weibull distribution estimation", Acta ET Commentationes Universitatis Tartuensis De Mathematica, vol. 12, pp. 65-78, 2008.
[6] L.J. Bain and M.E. Engelhardt, M. Statistical Analysis of Reliability and Life Testing Models, $2^{\text {nd }}$ Edition Marcel Dekker,INC . New York, 1991.
[7] L.J. Bain and C.E. Antle. "Estimation of parameters in the Weibull distribution". Technometrics, vol. 9, 621-627, 1967.
[8] D.J. Davis." An analysis of some failure data". Journal of American Statistical. Association.vol. 47, pp. 113-150, 1952.
[9] Barry C. Arnold, N. Balakrishnan and H.N. Nagaraja, A First Course in Order Statistics, Wiley \& Sons, Inc., 1992.
[10] H.A. David and H.N. Nagaraja, Order Statistics third edition,John Wiley \& Sons, Inc., 2003.
[11] J. Lieblein, "On moments of order statistics from the Weibull distribution",Ann. Math. Statist. vol. 26, pp. 330-333. 1955.

