International Journal of Mathematics Trends and Technology (IJMTT) — Volume 53 Number 4 January 2018

Order Statistics based on Exponential and
Weibull Distributions

Viswanathan. N, Ramakrishnan. M
“Department of Statistics, Presidency College, Chennai, Tamil Nadu, India
*2Department of Mathematics, RKM Vivekananda College, Chennai, Tamil Nadu, India

Abstract: Order statistics are widely used in
Statistical modeling and its Statistical inference,
which describes the random variables that are
arranged in order of magnitude, frequently with
respect to time. Order statistics deals with the
properties and applications of ordered random
variables and their functions. This study
particularly focuses on two different failure time
structures  with  Exponential and  Weibull
distributions. In particular, the study uses one
parameter Exponential and Three parameter
Weibull distributions. Distributions of Ordered
statistics based on samples from exponential
distribution are derived. Also their Moments,
Skewness and Kurtosis were considered. Data were
simulated and using them the parameters and
moments of the distributions are estimated. All the
estimated parameters are found to be very close to
the population parameter with which the
simulation has been initiated. The parameters are
estimated with better accuracy. On the whole the
study uses effectively the concept of Order
Statistics in the domain of Reliability with focus on
estimation and testing of its crucial parameters.

Key words: Order Statistics, Moments, Simulation,
Parameter Estimation.

I. Introduction

Order statistics and its functions on
statistics play an important role in numerous
practical applications. The important applications
of order statistics is on many diverse areas, it
includes, life testing and reliability, statistical
quality control, filtering theory, radar target
detection, signal processing, robustness studies,
and image processing. The development on order
statistics fall on two main categories, they are
Statistical estimation, and the testing of statistical
hypotheses. Order statistics deals with the
properties and applications of ordered random
variables and their functions. The study of
applications of order statistics on survival analysis
provides the way on future possibilities in the
recurrence of extreme situations.

Let Xi,X5,...,.X, be n random variables.
Define Xy, as min(Xy,Xy,...,X,), Xanthe second
smallest of (X1,Xs,...,Xy), X;. the i™" smallest of
(X1, X5,..,Xp), X the n" smallest (the largest) of
(X1, Xs,..,X,) or the max(Xy,Xs,...,X,). Then we
have X;n < X,, < -+ < X, and these ordered

random variables i.e. X0, Xon,...,Xn:n @re known as
the order statistics of the given set of random
variables. In particular X ;,, is called the i"" order
statistic.

The effects of ordering can be impressive
in terms of both the value and the relative relation,
and it explains the aspects of sample behavior
which are employed in the effectiveness and
efficiency of the resulting inferences.

The minimum and maximum are
examples of extreme order statistics and they are
defined by the following notation.

Min {X n} = Xy
Max {X n} =X nn

In random sampling theory, the
unordered X, are assumed to be statistically
independent and identically distributed, because,
the inequality relations among the order statistics.
Xi:n are necessarily dependent. There is a difference
between the random variables X, and the
corresponding sample observations X,

I1. Materials and Methods:
Distributions of Order Statistics
The distribution function of order statistics

for maximum X, is

Fan(X) = F'(x)

|:l:n =1- {1'F(X)}n
Now the distribution function of X ... the r " order
statistics; is denoted as F, .,(X)and is given as

F..(X)=P{X,,, < x}

= P{atleast r of X, are less than or equal to x}

1 F(2)
= _[ t@-t)" " dt
B(r,n—-r+1) 4

=lgo(rn=r+1)

Moments
The moment of the r'™ order statistics is

M., knowledge of the means, variances, and co

variances of the order statistics are used to find the
expected values and variances of the linear
function, which are readily used to compute the
estimators.
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Hen = E(Xr:n):Cr,n J:w xF r_1()()[1_ FOOI™ f(x).dx Theorem: Suppose Y = (X ;77) ~Exp (I, 0), and

where,
|
- "
T (n=r)(r=1!
and ., holds for any cdf F(x)

Order Statistics for Exponential Distribution

The exponential family of distributions is
very rich class of distributions with extensive
domain of applicability. The univariate exponential
distribution is the most commonly used distribution
in modeling reliability and life testing analysis. The
exponential distribution is used to model the failure
times of manufactured items in production.
If X has cumulative distribution function F (x) =
l-e ™, x>0,A>0
then 1 — Fy.n(X) = P(X10> x) = € ™ and
Fan(X) = P(Xpn<X) = (l_eim)n
The probability density function of two parameter
exponential distribution is given by

consider the differences of the consecutive order
statistics

Wl = Y1:n ’WZ :Yz:n _Yl Wn :Yn:n _Yn—l:n then’
i. W, W,,W,,...W, are mutually independent.

ii. Wi~Exp( 1 )
n-i+1

i, Y=Y ‘

N1t

P (n-j+1)
independent.
k k
iv. E(Y,,)=> (n-j+1)" and Var(Y,,) = (n- j+1)°
[El =

Central Moments of order Statistics
For exponential order Statistics

Y Yoo Y

nn?

(YJ_'n’ Y2:n ..... Yn:n)i [i 4 I 2. 4 | ‘2 F..t ‘n-1 } Zn]

n'n n1""n n-1 2

For Third central moment of kth order statistics

1 -

—e ¢ X>n,0<@0<0,0<n<o0
f(x;0,m)=106 g g

0 : otherwise

ie. X ~ Exp(6,n)
0 is scale parameter
n is location parameter

Density of the r'" order statistics

Let X1.n, Xons « « « s Xnn D€ the order statistics
of a random sample of size n from the exponential
distribution with the following pdf,

f (x) = e* x >0, the cumulative
distributive function of X is F(x) =1-e¢™ then the
probability density function of X .. is

fr. (L

" -1 (n-1)!

When r=1, The minimum order density on
exponential distribution is

f.(x) =ne™ ,x >0
Whenr =n,

f rn(X) = n(1-e™)" e, x>0.
The Probability density function of first order
statistics is also exponential distribution with

%
parameters — and 7
n

n! x\r-1 —
—-e ) e

E[Yk:n _E(Yk:n)]3 :Z ! E(Z_1)3

r=1 (n —-r +l)3

where z has the stan dard e(1) exponential distribution

Generally,
E(z')=T(r+1)
E(z-1)°=T(4)-3r(3)+3r(2)-1

=2
E[Y,, — E(Y, )]3—2zk“;
k:n k:n - — (n_r+1)3
i
(fl f""M)x’ -0 4
E[Yk:n - E(Yk:n)] :;mE(Z _1)

E(z-1)* =E(z*)-4E(z°)+6E(z*)-4E(2)+1
=T'(5) -4I'(4) +6I'(3) —4I'(2) +1
=9

k 1
Ha :gé(n—rﬂ)“
;81 :#_2
Ha
;Bz =4
Ha
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,where Z; ~ Exp(L,0) and the Z; are mutually



f, (xla,b,c)=§(%a)c_ exp{—(%ajc},xza

ie.
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Corollary:
If X, ~exp(0) then,

. . 1
i) E(X.) 9;01_”1)
. i 1
”) V(Xr:n) 9 ;(n—j+l)2
ORDER STATISTICS FOR WEIBULL
DISTRIBUTION
Three parameter Density of Weibull Distribution

A random variable X has a three-
parameter WEIBULL distribution with parameters
a, b and c if its probability density functions is
given by

X~ We(a,b,c)
a — location parameter or failure free time
b — scale parameter
¢ — shape parameter (Rinne, 2009)

The CDF of a WEIBULL random variable can be
transformed to a straight line.
The density of the reduced Weibull
distribution is
foulc)=cu“t exp(-u®);c>0,u >0

x—a

where u = -

General formulae

Moments and cumulants are the expected
values of certain functions of random variables. It
describes numerically, with respect to given
characteristics such as location, variation, skewness
and kurtosis.

The moments about zero plays a key role
to find all other of moments, For the random
variable X = a+b U, the moments of the
reduced Weibull random variable can be obtained
from the transformed U- moments. The
expected value of X, is termed the ™ moment about
zero of the random variable X:

1 (X)=E(X")
Where.ris any real number, but for the most part r

is taken as a non—-negative integer. With regard to
the reduced Weibull variable we get

1L (U)=EU") = ["uf, (u] c)du

Order Statistics for Weibull Distribution
Let X; ~We (a, b, ¢);i=1,2,3...,n; with pdf and
cdf

f(x)=%{¥}_ exp —(%) ,

X—a

F(x)=1-exp _(ch

First order density on Weibull

The random variable X,., is minimum and the
density function of the minimum order statistics on
Weibull is

f.(X)=nf(X)[1-F "

zm(_w—a)]”exp _n(_“—a)j
b b b
= i((x—a)j” exp ((x—a) ]C

b*_ b b*

Density function of r' Order Statistics

The density function of the r ™ order statistics 1 <r
<n, of a Weibull variate, U~ We(0,1,c) with the
distribution function

X ~We (a, b, c) ,by using the linear transformation
Xr:n =at bUr:n !
The DFof Uy, 1< r < n,is

fr:n (u) = r(:jc uc-l exp{- u(ﬂ-r+l)C}[1 _ exp(_uC)] r-1

Where,

f(u) = cu“'exp{-u°}
and CDF

Fluy=1- exp{—u°},
where,

_(x-a)
b

u
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E(U r:n)
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" jmukcu“1 exp{—u(”"“’°}[1—exp(—u°)]r du

r-1 . —1 0
: (—l)'_r L ukcu°‘1exp{—(n—r+i+1)u°}du
=0 I
(r-1
0 e OO
r+-))
"

K
O noryisy
X., ~We(a,b*,c)

When X ~ We(a,b,c) then X, ~We(a,b*,c)

I11. Results and Discussion:

Application of exponential order statistics for
simulated data

Data have been simulated from exponential
distribution with parameters A =1 and 11 and from
Three parameter Weibull distribution  with
parameters 15, 30 and 2.5. From each distribution a
sample of size 10 to 50 with constant difference 10
is taken and simulated. Using the generated data
the mean, variance, the first four moments and the
corresponding skewness and Kurtosis are also
estimated to study the nature of the distribution.
Theoretical mean and variance are also estimated

1
where b*=bn ¢

Table I: Theoretical and sample moments of exponential distribution with parameter A=1 for order

samples of size 10 to 50

Theoretical
Xkn | Theoretical .mean Sample .mean variance Sample .variance m3 m4 bl b2
n | k s=10 $s=50 $=100 s=10 s=50 s=100
1 0.1000 0.1286 | 0.0899 | 0.0980 | 0.0100 0.0135 | 0.0109 | 0.0074 | 0.0020 | 0.0009 | 4.0000 | 9.0000
10 L5 0.6456 0.8275 | 0.5399 | 0.6516 | 0.0862 0.1247 | 0.0666 | 0.0696 | 0.0237 | 0.0152 | 0.8812 | 2.0426
10 2.9290 3.7416 | 2.8489 | 2.9408 | 1.5498 4.9384 | 15166 | 1.2864 | 2.3951 | 9.7383 | 1.5411 | 4.0546
1 0.0500 0.0227 | 0.0552 | 0.0637 | 0.0025 0.0007 | 0.0025 | 0.0046 | 0.0003 | 0.0001 | 4.0000 | 9.0000
20 |10 0.6688 0.7322 | 0.6540 | 0.6483 | 0.0464 0.0673 | 0.0470 | 0.0452 | 0.0067 | 0.0022 | 0.4457 | 1.0369
20 3.5977 3.6785 | 3.6873 | 3.5236 | 1.5962 1.1531 | 24314 | 1.4093 | 2.4017 | 9.7406 | 1.4185 | 3.8232
1 0.0333 0.0263 | 0.0314 | 0.0302 | 0.0011 0.0003 | 0.0009 | 0.0013 | 0.0001 | 0.0000 | 4.0000 | 9.0000
30 |15 0.6768 0.6995 | 0.7000 | 0.6829 | 0.0317 0.0168 | 0.0382 | 0.0402 | 0.0031 | 0.0007 | 0.2982 | 0.6944
30 3.9950 4.1283 | 4.0935 | 4.1539 1.6122 1.3931 | 1.2451 | 1.6530 | 2.4030 | 9.7408 | 1.3782 | 3.7479
1 0.0250 0.0317 | 0.0286 | 0.0282 | 0.0006 0.0016 | 0.0007 | 0.0008 | 0.0000 | 0.0000 | 4.0000 | 9.0000
40 |20 0.6808 0.6097 | 0.6887 | 0.6845 | 0.0241 0.0175 | 0.0206 | 0.0252 | 0.0018 | 0.0003 | 0.2240 | 0.5219
40 4.2785 41284 | 4.3502 | 4.4903 1.6202 1.5437 | 1.3831 | 1.7848 | 2.4035 | 9.7409 | 1.3582 | 3.7105
1 0.0200 0.0244 | 0.0186 | 0.0174 | 0.0004 0.0008 | 0.0002 | 0.0003 | 0.0000 | 0.0000 | 4.0000 | 9.0000
50 25 0.6832 0.6721 | 0.7185 | 0.7038 | 0.0194 0.0222 | 0.0202 | 0.0206 | 0.0011 | 0.0002 | 0.1794 | 0.4181
50 4.4992 4.4689 | 4.5252 | 4.3036 | 1.6251 0.9117 | 1.9305 | 1.1616 | 2.4037 | 9.7409 | 1.3462 | 3.6883
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Fig. 1 Comparison of Theoretical and sample mean and variance for different iterations using
exponential distribution with A =1, n=50
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Fig. 2 Comparison of Theoretical and sample mean and variance for different iterations using exponential
distribution with A=11, n=50
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Table II: Theoretical and sample moments of exponential distribution with parameter A=11 for order samples of

size10to 5
lamda=11 ‘ ‘ ‘
Sample Theoretical Sample

Xkn | The.mean mean .variance variance m3 m4 bl b2
n | k s=10 s=50 s=100 s=10 $=50 $s=100
10 [ 1 0.009091 0.00934 | 0.007594 0.009172 | 0.000083 0.000069 | 0.000055 | 0.000075 | 0.000002 | O 4 9

5 0.058694 0.05307 | 0.052218 0.060108 | 0.000712 0.000791 | 0.00046 0.000746 | 0.000018 | 0.000001 | 0.88124 | 2.04257

10 0.26627 0.35489 | 0.24433 0.239466 | 0.012808 0.031276 | 0.008562 | 0.008011 | 0.001799 | 0.000665 | 1.54111 | 4.05463
20 |1 0.004545 | 0.00484 | 0.005004 | 0.004014 | 0.000021 0.000013 | 0.000024 | 0.000016 | O 0 4 9

10 0.060797 | 0.05596 | 0.061804 | 0.058674 | 0.000383 0.000366 | 0.000258 | 0.000332 | 0.000005 | O 0.4457 | 1.03693

20 0.327067 | 0.35385 | 0.323152 | 0.341059 | 0.013191 0.024549 | 0.016477 | 0.012634 | 0.001804 | 0.000665 | 1.41847 | 3.82322
30 |1 0.00303 0.00167 | 0.002668 | 0.00282 | 0.000009 0.000003 | 0.000009 | 0.000009 | O 0 4 9

15 0.061523 | 0.05337 | 0.064012 | 0.059749 | 0.000262 0.00027 | 0.000316 | 0.000234 | 0.000002 | O 0.29816 | 0.69443

30 0.363181 | 0.31583 | 0.390232 | 0.361854 | 0.013324 0.00788 | 0.019184 | 0.012374 | 0.001805 | 0.000665 | 1.37818 | 3.74786
40 | 1 0.002273 | 0.00207 | 0.002156 | 0.002167 | 0.000005 0.000004 | 0.000004 | 0.000005 | 2.35E-08 | 2.40E-10 | 4 9

20 0.061891 | 0.06473 | 0.063722 | 0.062609 | 0.000199 0.000259 | 0.000207 | 0.000223 | 0.000001 | 2.07E-08 | 0.22399 | 0.52194

40 0.388958 | 0.43721 | 0.385788 | 0.369881 | 0.01339 0.01405 | 0.010286 | 0.012913 | 0.001806 | 0.000665 | 1.35815 | 3.71054
50 | 1 0.001818 | 0.0029 | 0.001578 | 0.001993 | 0.000003 0.000014 | 0.000002 | 0.000004 | O 0 4 9

25 0.062113 | 0.05878 | 0.06742 0.063611 | 0.00016 0.000242 | 0.000163 | 0.000191 | 0.000001 | O 0.17936 | 0.41807

50 0.409019 | 0.38832 | 0.417082 | 0.423742 | 0.013431 0.02039 | 0.008872 | 0.016327 | 0.001806 | 0.000665 | 1.34618 | 3.68825

The convergence of estimated moments stability in the probability distribution also

and that of the theoretical moments greatly depend
on the number of iterations. As this number
increases indefinitely the difference between the
actual and estimates of the parameters (moments,
skewness and kurtosis) narrow down and it
vanishes after a considerable number of iterations.
This number of iterations is dependent on the
number of samples, from which the order statistics
are estimated. As the sample size increases the

increases, with increased number of iterations. i.e.
for a sample of size n, the number of iterations
required namely, s is a function of n, in order to
achieve sufficient closeness between the actual and
estimated values. i.e., s=f(n). Going by the
graphical output of the estimated values, it is seen
that this function is monotonic increasing.

Table I11: Theoretical parameter of Weibull distribution with parameters a=15, b=30 and c=2.5 for order
samples of sizes 10.20,30,40 and 50

Sample Sample
Theoretical .mean Theoretical variance
.mean .variance m3 m4 bl b2
n s=10 s=50 $=100 s=10 $=50 $=100
X 1:10 25.596 25.837442 25.868875 25.139533 20.564784 21.921067 21.044477 16.109595 33.11846 1216.09 0.12612 2.87553
X 5:10 39.567 40.451782 | 39.328521 | 39.590028 20.522511 8.052504 18.998655 | 21.262834 | 14.26493 1069.085 0.02354 2.53835
10 | Xip1o | 60.186 60.076414 | 60.828304 | 60.96414 56.035404 60.666947 | 71.11183 60.340262 | 179.3258 9939.449 0.18277 3.16546
X 1:20 23.031 22.76057 22.159379 | 22.726682 11.823039 6.154272 15.525073 | 8.84258 15.27243 332.23 0.14113 2.37673
X 10220 40.224 38.499665 40.238202 40.194758 10.759824 12.728628 11.792716 9.979965 1.208159 379.1757 0.00117 3.27514
20 | Xop020 | 64.38 62.362653 | 63.54724 64.798312 45.1656 65.960874 | 30.176174 | 59.816946 | 139.2463 7829.013 0.21045 3.83788
X 1:30 21.828 22.949529 21.246454 21.379601 8.548416 8.764717 7.591909 7.665981 8.762071 217.8741 0.1229 2.9815
X 15:30 40.449 41.217566 40.103374 40.435942 7.278399 7.147552 9.775903 6.653037 1.930478 -2.31178 0.00967 -0.0436
30 X 30:30 66.624 61.905227 65.192632 65.390143 40.002624 27.779069 37.546575 41.470551 148.3241 4835.519 0.34368 3.0218

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 298




International Journal of Mathematics Trends and Technology (IJMTT) — Volume 53 Number 4 January 2018

X 1.40 21.087 21.756693 | 21.520428 | 21.796698 6.778431 9.351857 4.910249 8.31396 7.086171 106.73812 | 0.161226 | 2.323064
X 20:40 45.777 40.23948 40.12369 40.297232 -217.323729 4.804921 6.809261 4.479061 8822.1125 -300979.3 -7.5827 -6.37268
40 X 40:40 68.133 69.73842 69.098811 67.973435 37.084311 42.300614 31.266623 36.319881 140.09201 3848.9708 0.384819 2.798751
X 1:50 20.568 21.029398 | 20.499706 | 20.479494 5.627376 4.398537 4.773967 6.205172 6.0777009 | 43.694218 | 0.207282 | 1.379787
Xoss0 | -84958.07 39.747296 | 41.216237 | 40.495275 -7220166157 | 4.535407 3.828967 3.878593 -1.23E+15 | -1.56E+20 | -4 -3
50 X 50:50 69.69 67.758563 68.980392 70.120236 -10.1061 21.046002 45.600466 34.295147 3714.7311 -256415.4 -13369.2 -2510.6
- " 10 =] u
! . s
- - { i
e e R L ot

T T = F T

Fig. 3 Comparison of Theoretical and sample mean and variance for different iterations for Weibull three
parameter distributions with parameters (15, 30, and 2.5) for different iterations for 10 and 50 samples

IV CONCLUSION

The simulation process exhibits certain
patterns in the relationship among the number of
samples used, the number of iterations used in the
simulation and the order of the order statistics
considered. Also, the comparison over exponential
and Weibull distributions indicate the issue of
dimensions, in that more samples are required to
get consistent estimates of the population
parameters (Mean). This pattern gets noticed on
comparison between the exponential and Weibull
distributions. In case of exponential distributions,
we observe relatively less variance around the
sample mean in exponential distribution, as it
contains less number of parameters compared to its
Weibull Generalization Model. The Graphical
representation of the estimates, in case of Weibull
distribution shows higher degree of oscillations in
case of Mean estimation. This is mainly due to the

increased number of parameters (THREE)
compared to that of the exponential distributions
(ONE Parameter).

We observe that the estimates of skewness
and kurtosis remains unchanged in case of first
order statistics, for varying sample size, simulation
size and the order of the statistics. This is because
the first order statistics behaves more like a simple
individual sample from the parent population. The
Higher order statistics were decided by complex
combinatoric laws and thereby have variant
estimates across different sample size, simulation
size and the order of the statistics. These
observations, the author has tested using
continuous changes in the simulation size, but the
results for selected values such as s=10,50 and 100
were presented in the table.
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