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Abstract: Order statistics are widely used in 

Statistical modeling and its Statistical inference, 

which describes the random variables that are 

arranged in order of magnitude, frequently with 

respect to time. Order statistics deals with the 

properties and applications of ordered random 

variables and their functions. This study 

particularly focuses on two different failure time 

structures with Exponential and Weibull 

distributions. In particular, the study uses one 

parameter Exponential and Three parameter 

Weibull distributions. Distributions of Ordered 

statistics based on samples from exponential 

distribution are derived. Also their Moments, 

Skewness and Kurtosis were considered. Data were 

simulated and using them the parameters and 

moments of the distributions are estimated. All the 

estimated parameters are found to be very close to 

the population parameter with which the 

simulation has been initiated. The parameters are 

estimated with better accuracy. On the whole the 

study uses effectively the concept of Order 

Statistics in the domain of Reliability with focus on 

estimation and testing of its crucial parameters. 

 

Key words: Order Statistics, Moments, Simulation, 

Parameter Estimation. 

 

I. Introduction  
Order statistics and its functions on 

statistics play an important role in numerous 

practical applications. The important applications 

of order statistics is on many diverse areas, it 

includes, life testing and reliability, statistical 

quality control, filtering theory, radar target 

detection, signal processing, robustness studies, 

and image processing. The development on order 

statistics fall on two main categories, they are 

Statistical estimation, and the testing of statistical 

hypotheses. Order statistics deals with the 

properties and applications of ordered random 

variables and their functions. The study of 

applications of order statistics on survival analysis 

provides the way on future possibilities in the 

recurrence of extreme situations.  

Let X1,X2,...,Xn be n random variables. 

Define X1:n as min(X1,X2,...,Xn), X2:nthe second 

smallest of (X1,X2,...,Xn),       Xi:n the i
th

 smallest of 

(X1,X2,...,Xn), Xn:n the n
th

 smallest (the largest) of 

(X1,X2,...,Xn)  or the max(X1,X2,...,Xn). Then we 

have X1:n ≤ X2:n ≤ ··· ≤ Xn:n and these ordered 

random variables i.e. X1:n,X2:n,...,Xn:n are known as 

the order statistics of the given set of random 

variables. In particular X i:n is called the i
th

 order 

statistic.  

The effects of ordering can be impressive 

in terms of both the value and the relative relation, 

and it explains the aspects of sample behavior 

which are employed in the effectiveness and 

efficiency of the resulting inferences. 

The minimum and maximum are 

examples of extreme order statistics and they are 

defined by the following notation. 

Min {X n} = X1:n 

Max {X n} =X n:n 

In   random sampling theory, the 

unordered X, are assumed to be statistically 

independent and identically distributed, because, 

the inequality relations among the order statistics. 

Xi:n are necessarily dependent. There is a difference 

between the random variables Xi:n and the 

corresponding sample observations Xi. 

 

II. Materials and Methods: 

Distributions of Order Statistics 

The distribution function of order statistics 

for maximum X n,n is 

                          Fn;n(x) =  F
n
(x)  

   F1:n = 1 – {1-F(x)}
n
 

Now the distribution function of X r:n; the r 
th

 order 

statistics; is denoted as Fr :n(x)and is given as 

r :n r :n

i

( )

1

0

( )

F (x) = P{X  x}

= P{atleast r of X  are less than or equal to x}

1
(1 )

( , 1)

( , 1)

F z

r n r

F x

t t dt
B r n r

I r n r

 



 
 

  



 

Moments  

The moment of the r
th

 order statistics is 

r:n .knowledge of the means, variances, and co 

variances of the order statistics are used to find the 

expected values and variances of the linear 

function, which are readily used to compute the 

estimators. 
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Order Statistics for Exponential Distribution 

The exponential family of distributions is 

very rich class of distributions with extensive 

domain of applicability. The univariate exponential 

distribution is the most commonly used distribution 

in modeling reliability and life testing analysis. The 

exponential distribution is used to model the failure 

times of manufactured items in production. 

If  X  has cumulative distribution function   F (x) = 

1− e
−λx

, x > 0, λ > 0 

then 1 − F1:n(x) = P(X1:n ≥ x) = e
−nλx 

and   

Fn:n(x) = P(Xn:n ≤ x) = (1−e
−λx

)
n
 

The probability density function of two parameter 

exponential distribution is given by  

( )
1

; ,0 ,0
( ; ; )

0 ;

. . ~ ( , )

x

e x
f x

otherwise

i e X Exp

is scale parameter

is location parameter



   
  

 








      
 



 

Density of the r
th 

order statistics 

Let x1:n, x2:n, . . . ,xn:n be the order statistics 

of a random sample of size n from the exponential 

distribution with the following pdf,  

f (x) = e
−x

, x >0, the cumulative 

distributive function of X is F(x) =1-e
-x

,
.
then the 

probability density function of x r:n. is 

! ( )
( )

( 1)!( )!

1 1
  1 ,   0:

x r n r x
f e

n

r n
er

r
xn



    
 




 

When r=1,             The minimum order density on 

exponential distribution is 

1: ( )  0,nx

nf x ne x   

When r = n, 

f n:n(x) = n(1-e
-x

)
n-1

.e
-x

, x>0. 

The Probability density function of first order 

statistics is also exponential distribution with 

parameters and
n


  

Theorem:  Suppose Y = 
( )x 




~ Exp (l, 0), and 

consider the differences of the consecutive order 

statistics 
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Central Moments of order Statistics 

For exponential order Statistics

1: 2: : Y  . . . ,  , , Yn n n nY , 

  11 1 2 Y  . . . , Y
1

1 2, , , ,..., ...
2: : 1 12:

d zz z z z z
nY z

nnn n n n nn n n

          
 

For Third central moment of kth order statistics
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Corollary: 

:

:

1

2

: 2
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ORDER STATISTICS FOR WEIBULL 

DISTRIBUTION 

Three parameter Density of Weibull Distribution 

A random variable X has a three–

parameter WEIBULL distribution with parameters 

a, b and c if its probability density functions is 

given by 

 

1

( | , , ) exp ,

. .

X~

 

 We(a,b,c)

2

 

, 009

c c

X

c x a x a
f x a b c x a

b b b

i e

a loc failure free timation parameter or

b scale parameter

c shape parameter Rinne

e

       
      

     







 

The CDF of a WEIBULL random variable can be 

transformed to a straight line.  

The density of the reduced Weibull 

distribution is  
c-1 c

Uf (u | c) = c u  exp(- u ) ; c > 0, u  0 

where 𝑢 =
𝑥−𝑎

𝑏
 

General formulae 

Moments and cumulants are the expected 

values of certain functions of random variables. It 

describes numerically, with respect to given 

characteristics such as location, variation, skewness 

and kurtosis. 

The moments about zero  plays a key role 

to find  all other  of moments, For the random 

variable         X =  a +b U, the moments of the 

reduced Weibull  random variable can be obtained 

from the transformed       U- moments. The 

expected value of Xr is termed the r
th

 moment about 

zero of the random variable X: 
'

( ) ( )r

r
X E X   

Where.ris any real number, but for the most part r 

is taken as a non–negative integer. With regard to 

the reduced Weibull variable we get 
'

0
( ) ( ) ( | )r r

Ur
U E U u f u c du



    

 

 

 Order Statistics for Weibull Distribution 

Let Xi ~We (a, b, c);i=1,2,3…,n; with pdf  and 

cdf 

1
( )

( ) exp ,

( ) 1 exp

c c

c

c x a x a
f x

b b b

x a
F x

b

       
    

     

   
    

   

 
First order density on Weibull

 

The random variable X1:n is minimum and the 

density function of the minimum order statistics  on  

Weibull is  

1

1:

1

1

( ) . ( )[1 ( )]

( ) ( )
exp

( ) ( )
exp

* *

n

n

c c

c c

f x n f x F x
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n
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Density function of r
th 

Order Statistics  

The density function of the r 
th

 order statistics 1 ≤ r 

≤ n, of  a Weibull variate, U~ We(0,1,c) with the 

distribution function  

 

X ∼We (a, b, c) ,by using the linear transformation

r:n r:nX  = a + bU ,

 

The DF of  Ur:n, 1 ≤  r  ≤  n, is   

c -1 (n - r +1) c c r -1

r:nf (u) = r c u  exp{- u }[1 - exp(-u )]
n

r

 
 
 

 

Where,          
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                                 1: ~ ( , *, )nX We a b c  

When X ~ We(a,b,c) then 
1: ~ ( , *, )nX We a b c  

where  

1

* cb bn


  

 
III. Results and Discussion: 

Application of exponential order statistics for 

simulated data 

Data have been simulated from exponential 

distribution with parameters λ =1 and 11 and from 

Three parameter Weibull distribution with 

parameters 15, 30 and 2.5. From each distribution a 

sample of size 10 to 50 with constant difference 10 

is taken and simulated. Using the generated data 

the mean, variance, the first four moments and the 

corresponding skewness and Kurtosis are also 

estimated to study the nature of the distribution. 

Theoretical mean and variance are also estimated   
 

 
 

 
 

 

 
 

 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

Table I: Theoretical and sample moments of exponential distribution with parameter λ=1 for order  

samples of size 10 to 50 

 

 X k:n Theoretical .mean Sample .mean 

Theoretical 

variance Sample .variance m3 m4 b1 b2 

n k   s=10 s=50 s=100   s=10 s=50 s=100         

10 
  

  

1 0.1000 0.1286 0.0899 0.0980 0.0100 0.0135 0.0109 0.0074 0.0020 0.0009 4.0000 9.0000 

5 0.6456 0.8275 0.5399 0.6516 0.0862 0.1247 0.0666 0.0696 0.0237 0.0152 0.8812 2.0426 

10 2.9290 3.7416 2.8489 2.9408 1.5498 4.9384 1.5166 1.2864 2.3951 9.7383 1.5411 4.0546 

20 

  
  

1 0.0500 0.0227 0.0552 0.0637 0.0025 0.0007 0.0025 0.0046 0.0003 0.0001 4.0000 9.0000 

10 0.6688 0.7322 0.6540 0.6483 0.0464 0.0673 0.0470 0.0452 0.0067 0.0022 0.4457 1.0369 

20 3.5977 3.6785 3.6873 3.5236 1.5962 1.1531 2.4314 1.4093 2.4017 9.7406 1.4185 3.8232 

30 
  

  

1 0.0333 0.0263 0.0314 0.0302 0.0011 0.0003 0.0009 0.0013 0.0001 0.0000 4.0000 9.0000 

15 0.6768 0.6995 0.7000 0.6829 0.0317 0.0168 0.0382 0.0402 0.0031 0.0007 0.2982 0.6944 

30 3.9950 4.1283 4.0935 4.1539 1.6122 1.3931 1.2451 1.6530 2.4030 9.7408 1.3782 3.7479 

40 

  
  

1 0.0250 0.0317 0.0286 0.0282 0.0006 0.0016 0.0007 0.0008 0.0000 0.0000 4.0000 9.0000 

20 0.6808 0.6097 0.6887 0.6845 0.0241 0.0175 0.0206 0.0252 0.0018 0.0003 0.2240 0.5219 

40 4.2785 4.1284 4.3502 4.4903 1.6202 1.5437 1.3831 1.7848 2.4035 9.7409 1.3582 3.7105 

50 
  

  

1 0.0200 0.0244 0.0186 0.0174 0.0004 0.0008 0.0002 0.0003 0.0000 0.0000 4.0000 9.0000 

25 0.6832 0.6721 0.7185 0.7038 0.0194 0.0222 0.0202 0.0206 0.0011 0.0002 0.1794 0.4181 

50 4.4992 4.4689 4.5252 4.3036 1.6251 0.9117 1.9305 1.1616 2.4037 9.7409 1.3462 3.6883 
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Fig. 1 Comparison of Theoretical and sample mean and variance for different iterations using 

exponential distribution with        λ =1, n=50 
 

 

 

          

  
                   

Fig. 2 Comparison of Theoretical and sample mean and variance for different iterations using exponential 

distribution with        λ =11, n=50 
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Table II: Theoretical and sample moments of exponential distribution with parameter λ=11 for order samples of 

size 10 to 5 

 

The convergence of estimated moments 

and that of the theoretical moments greatly depend 

on the number of iterations. As this number 

increases indefinitely the difference between the 

actual and estimates of the parameters (moments, 

skewness and kurtosis) narrow down and it 

vanishes after a considerable number of iterations. 

This number of iterations is dependent on the 

number of samples, from which the order statistics 

are estimated. As the sample size increases the 

stability in the probability distribution also 

increases, with increased number of iterations. i.e. 

for a sample of size n1 the number of iterations 

required namely, s is a function of n, in order to 

achieve sufficient closeness between the actual and 

estimated values. i.e., s=f(n). Going by the 

graphical output of the estimated values, it is seen 

that this function is monotonic increasing.  
 

 

 

Table III: Theoretical parameter of Weibull distribution with parameters a=15, b=30 and c=2.5 for order 

samples of sizes 10.20,30,40 and 50 

    

Theoretical 

.mean 

Sample 

.mean 

 

Theoretical 

.variance 

Sample 

variance 

 m3 m4 b1 b2 

 n     s=10 s=50 s=100   s=10 s=50 s=100         

10 

x 1:10 25.596 25.837442 25.868875 25.139533 20.564784 21.921067 21.044477 16.109595 33.11846 1216.09 0.12612 2.87553 

x 5:10 39.567 40.451782 39.328521 39.590028 20.522511 8.052504 18.998655 21.262834 14.26493 1069.085 0.02354 2.53835 

x 10:10 60.186 60.076414 60.828304 60.96414 56.035404 60.666947 71.11183 60.340262 179.3258 9939.449 0.18277 3.16546 

20 

x 1:20 23.031 22.76057 22.159379 22.726682 11.823039 6.154272 15.525073 8.84258 15.27243 332.23 0.14113 2.37673 

x 10:20 40.224 38.499665 40.238202 40.194758 10.759824 12.728628 11.792716 9.979965 1.208159 379.1757 0.00117 3.27514 

x 20:20 64.38 62.362653 63.54724 64.798312 45.1656 65.960874 30.176174 59.816946 139.2463 7829.013 0.21045 3.83788 

30 

x 1:30 21.828 22.949529 21.246454 21.379601 8.548416 8.764717 7.591909 7.665981 8.762071 217.8741 0.1229 2.9815 

x 15:30 40.449 41.217566 40.103374 40.435942 7.278399 7.147552 9.775903 6.653037 1.930478 -2.31178 0.00967 -0.0436 

x 30:30 66.624 61.905227 65.192632 65.390143 40.002624 27.779069 37.546575 41.470551 148.3241 4835.519 0.34368 3.0218 

  

lamda=11 

           

 

X k:n The.mean 

Sample 

mean 

Theoretical 

.variance 

Sample 

variance m3 m4 b1 b2 

n k 

 

s=10 s=50 s=100 

 

s=10 s=50 s=100 

    
10 1 0.009091 0.00934 0.007594 0.009172 0.000083 0.000069 0.000055 0.000075 0.000002 0 4 9 

 
5 0.058694 0.05307 0.052218 0.060108 0.000712 0.000791 0.00046 0.000746 0.000018 0.000001 0.88124 2.04257 

 

10 0.26627 0.35489 0.24433 0.239466 0.012808 0.031276 0.008562 0.008011 0.001799 0.000665 1.54111 4.05463 

20 1 0.004545 0.00484 0.005004 0.004014 0.000021 0.000013 0.000024 0.000016 0 0 4 9 

 

10 0.060797 0.05596 0.061804 0.058674 0.000383 0.000366 0.000258 0.000332 0.000005 0 0.4457 1.03693 

 

20 0.327067 0.35385 0.323152 0.341059 0.013191 0.024549 0.016477 0.012634 0.001804 0.000665 1.41847 3.82322 

30 1 0.00303 0.00167 0.002668 0.00282 0.000009 0.000003 0.000009 0.000009 0 0 4 9 

 
15 0.061523 0.05337 0.064012 0.059749 0.000262 0.00027 0.000316 0.000234 0.000002 0 0.29816 0.69443 

 

30 0.363181 0.31583 0.390232 0.361854 0.013324 0.00788 0.019184 0.012374 0.001805 0.000665 1.37818 3.74786 

40 1 0.002273 0.00207 0.002156 0.002167 0.000005 0.000004 0.000004 0.000005 2.35E-08 2.40E-10 4 9 

 
20 0.061891 0.06473 0.063722 0.062609 0.000199 0.000259 0.000207 0.000223 0.000001 2.07E-08 0.22399 0.52194 

 

40 0.388958 0.43721 0.385788 0.369881 0.01339 0.01405 0.010286 0.012913 0.001806 0.000665 1.35815 3.71054 

50 1 0.001818 0.0029 0.001578 0.001993 0.000003 0.000014 0.000002 0.000004 0 0 4 9 

 
25 0.062113 0.05878 0.06742 0.063611 0.00016 0.000242 0.000163 0.000191 0.000001 0 0.17936 0.41807 

 

50 0.409019 0.38832 0.417082 0.423742 0.013431 0.02039 0.008872 0.016327 0.001806 0.000665 1.34618 3.68825 
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40 

x 1:40 21.087 21.756693 21.520428 21.796698 6.778431 9.351857 4.910249 8.31396 7.086171 106.73812 0.161226 2.323064 

x 20:40 45.777 40.23948 40.12369 40.297232 -217.323729 4.804921 6.809261 4.479061 8822.1125 -300979.3 -7.5827 -6.37268 

x 40:40 68.133 69.73842 69.098811 67.973435 37.084311 42.300614 31.266623 36.319881 140.09201 3848.9708 0.384819 2.798751 

50 

x 1:50 20.568 21.029398 20.499706 20.479494 5.627376 4.398537 4.773967 6.205172 6.0777009 43.694218 0.207282 1.379787 

x 25:50 -84958.07 39.747296 41.216237 40.495275 -7220166157 4.535407 3.828967 3.878593 -1.23E+15 -1.56E+20 -4 -3 

x 50:50 69.69 67.758563 68.980392 70.120236 -10.1061 21.046002 45.600466 34.295147 3714.7311 -256415.4 -13369.2 -2510.6 

 

 

                  

              
Fig. 3 Comparison of Theoretical and sample mean and variance for different iterations for Weibull three 

parameter distributions with parameters (15, 30, and 2.5) for different iterations for 10 and 50 samples 

 

IV CONCLUSION 

The simulation process exhibits certain 

patterns in the relationship among the number of 

samples used, the number of iterations used in the 

simulation and the order of the order statistics 

considered. Also, the comparison over exponential 

and Weibull distributions indicate the issue of 

dimensions, in that more samples are required to 

get consistent estimates of the population 

parameters (Mean). This pattern gets noticed on 

comparison between the exponential and Weibull 

distributions. In case of exponential distributions, 

we observe relatively less variance around the 

sample mean in exponential distribution, as it 

contains less number of parameters compared to its 

Weibull Generalization Model. The Graphical 

representation of the estimates, in case of Weibull 

distribution shows higher degree of oscillations in 

case of Mean estimation. This is mainly due to the 

increased number of parameters (THREE) 

compared to that of the exponential distributions 

(ONE Parameter).  

We observe that the estimates of skewness 

and kurtosis remains unchanged in case of first 

order statistics, for varying sample size, simulation 

size and the order of the statistics. This is because 

the first order statistics behaves more like a simple 

individual sample from the parent population. The 

Higher order statistics were decided by complex 

combinatoric laws and thereby have variant 

estimates across different sample size, simulation 

size and the order of the statistics. These 

observations, the author has tested using  

continuous changes in the simulation size, but the 

results for selected values such as s=10,50 and 100 

were presented in the table.  
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