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Abstract:

In this paper, the finite element analysis for static displacements of some complicated
Euler-Bernoulli beam structure is considered in fuzzy environment, where the material and
geometric properties are taken as crisp. The numerical examples deals with cantilever beam, a
beam clamped at one end and supported by a linear elastic spring. Various loads such as constant
distributed,linearly varying, and point loads are considered for the examples. Assembled system of
the above structures converts into fuzzy system of linear equations by taking right hand side global
force vector as fuzzy keeping coefficient matrix as crisp.The results obtained are represented in
terms of plots.
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I. INTRODUCTION:

Computational mechanics is a flourishing subject for applied science and engineering, in
which physical mechanics problems are solved by cooperation of mechanics, computers and
various numerical methods. At the same time, new theories and methods of computational
mechanics itself are also being developed gradually. Finite Element Method is an important
branch of computational mechanics. It is one kind of powerful numerical methods in which
various mechanics problems are solved by dicretizing related continuums. In 1941 Finite element
was introduced by Alexander Hrennikoff and Rechard Courant in 1942. For large deformation and
in nonlinear problems the FEM began applied in 1970. Several important books [1]-[3] are written
on FEM with engineering applications.

Several beam theories have been developed based on various assumption and lead to
different level of accuracy. One of the simplest and most useful of these theories was first
described by Euler and Bernoulli and is commonly called Euler-Bernoulli Beam theory. A
fundamental assumption of this theory is that cross section of the beam is infinitely rigid in its own
plane, i.e., no deformations occur in the plane of cross section. During deformation, the cross
section is assumed to remain plane and normal to the deformed axis of the of the beam.

The structural parameters involved in finite element analysis, such as, mass, material
properties, external loads or boundary conditions are considered as crisp. But the uncertainties
may occur due to incomplete data, vaguely defined geometry, experimental error and different
imposed conditions influenced by the systems which plays an important role in various fields of
engineering and applied science. Different authors used some probabilistic and statistical approach
to operate uncertainties [4,5]. The word fuzzy means "vagueness™ and the concept of fuzzy number
and its arithmetic operations was initiated by Zadeh [6], Dubois and Prade [7].

When FEM is considered in fuzzy environment then it is known as Fuzzy Finite Element
Method(FFEM). Interval analysis provides a powerful set of tools which is directly applicable to
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the problems are explained by [8]. Also [9] represents the modelling of uncertain structural
systems using interval analysis.The numerical estimation of the static displacement bounds with
uncertain parameters is studied by [10]. Uncertain boundary conditions and the effect of uncertain
prescribed displacements of structural systems is discussed in [11]. An important book [12] is
written on the theory of fuzzy arithmetic and its applications in engineering sciences. In [13] a
unique approach of Fuzzy finite element method for the analysis of imprecisely defined structural
systems is defined. Fuzzy finite element analysis of smart structures is discussed in [14]. A
practical approach for analyzing the static response of structures with fuzzy parameters is
investigated in [15]. The author of [16] presents the fuzzy finite element analysis for static
displacements of structures with fuzzy nodal force. Fuzzy arithmetical approach to solve the finite
element problems with uncertain parameters is used in [17]. Moreover structural analysis with
fuzzy parameters are excellently studied by [18,19].

System of linear equations are important for studying and solving of real world
applications in many branches of engineering and science. nxn fuzzy system of linear equations
have been studied by many authors [20]-[23]. Friedman et. al. [22] proposed a general model for
solving such systems with coefficient matrix as crisp and the right hand column is an arbitrary
fuzzy number vector.

In this paper we recall some fundamental results of fuzzy set theories to investigate the
static responses of some Euler-Bernoulli’s beam problem. Finite Element method turns into a
system of linear equations. The numerical examples when converts into such types of linear
equations, the various distributed loads in terms of triangular fuzzy numbers are considered to
discuss the fuzzy responses.

Il. PRELIMINARIES:
Here some basic definitions and useful theories of fuzzy calculus are reviewed. The basic
definition of a fuzzy number given in [24,25].

A. Definition (Fuzzy Number):
A fuzzy number is a fuzzy mapping defined as ;(x):R—1=[0,1],vxeR, where
15 (x) is membership function of fuzzy set which is piecewise continuous. Also an another

definition of fuzzy number in parametric form is given by Kaleva and Ma [26,27]. The set of all
fuzzy number is denoted by E.

B. Definition (Triangular Fuzzy Number):
A triangular fuzzy number is denoted by A= (a,,a,,a,) with membership function

45 (x) isdefinedon R as

X—8

an—a

a, —

whena, <x<a,

X
whena, <x<a,

(x) =
15 (X) Tl

a
0, otherwise.
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When the point a,, € (a;,a,) is located at the middle of the supporting interval i.e., a, = 2+a,

then the fuzzy number A is called central triangular fuzzy number.
The TFN A=(a,a,,a,) may be represented into interval form through o« -cut approach as
follows:

'z‘ = (a1’ am’az) = [g(a)!a(a)] = [a1 +a(am _ai)i a, _a(az _am)]’ ae [011]

C. Some Arithmetic Operations on TFN:
For arbitrary fuzzy numbers T = (u(a),u()),V = (v(a),v()), for « [0,1] and a real

number k, we define the addition and scalar multiplication of fuzzy numbers by using the
extension principle [27] as

a) U=V ifandonlyif u(a)=v(a) and u(a) = v(a).
b) T+V = (u() +V(a), u(@) + V().
¢) T-V = (u(@)-Vv(a), u(@)-Vv(a)).
d) ki = (ku(c), ku(a)), k > 0.
= (ku(a), ku(a)), k <O0.

D. Definition (Fuzzy System of Linear Equations(FSLE)):
The nxn linear systems

a, X, +a,X, ot A X, =Y,

1n"*n
aOle1 +8,,X, +'...+ a2nxn: Y, )
Ay X, +apX, ot ayX, =Y,
where, the given coefficient matrix A=(a;),1<i<n and 1< j<n isacrisp nxn matrix, and
y; € E,1<i<n, with the unknowns x; € E,1< j<n is called fuzzy linear system of equations
(FLSE) [22].
E. Definition: [22] A fuzzy number vector (X, X,,...,X,)" , where

X; = (x(@), x(«)); j =1,2,.n, for 0<a <1, is called a solution of the FSLE (1) if
DA% = D A% =Y,
j=1 [ —
if for a particular i,a; >0 forall j, we get
DX = Yir Zaiix_i =Y,
=1 j=1

Thus in order to solve the systems (1) one must solve a 2nx2n crisp linear system:
S Xy ot S Xy S Xa oS Xn T Y

InZn

Spa Xy oot Sy X+ S, g XU Sy Xn = Y

n,n+l (2)

Snip 1 Xy +oF Sy Xy +S

n+l,n2n n+1,n+1

X+t Syt o0 Xn = Vs
Sona Xy Tt S5 0 X+ Sy i Xe o855, Xn =Yy
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Where s; are determined as follows,

a; = 0= Sij = Sitn,jen — &

* . @)

a; <0=s,,,=8,,; =g forl<i j<n.

and any s; which is not determined by (3) is zero. Using matrix notation (2) can be written as
SX =Y. 4)
Where, S =8;,1<i,J<2n, X = (Xy,0s X, Xty ) AN Y = (Y s Y, Yy V)
In this case the equation (4) is extended to the following crisp block form as

s, S\ X)) (Y ;
[sz slj(ij'(?zj ©)

Where, S, and S, are nxn matrices with non-negetive and non-positive elements respectively,
and

X, (@) xi(a)
X, = | Xe=

xn&a) in&a)

¥, (@) ¥,(@)
Y,=| | Yes=

zn@ 9nka)

IILFINITE ELEMENT FORMULATION OF EULER BERNOULLI’S BEAM ELEMENT:
Here the general form of the governing differential equation is

d? d*w
W(EI OIXZ)+cfw:q(x),O<x<L (6)
Where, E is the modulus of elasticity, | denotes moment of inertia, w the transverse

deflection of the beam, c, is the elastic foundation modulus(if any), q(x) is the transverse

distributed load. The one dimensional finite element formulation for the above governing
differential equation is well known but are given below for the purpose of completeness. When
¢, =0, then the suitable choice of approximation for w over a typical element (x,,X,,,) of

length I, gives the element equation in matrix form as

[k J{ar}={F} @)
Here, {Fe}z {qe}+ {Qe} is the global load vector. {qe}: [as,05,05,q5]" is the nodal force vector
due to uniformly or varying load over the typical element and {Qe}: [Qr,Q5,Q5,Q;] is the
generazied foece vector, where, Q7(i=1,3) and Q’(i =2,4) denotes shear force and bending
moment respectively. {Ae}:[Ai,Aez,AZ,AZ]T is called the generalized displacement vector
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corresponding to the displacements and rotations at nodes.

12 -6l, -12 -6l

EI |-6l, 41 6l 2
1> |1-12 6, 12 6l

-6l, 212 6l 42
is the stiffness matrix for a element with length, modulus of eleasticity and moment of inertia are
I.,,E, and 1, respectively. If the element is subjected to uniformly distributed load of intensity

. then

[K°]=

(®)

e

{qE}que—;e[G,—le 6L, €

When the distributed load is a function of x, say q(x), then the components q° of {qe}
obtained as

o = [ g7 () a(x) dx. (10)

Where, ¢°(x) are the Hermite cubic interpolation function.

Depending upon the geometry, the domain of the problem in this method is discretized into a
collection of finite elements. Each element gives a stiffness matrix of the form (8).To get the
assembled coefficient matrix of the complete domain we need to combine all the stiffness
matrices. When we descretized a beam with n—elements then the final stiffness matrix in global
system [K] looks as

12E,1, -6E,l, C12E)l, _BEl,

3 2 3 2 o 0 o
Il Il Il Il
_BEl,  4El, 6E,I, 2E, 1, 0 0 0
A l 1! I
_12E), 6El, 12E1, 12E,l, 6El, _6E,, 0 0 0
A A I} 1, A I}
6E,l, 2E1, 6El, 6E,l, 4EIl, A4E,l, 12E, 1., 6E, 1.,
R | T L T, T,
1 2 1 2 1 2 n-1 n-1
0 0 0 6En—lln—l 2En—lln—l
Ir?—l In—l
12,1, 6E_I,, 12E 1., 12E1,  6E I, , 6E,lI,
0 0 0 _ 31 1 21 1 31 1, ! 21 1 v
In—l In—l In—l In In—l In
6E,,l., 2E_|_, 6E_I_, 6EIl  4E_I _, A4E|I,
0 0 0 _ |21 1 | 1'n1 |21 1 : | 11 |
n-1 n-1 n-1 n n-1 n

which is a symmetric matrix of order 2(n+1). The right hand side global load vector for n
elements as
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oh Q
0 Q
G+0r | |Qs+Qf
gs+a:| |Qi+Qf
g+ | |QF+Q7
{Fi={a}+{Q}=1a +a5 { +1Q; +Q}
U5 Q3
Qs Q;

If the global displacement vector is given by the following equation

U :[U1’U21U3'---’U2(n+1)]T
then the assembled equations becomes
[KI{u} ={F . (L
In the assembly procedure, when we select three finite elements, there are four global nodes and

eight global generalized displacements and eight generalized forces. For each node there are two
degrees of freedom. At the node i degrees of freedom for U, , is the transverse displacement

and degrees of freedom for U,, is a rotation.

U, Uy Ug Uy Q5. q3 e o8

[ I T I P e Z‘Q"i"\qg

1 2 3 4 1? 2

A @ Uy @ U @ U, Qf, af C Q5 af
Fig.(a) Fig.(b)

Fig.1: (a)Finite element mesh of 3 elements with global displacement vector. (b) Generalized forces
on

a typical element
IV. FINITE ELEMENT FORMULATION WITH FUZZY INPUT LOAD :

It is easy to handle the assembled equations when the coefficient matrix and the right hand
side force vector are crisp. But when the information about the input loads involved in the
problems are imprecise in nature then to deal with the corresponding equation needing much
effort. Due to uncertain distributed load the stiffness matrix S of the global system is obtained
from equations (3) and the right hand side fuzzy load vector can be written as

ISSN: 2231-5373 http://www.ijmttjournal.org Page 309




International Journal of Mathematics Trends and Technology (IJMTT) — Volume 53 Number 4 January 2018

&) [ &
@ || @
G +a7 | |Q+Q
G +az| |QieQ?
632 +C~113 632 +613
Fl=t@)+Q)=1az+a:}+{Q2 + Q2

Gl Q
dy Q;
In this study, TFN is used through « —cut for fuzzy input loads. The displacements and rotations

in this approach would also gives intervals in results. Thus, if the solution vector for fuzzy loads is
given by the equation

U =[U,U,,..U,(n+1),U1,Us,...Us(n+1)]
then the assembled equations becomes
[s1{u”} ={R . (1.
V. Numerical Examples and Results: Example 1:
Here we consider a indeterminate beam of length 48in. with nonuniform mesh of three
elements and subjected to the combination of linearly varying,constant distributed load and point
load as shown fig.3.[2]. Only vertical displacements U, (i =1,3,5,7) and angle of rotations

U,(i=24,6,8) of nodes are considered here. The physical and material properties such as
Young’s modulus (E =30x10° psi) and moment of inertia (I =4.5in*) same for each elements
and considered as crisp variables. Two different types of distributed loads q®(x) and q®(x)
acting on elements 1 and 2 respectively and the point load F, at node 4 are considered both as

crisp and TFN to compute the static response of the beam. Discretization of the domain of this
problem is the same as fig. 1(a)
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(py . Fy =5001b
q ( } ql__‘:l{x}

_‘_V
o 9 o E L L E 4 W

— 16in—fe——20 in.— <12 in—s|

Fig.2

Case I(Crisp Load):
We consider here the distributed and point loads as crisp such as,
30Ib/in.,x=0

q(l)(x):{ZOIb/in.,x:m
g®(x) = 20Ib/in. at 16<x<36. , q®(x)=0 at 36<x<48, and F, =500lb as shown in
figure.Here q™(x) is linearly varying distributed load in [0,16]. If we take q®(x)= A+Bx,
then the boundary conditions on it gives A=30 and B=-10/16 . Now we evaluate the
contribution of q®(x) to the element load vector from the equation (10).

¢! = [ ()a® (x) dx = j;l{ls[li] + 2[%} }(A+ Bx) dx = 216.

1

2
q; = J'(:1¢21(X)q(1> () dx = _J'O'lx[l—ﬂ (A+Bx) dx = -554.6667.
1

Qs = IO'1¢31 (x)q¥ (x) dx = I;l {3[%] - 2{%} }(A+ Bx) dx = 184.

1

2
q = 'f(:lqjj(x)q(l)(x) dx = _J'(:lx {[ij %}(A+ Bx) dx =512. where,l, =16in.

Il 1
Therefore, {g* }=[q}, 4%, o, A7 =[216, —554.6667,184,512]".
Again, q®(x) is constant distributed load in [16,36].
2 > 2 2 o _ 9O u u
So, {q }: [0;, 05,05, 0,1 = 1 2[6,-1,,6,1,] =[200,—666.6667, 200, 666.6667] .
where,1, = 20in.and, {g*}=[a?, &}, &, 43" =[0,0,0,0]".
The boundary and balanced conditions for this problem are
U, =U,=U,=0.
Q+Q =Q;+Q =Q +Q =0,Q; =5001b.,Q; =0.
The homogeneous boundary conditions on the primary variables are imposed by
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elimination method which gives the permission to delete the rows and columns 1, 2 and 5 of the
assembled coefficient matrix to get the condensed equations. Thus, the condensed equations are

0.598 1.1394 2.025 0 U, 84
1.1391 60.75 13.5 0 U, 154.6667
10%-2.025 13.5 72 5.625 205 = 666.66671.
0 0 5.625 0.9375 5.P5 00
0 0 22.5 5.625 48U, 0
Solving the above systems we get the static responses as
U, —-0.322in.
u, 0.0594 rad.
U, r=10"°{-0.2514 rad.}.
u, 5.1497 in.
U, —0.518rad.
The results obtained above for crisp parameters are found to be similar with the crisp solution of

[2]
Case I1(Fuzzy Load):
Here, the distributed and point loads are considered as triangular fuzzy number that is

10 (x) = {(28, 30,32) Ib/_in., x=0
(18,20,22) Ib/in., x =16
q@(x) = (18,20,22)Ib/in.at x=16<x<36, q¥(x)=0 at 36<x<48,
and F, = (495,500,505)Ib.
The corresponding interval forms in terms of o —cut of the triangular fuzzy loads are

g _ 1) o 7 [28+ &2 ,32 21 i »x
(0 = d x4 Q(){[18+22 22 219 it x

G200 =[9°(x),0" ()]=[18+2a,22—2a]Ibfin. at x[16,36
3900 =[g"(.q" (0]=[0,0] at x <[36,48

and, F, =[F,, Fo] =[495+5,505—5¢]. where, « <[0,1].

Therefore, G®(x) = A+Bx gives,
A=[28+22,32-2a], and B=[*-L -2 3
4 8 4 8

Equation (13) says that, when we evaluate the contribution of g™ (x) to the element load vector,
we only calculate the components g, and g, of {Ejl}.

G = ﬂl%l(x)qu)(x)dxz ﬂl{s(lzj [IJ}(A Bx) dx _[728 1920 11121920,

5 5 5
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2
s _ (X)) x 6272 , 1408ar 9088 1408cx
a; = [ #4003 (x) dx = LX{(u] I}(A+B)d =[ TR TR

1

Thus,
<1 1 Al Al %1 % %7 1728 192a 1112 192a 6272 1408« 9088 1408a

= ) ) i) = ) ) + ) .
(@) =16 6 6. G = [ v o M v e s 1

The element load vector due to q(z’(x) as

=~ 7 ~p =2 = q@x)l 18+ 2,22 —2¢(].20
{qz}:[qlz’qzz'q32’q£12]T :%[6!_|2161 IZ]T :[ ]

12

[6, - 20, 6, 20]"

[180 + 20,220 - 20c]
{_ 2200  200ar o 20001
3 3 3
[180 + 202,220 — 20x
200a 2200 20001

600 + , -
3 3 3

and,
() =022, 60, T =0k 1,617 =
The balanced conditions for trlangular fuzzy loads are:
Q+Q =Qi+Qf =Qf +Q7 =[0,0]
Q? =[495+5¢,505—5¢] and Q¢ =[0,0].
Therefore, the condensed equations (13) for uncertain distributed loads becomes

[0, fl 1216, -12,6,12]" =[[0,0],[0.0],[0,01,[0.0]7".

1628 292a 2212 292c

_ [ + , - ]
0598 1.1391 -2025 0 0 \[[U,.Us] 5 5 5 5
11391 60.75 135 0 0 [|lU,U. {—izgﬂ 2408a 88 _ 2408“}
6 =4 15 15 '15 15
10°)-2025 135 72 5625 225 (U, U= 2000 2200 200
0 0 5625 09375 5625|||U, U {60(” 3 3 3 }
0 0 225 5625 45 )||U,,Us] [495 + 50,505 - 50|

[0.0]

Solving the above fuzzy system of linear equations we get the lower and upper bounds of
fuzzy static responses for triangular fuzzy loads and the obtained results are given in the table 1.

Table 1. Lower and upper bounds of fuzzy static responses for triangular fuzzy load for
Example 1:
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a 0 0.2 0.4 0.6 0.8 1
U, -0.4512e-3 -0.4254e-3 -0.3995e-3 -0.3737e-3 -0.3479e-3 -0.3221e-3
6 -0.1931e-3 -0.2189e-3 -0.2447e-3 -0.2705e-3 -0.2963e-3 -0.3221e-3
3
U, 0.0567e-3 0.0573e-3 0.0578e-3 0.0583e-3 0.0588e-3 0.0594e-3
6 0.0620e-3 0.0614e-3 0.0609e-3 0.0604e-3 0.0599e-3 0.0594e-3
4
U, -0.2406e-3 -0.2408e-3 -0.2449e-3 -0.2471e-3 -0.2492e-3 -0.2514e-3
6 -0.2621e-3 -0.2600e-3 -0.2578e-3 -0.2557e-3 -0.2535e-3 -0.2514e-3
6
U, 4.9996e-3 5.0296e-3 5.0596e-3 5.0897e-3 5.1197e-3 5.1497e-3
6 5.2999e-3 5.2699e-3 5.2398e-3 5.2098e-3 5.1798e-3 5.1497e-3
7
U, -0.5046e-3 -0.5073e-3 | -0.5100e-3 | -0.5127e-3 -0.5154e-3 -0.5180e-3
6 -0.5314e-3 -0.5288e-3 -0.5261e-3 | -0.5234e-3 -0.5207e-3 -0.5180e-3
8
! / 1 o
/_;f . j‘im’r'ﬁ”n:mi ﬁfv'j:;;f:uﬂnml J \..\
081 e L} 0.8 @ .\q‘
07 Sj/ " 0.7 .D.. l‘"\
/ A N
| /_CS i\ 0.6 .-° h\
dost }d bl @08 i
04F P/ \! 0.4 .D. \
031 _53/ \h\ 0.3 o .. I\q
02 __9/ \'\ 0.2 o \I\
o1y sjj \' 01 1 l"l
/ \\. N
E-‘D.s 045 -0.4 -0.35 -0.3 -0.25 0.2 015 E?DBB 0.057 0.058 0.058 0.06 0.061 0.062
Transverse displacement at node 2 x 1072 Angle of rotation at node 2 x 107
(a) (b)
1 ® 1 )
ool [ mmman] o IR B e
08 : !f =] 0.8 /9/ \l\
07t ,i. .D_ 07 5:( n
h \ / 1
o6 o o 06 b |
! \ /
205 ”l o 205 /O
0.4 ﬂ ° 0.4 ;O/
0ar ,I'f o 0.3 of \-
\ / \
02t ' o Q 02 /Q/ W
0.1 !j Q 0.1 /!;{r \l 1
-3.255 ¢ -0.28 -0.255 025 -0.245 3-24 2 95 5 5.05 51 5.15 52 5.25 53
Angle of rotation at node 3 x 107 Transverse displacement at node 4 x 107
(c) (d)
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1 T T @
oot d" » | @ lower bound of Ua [ |
i — @ — upper bound of Ua
0.8 ] o - -
0.7[ = o
06 Bl 5]
z 05| d o
0.4 =] o
03t ) o
02 g Q
011 d Q
] o - . . . s O
-0.535 053 0525 052 0515 -051 -0.505 -0.5
Angle of rotation at node 4 x 107

(€)

Figure 3. (a) and (d) represents the minimum and maximum bounds of transverse displacements at
nodes 2 and 4 respectively. (b),(c) and (e) represents the minimum and maximum bounds of angle
of rotations at nodes 2, 3 and 4 respectively of problem 1.

Example 2 :

Here we consider a two stepped indeterminant beam clamped at left end and whose right
end is linear elastic spring supported with spring constant k . A rigid loading frame is placed at the
middle of the beam which is subjected to a point load F, as shown in figure 5. The beam is
discretized into two elements of equal length. On the first element an uniformly distributed load
g, Is acting. The material and geometric properties are considered crisp as

El =50x10°N —m?; h =4m; k =10°N/m and, d =0.5m.
The elastic spring acting here as another finite element with element equation as

14 (Q
k(—l 1][@}‘[@;) 9

Where (Q;,Q,) and (u;,u;) are end forces and end displscements respectively of the spring

element with spring constant k. We assemble the beam element with spring element in such a
manner that the vertical displacement of beam is the same as axial displacement of the spring.
Therefore, three elements (e.g.,two beam elements and one spring element) are used to discuss the
problem. The transverse displacements U, (i =1,3,5,7) and angle of rotations U, (i = 2,4,6) of

nodes are considered here.
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Fy d

w |

7
2EI El
7. N k

h ———

Fig.4

The assembled equations are

122 6h -12 6h 0 0 0)[U, o ;

—6h 4h> 6h 2h 0 0 0 ||U, s )

~12 6h 18 3n -6 -3h O |[U,| |gi+q?| |Q'+Q?

2:3' —6h 2h* 3h 6h> 3h  h® 0 [JU,t={qi+q?t+{Q +Q2 (15)

0 0 -6 3h 6+a 3h -allU;| |g2+q’| |Q+Q°
0 0 -3nh h? 3h 2n U, R 2
O 0 0 0 -a 0 U, q X

3

where —_—
2 2El

With the given geometric and material properties the distributed load g, and the concentrated
load F, are considered both as crisp and triangular fuzzy number to compute the static responses
of the beam.

Case I(Crisp Load):

Let us consider the distributed load g, and the point load F, as crisp, where
0, =10°N/m; F, = 5000N.
The contribution of ¢, to the element load vector is given by

h 4000 4000
gt =1t ¢t o, LT :%[6,41.6. A" =[2000,~ 2, 2000, 7"

Since, there are no distributed loads on the other elements,the components of load vector
{q‘ }for (1=2,3) are zero. The global node 2 have a downward load of F, =5000N. and bending

moment of —d.F, =—-2500 N.m. The specified global displacements, forces and balacced
equilibrium conditions are
U,=U,=U,=0
Q:+Q? =F,=5000N.,Q; +Q? = —d.F, =—2500N.m,, Q? +Q} =Q? =0.
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The condensed equations for the unknown global displacements are given by deleting the rows and
columns corresponding to the specified global displacements. Thus, by deleting rows and columns
1,2 and 7, one may obtain the 4x4 matrix equations as

28.125 18.75 -9.375 -18.75) (U, 7000

1875 150 1875 25 ||u,| 1 |->22

—9.375 18.75 10.375 1875 ||U,[ 10° 03 ' (16)
~1875 25 1875 50 J|U, 0

Solving the above systems we get the static responses as

u, 0.8536377 m.
u, 10 —0.2768036 rad. |
U, 1.3744292 m.

U, —0.0568949 rad.

Case Il(Fuzzy Load):
Next, we consider the distributed load g, and the concentrated load F, as triangular

fuzzy number, where
d, = (0.95x10°%10°%1.05x10°)N/m; F, = (4900,5000,5100)N.
The corresponding interval forms in terms of o —cut of triangular fuzzy loads are given by

Go =[9,.0,] = [950 + 50c,1050 —50c] and F, = [F 5, F o] = [4900 +100e,5100 —100c], where, & €[0,1].
The element load vector due to q, is

1\ _ a1~ o~ maqr _ Goh
@=a a8 ar =%[6,—h,6, " =

[1900 +100¢,2100 -100«]
4200 N 200 3800 200«

3 3 3 3
[1900 +100¢,2100 -100c |
[3800 , 200a 4200 20001

3 3 3 3

and the other two load vectors {(:1’ i} (fori=2,3) arezero. The specified conditions of the internal
forces for triangular fuzzy loads are

Q! +Q? = F, =[4900+100c,5100—100a] N., Q} + Q? = —d.F, = —0.5[4900 +100c2,5100 —100¢r]
= [-2500+ 50a,~2450 - 50a] N.m., Q2 + Q% = Q2 =[0,0°
So, for uncertain distributed loads, the condensed equations (16) takes the form
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28.125 18.75 -9.375 -18.75)([U,,Us]

18.75 150 18.75 25
-9.375 18.75 10.375 18.75
-18.75 25 18.75 50

U,Us
Qs’U5
!G’UG

[6800 + 200z, 7200 — 200]
. [_ 3850 , 350a 3150 _ 35004}
= 3 3 73 3
[0.0]

Solving the above systems we get the lower and upper bounds of fuzzy static responses and that

are given in table 2.

Table 2: Lower and upper bounds of fuzzy static responses for triangular fuzzy load for

example 2:
(24 0 0.2 0.4 0.6 0.8 1
U, 0.8435e-3 0.8455¢e-3 0.8475e-3 | 0.8496e-3 0.8516e-3 0.8536e-3
6 0.8638e-3 0.8618e-3 0.8597e-3 | 0.8577e-3 0.8557e-3 0.8536e-3
3
U, -0.2776e-3 -0.2774e-3 | -0.2773e-3 -0.2771e-3 -0.2770e-3 -0.2768e-3
6 -0.2760e-3 | -0.2762e-3 -0.2763e-3 -0.2765e-3 -0.2766e-3 -0.2768e-3
4
U, 1.3838e-3 1.3819e-3 1.3800e-3 1.3782e-3 1.3763e-3 1.3744e-3
L:J 1.3651e-3 1.3669e-3 1.3688e-3 1.3707e-3 1.3726e-3 1.3744e-3
5
U, -0.0562e-3 -0.0563e-3 | -0.0565e-3 -0.0566e-3 -0.0568e-3 -0.0569e-3
L:J -0.0576e-3 -0.0575e-3 -0.0573e-3 | -0.0572e-3 -0.0570e-3 -0.0569¢e-3
6
0.19 —0— lawer bound of U, /0'::’\\!‘ D; “\i ©— lower bound of U,
Ny PP N ;) \-\ N ) N -‘——lr—upperbnundm’ui‘
0.7 y \ 0.7 o L\
06 f \l 06 <) \'l_
/ N N
05 o L] 206 o
/ N .
0.4 L} 0.4 o :
0.3 t/d \h\ 0.3 ] \q
0z 0/ \ 0.2 o] \! .
01 0/ \!\ 01 o l\.‘.
384 ..D 845 0.85 0.855 0.86 LD 865 -DDZ(;?E. 02774 02772 0277 -0.2768 -D.2766 -0.2764 -0.2762 -;275
Transverse displacement at node 2 x 1072 Angle of rotation at node 2 x 1072

(f)
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17 . . . . S . . v . 17 . - oo
PAN i 1 ) , ; 1 1 )
\ ©— lower bound of U, . ©— lower bound of U,
oef n Q | 0.9f o % | €14
/ ‘-\\ — & — upper bound of Ub f —-@-— upper bound of Ub
0B+ A g 1 0.8+ g o
/ \\.‘ _/‘
07 r L] Q 1 0.7 o o
7 N v
\Y v
0.6 o g 1 06 [ !
205 n Q 1 205] a o
/ /;
04t / q 1 0.4} B o
N rd
/ \
03r " 9 1 03 & b
7/ ‘\ s
02 4 9 02f ¥ °
/ /
01 n Q 1 01F B a
/ AN K4
it L L . L . L L L o ot L s s s L L b
1364 1366 1368 137 1372 1374 1376 1378 138 1382 1384 0.0576 -0.0574 -0.0572 -0.057 -0.0568 -0.0566 -0.0564 -0.0562
Transverse displacement at node 3 x 107 Angle of rotation at node 3 x 107

Figure 5. (f) and (h) represents the minimum and maximum bounds of transverse displacements at
nodes 2 and 3 respectively. (g) and (i) represents the minimum and maximum bounds of angle of
rotations at nodes 2 and 3 respectively of the problem 2.

VI.CONCLUSIONS :

The static responses of some Euler Bernoulli’s beam problems using Fuzzy finite element
method has been studied here. When the practical problems involve complecated shapes together
with the loads involving uncertainties, the Fuzzy finite element method discussed here in a smooth
way. In this paper we considered the loads as triangular fuzzy number only. This study can be
extended to the other beam problems with loads as interval, trapezoidal and Type-2 fuzzy
numbers. Instead of fuzzy loads one may consider the uncertainties in geometric and material
properties. Matlab has been used to depict the results in terms of plots.
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