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Abstract:  

In this paper, the finite element analysis for static displacements of some complicated 

Euler-Bernoulli beam structure is considered in fuzzy environment, where the material and 

geometric properties are taken as crisp. The numerical examples deals with cantilever beam, a 

beam clamped at one end and supported by a linear elastic spring. Various loads such as constant 

distributed,linearly varying, and point loads are considered for the examples. Assembled system of 

the above structures converts into fuzzy system of linear equations by taking right hand side global 

force vector as fuzzy keeping coefficient matrix as crisp.The results obtained are represented in 

terms of plots.  
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I. INTRODUCTION: 

Computational mechanics is a flourishing subject for applied science and engineering, in 

which physical mechanics problems are solved by cooperation of mechanics, computers and 

various numerical methods. At the same time, new theories and methods of computational 

mechanics itself are also being developed gradually. Finite Element Method is an important 

branch of computational mechanics. It is one kind of powerful numerical methods in which 

various mechanics problems are solved by dicretizing related continuums. In 1941 Finite element 

was introduced by Alexander Hrennikoff and Rechard Courant in 1942. For large deformation and 

in nonlinear problems the FEM began applied in 1970. Several important books [1]-[3] are written 

on FEM with engineering applications. 

Several beam theories have been developed based on various assumption and lead to 

different level of accuracy. One of the simplest and most useful of these theories was first 

described by Euler and Bernoulli and is commonly called Euler-Bernoulli Beam theory. A 

fundamental assumption of this theory is that cross section of the beam is infinitely rigid in its own 

plane, i.e., no deformations occur in the plane of cross section. During deformation, the cross 

section is assumed to remain plane and normal to the deformed axis of the of the beam. 

The structural parameters involved in finite element analysis, such as, mass, material 

properties, external loads or boundary conditions are considered as crisp. But the uncertainties 

may occur due to incomplete data, vaguely defined geometry, experimental error and different 

imposed conditions influenced by the systems which plays an important role in various fields of 

engineering and applied science. Different authors used some probabilistic and statistical approach 

to operate uncertainties [4,5]. The word fuzzy means "vagueness" and the concept of fuzzy number 

and its arithmetic operations was initiated by Zadeh [6], Dubois and Prade [7]. 

When FEM is considered in fuzzy environment then it is known as Fuzzy Finite Element 

Method(FFEM). Interval analysis provides a powerful set of tools which is directly applicable to 
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the problems are explained by [8]. Also [9] represents the modelling of uncertain structural 

systems using interval analysis.The numerical estimation of the static displacement bounds with 

uncertain parameters is studied by [10]. Uncertain boundary conditions and the effect of uncertain 

prescribed displacements of structural systems is discussed in [11]. An important book [12] is 

written on the theory of fuzzy arithmetic and its applications in engineering sciences. In [13] a 

unique approach of Fuzzy finite element method for the analysis of imprecisely defined structural 

systems is defined. Fuzzy finite element analysis of smart structures is discussed in [14]. A 

practical approach for analyzing the static response of structures with fuzzy parameters is 

investigated in [15]. The author of [16] presents the fuzzy finite element analysis for static 

displacements of structures with fuzzy nodal force. Fuzzy arithmetical approach to solve the finite 

element problems with uncertain parameters is used in [17]. Moreover structural analysis with 

fuzzy parameters are excellently studied by [18,19]. 

System of linear equations are important for studying and solving of real world 

applications in many branches of engineering and science. nn  fuzzy system of linear equations 

have been studied by many authors [20]-[23]. Friedman et. al. [22] proposed a general model for 

solving such systems with coefficient matrix as crisp and the right hand column is an arbitrary 

fuzzy number vector.  

In this paper we recall some fundamental results of fuzzy set theories to investigate the 

static responses of some Euler-Bernoulli’s beam problem. Finite Element method turns into a 

system of linear equations. The numerical examples when converts into such types of linear 

equations, the various distributed loads in terms of triangular fuzzy numbers are considered to 

discuss the fuzzy responses.  

 
II. PRELIMINARIES: 

Here some basic definitions and useful theories of fuzzy calculus are reviewed. The basic 

definition of a fuzzy number given in [24,25]. 

 
A. Definition (Fuzzy Number): 

A fuzzy number is a fuzzy mapping defined as ( ) : = [0,1],
A

x I x    R R , where 

)(~ x
A

  is membership function of fuzzy set which is piecewise continuous. Also an another 

definition of fuzzy number in parametric form is given by Kaleva and Ma [26,27]. The set of all 

fuzzy number is denoted by E . 

 
B. Definition (Triangular Fuzzy Number): 

A triangular fuzzy number is denoted by ),,(=
~

21 aaaA m  with membership function 

)(~ x
A

  is defined on R  as  
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When the point ),( 21 aaam   is located at the middle of the supporting interval i.e., ,
2

= 21 aa
am


 

then the fuzzy number A
~

 is called central triangular fuzzy number. 

The TFN ),,(=
~

21 aaaA m  may be represented into interval form through  -cut approach as 

follows:  

 [0,1].  )],(),([=)](),([=),,(=
~

221121   mmm aaaaaauuaaaA
 

 

C. Some Arithmetic Operations on TFN: 

For arbitrary fuzzy numbers [0,1]   )),(),((=~)),(),((=~  forvvvuuu  and a real 

number k , we define the addition and scalar multiplication of fuzzy numbers by using the 

extension principle [27] as  

a) vu ~=~  if and only if ( ) = ( )  ( ) = ( ).u v and u v     

b) )).()( ),()((=~~  vuvuvu   

c) )).()( ),()((=~~  vuvuvu   

d) 0. )),( ),((=~ kukukuk   

 0.< )),( ),((=        kukuk   

D. Definition (Fuzzy System of Linear Equations(FSLE)): 

The nn  linear systems 
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where, the given coefficient matrix niaA ij 1 ),(=  and nj 1  is a crisp nn  matrix, and 

niEyi  1 , , with the unknowns njEx j  1 ,  is called fuzzy linear system of equations 

(FLSE) [22]. 

E. Definition: [22]  A fuzzy number vector T

nxxx ),...,,( 21 , where  

  
.1 , 2 , . . . ,=));(),((= njxxx j   for 1,0   is called a solution of the FSLE (1) if  
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 if for a particular 0> , ijai  for all j , we get  
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Thus in order to solve the systems (1) one must solve a nn 22   crisp linear system:  
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Where ijs  are determined as follows,  

                   
,

, ,

0 = =
(3)

< 0 = =   1 , .

ij ij i n j n ij

ij i j n i n j ij

a s s a

a s s a for i j n
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 

 
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and any ijs  which is not determined by (3) is zero. Using matrix notation (2) can be written as  

                             = . (4)SX Y  

Where, T
nnij xxxxXnjiSS ),...,,,...,(= ,2,1 ,= 11  and .),...,,,...,(=

11

T

nn
yyyyY  

In this case the equation (4) is extended to the following crisp block form as  

                                  
1 11 2

2 22 1

= (5)
X YS S

S S X Y
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Where, 1S  and 2S  are nn  matrices with non-negetive and non-positive elements respectively, 

and  
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III.FINITE  ELEMENT FORMULATION OF EULER BERNOULLI’S BEAM ELEMENT: 

Here the general form of the governing differential equation is  

                    
2 2

2 2
( ) = ( ), 0 < < (6)f

d d w
EI c w q x x L

dx dx
  

Where, E  is the modulus of elasticity, I  denotes moment of inertia, w  the transverse 

deflection of the beam, fc  is the elastic foundation modulus(if any), )(xq  is the transverse 

distributed load. The one dimensional finite element formulation for the above governing 

differential equation is well known but are given below for the purpose of completeness. When 

0,=fc  then the suitable choice of approximation for w  over a typical element ),( 1ee xx  of 

length el  gives the element equation in matrix form as  

                                   (7)e e eK F      

Here,     eee QqF =  is the global load vector.  Teeeee qqqqq ] , , ,[= 4321  is the nodal force vector 

due to uniformly or varying load over the typical element and   Teeeee QQQQQ ] , , ,[= 4321  is the 

generazied foece vector, where, 1,3)=(iQe

i  and 2,4)=(iQe

i  denotes shear force and bending 

moment respectively.   Teeeee ] , , ,[= 4321   is called the generalized displacement vector 
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corresponding to the displacements and rotations at nodes. 
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is the stiffness matrix for a element with length, modulus of eleasticity and moment of inertia are 

ee El ,  and eI  respectively. If the element is subjected to uniformly distributed load of intensity 

eq  then 

                                   6 , , 6 , ( 9 )
12

Te e e
e e

q l
q l l   

When the distributed load is a function of ,x  say )(xq , then the components e

iq  of  eq  

obtained as 

 

                       
1

= ( ) ( ) . (10)
x
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i i
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e

q x q x dx


  

Where, )(xe

i  are the Hermite cubic interpolation function. 

Depending upon the geometry, the domain of the problem in this method is discretized into a 

collection of finite elements. Each element gives a stiffness matrix of the form (8).To get the 

assembled coefficient matrix of the complete domain we need to combine all the stiffness 

matrices. When we descretized a beam with n elements then the final stiffness matrix in global 

system ][K  looks as  
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which is a symmetric matrix of order 1)2( n . The right hand side global load vector for n  

elements as  
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If the global displacement vector is given by the following equation  

 

 
T

nUUUUU ],...,,,[= 1)2(321   

then the assembled equations becomes  

                            [ ] = . (11)K U F  

In the assembly procedure, when we select three finite elements, there are four global nodes and 

eight global generalized displacements and eight generalized forces. For each node there are two 

degrees of freedom. At the node i  degrees of freedom for 12 iU  is the transverse displacement 

and degrees of freedom for iU 2  is a rotation. 

 

 

 
                            Fig.(a)                                    Fig.(b) 

 
Fig.1: (a)Finite element mesh of 3 elements with global displacement vector. (b) Generalized forces 

on    

     a typical element    
IV. FINITE ELEMENT FORMULATION WITH FUZZY INPUT LOAD : 

It is easy to handle the assembled equations when the coefficient matrix and the right hand 

side force vector are crisp. But when the information about the input loads involved in the 

problems are imprecise in nature then to deal with the corresponding equation needing much 

effort. Due to uncertain distributed load the stiffness matrix S  of the global system is obtained 

from equations (3) and the right hand side fuzzy load vector can be written as 
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In this study, TFN is used through cut  for fuzzy input loads. The displacements and rotations 

in this approach would also gives intervals in results. Thus, if the solution vector for fuzzy loads is 

given by the equation  

 

 *
1 2 21 2 2= [ , ,..., ( 1), , ,..., ( 1)]TU U U U n U U U n   

then the assembled equations becomes  

                            *[ ] = . ( 12 )S U F  

  V. Numerical Examples and Results: Example 1: 

Here we consider a indeterminate beam of length .48in  with nonuniform mesh of three 

elements and subjected to the combination of linearly varying,constant distributed load and point 

load as shown fig.3.[2]. Only vertical displacements 1,3,5,7)=(iUi  and angle of rotations 

2,4,6,8)=(iU i  of nodes are considered here. The physical and material properties such as 

Young’s modulus )1030=( 6 psiE   and moment of inertia )4.5=( 4inI  same for each elements 

and considered as crisp variables. Two different types of distributed loads )((1) xq  and )((2) xq  

acting on elements 1 and 2 respectively and the point load 0F  at node 4 are considered both as 

crisp and TFN to compute the static response of the beam. Discretization of the domain of this 

problem is the same as fig. 1(a) 
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                                      Fig.2 

 
Case I(Crisp Load): 

We consider here the distributed and point loads as crisp such as,  
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 ./20=)((2) inlbxq  at 36.16  x  , 0=)((3) xq  at 4836  x , and lbF 500=0  as shown in 

figure.Here )((1) xq  is linearly varying distributed load in [0,16] . If we take BxAxq =)((1) ,  

then the boundary conditions on it gives 30=A  and 10/16= B . Now we evaluate the 

contribution of )((1) xq  to the element load vector from the equation (10).  
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q x q x dx x A Bx dx
l


 

    
 

          

                  

2 3

1 11 1 (1)

3 3
0 0

1 1

= ( ) ( ) = 3 2 ( ) =184.
l l x x

q x q x dx A Bx dx
l l


     

     
     

   

                  

2

1 11 1 (1)

4 4 1
0 0

1 1

= ( ) ( ) = ( ) = 512.  where, =16 .
l l x x

q x q x dx x A Bx dx l in
l l


   

    
   

   

  .512] 184, 554.6667, [216,=] , , ,[= ,Therefore 1

4

1

3

1

2

1

1

1 TTqqqqq   

Again, )((2) xq  is constant distributed load in [16,36] .  

  .666.6667] 200, 666.6667, [200,=],6,[6,
12

)(
=] , , ,[= ,So 22

2

(2)
2

4

2

3

2

2

2

1

2 TTT ll
lxq

qqqqq 

  .0] 0, 0, [0,=] , , ,[= ,and . 20=,where 3

4

3

3

3

2

3

1

3

2

TTqqqqqinl  

The boundary and balanced conditions for this problem are  

 0.=== 521 UUU  

                    0.=., 500=0,=== 3

4

3

3

3

2

2

4

2

2

1

4

2

1

1

3 QlbQQQQQQQ   

The homogeneous boundary conditions on the primary variables are imposed by 
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elimination method which gives the permission to delete the rows and columns 1, 2 and 5 of the 

assembled coefficient matrix to get the condensed equations. Thus, the condensed equations are  

 

  

3

4

6

6

7

8

0 . 5 9 8 1 . 1 3 9 1 2 . 0 2 5 0 0 3 8 4

1 . 1 3 9 1 6 0 . 7 5 1 3 . 5 0 0 1 5 4 . 6 6 6 7

1 0 = . (1 3)2 . 0 2 5 1 3 . 5 7 2 5 . 6 2 5 2 2 . 5 6 6 6 . 6 6 6 7

0 0 5 . 6 2 5 0 . 9 3 7 5 5 . 6 2 5 5 0 0

0 0 2 2 . 5 5 . 6 2 5 4 5 0

U

U

U

U

U

     
     

        
     
     
     
         

 

Solving the above systems we get the static responses as 

 

 .

. 0.518

. 5.1497

. 0.2514

. 0.0594

. 0.322

10= 3

8

7

6

4

3





























































rad

in

rad

rad

in

U

U

U

U

U

 

The results obtained above for crisp parameters are found to be similar with the crisp solution of 

[2]. 
Case II(Fuzzy Load): 

Here, the distributed and point loads are considered as triangular fuzzy number that is  

 (1)
(28,30,32) / ., 0

( ) =
(18,20,22) / ., 16

lb in x
q x

lb in x





  

./(18,20,22)=)(~(2) inlbxq at 36,16=  xx  0=)(~(3) xq  at 48,36  x  

and .05)(495,500,5=
~

0 lbF  
The corresponding interval forms in terms of  cut of the triangular fuzzy loads are  

    
( 1 )( 1 )( 1 )

[ 2 8 2 , 3 2 2 ] / . , 0
( ) = [ ( ) , ( ) ] =

[1 8 2 , 2 2 2 ] / . , 1 6 .

l b i n x
q x q x q x

l b i n x

 

 

  


  
  

             [ 16 , 36 ] .  at  ./ ]2,222[18=)](),([=)(~ (2)(2)(2)  xinlbxqxqxq   

             [ 36 , 48 ] .  at  [0,0]=)](),([=)(~ (3)(3)(3) xxqxqxq  

              000and,  = [ , ] = [495 5 ,505 5 ]. where, [0,1].F F F       

Therefore, xBAxq
~~

=)(~(1)   gives,  

 ].
8

3

4
,

8

7

4
[=

~
  and  ],2,322[28=

~



 BA  

Equation (13) says that, when we evaluate the contribution of )(~(1) xq  to the element load vector, 

we only calculate the components 1

3
~q  and 1

4
~q  of  .~1q   

2 3

1 11 1 (1)

3 3
0 0

1 1

728 192 1112 192
= ( ) ( ) = 3 2 ( ) = [ , ].

5 5 5 5

l l x x
q x q x dx A Bx dx

l l

 


     
       

     
      
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2

1 11 1 (1)

4 4
0 0

1 1

6272 1408 9088 1408
= ( ) ( ) = ( ) = [ , ].

15 15 15 15

l l x x
q x q x dx x A Bx dx

l l

 


   
      

   
      

Thus,

 1 1 1 1 1

1 2 3 4

728 192 1112 192 6272 1408 9088 1408
= [ , , , ] = [[*,*],[*,*],[ , ],[ , ]] .

5 5 5 5 15 15 15 15

T Tq q q q q
   

       

The element load vector due to )(~(2) xq  as  

  TTT ll
lxq

qqqqq 20] 6, 20, [6,
12

].202,222[18
=] 6, , [6,

12

).(~
=]~ ,~ ,~ ,~[=~

22
2

(2)
2

4

2

3

2

2

2

1

2 





 

 

  





















































3

200

3

2200
,

3

200
600

20,22020180
3

200
600,

3

200

3

2200

]20,22020[180

=









 

and, 

 
(3)

3 3 3 3 3 3
1 2 3 4 3 3

( ). [0,0].12
= [ , , , ] = [6, , 6, ] = [6, 12, 6, 12] = [[0,0],[0,0],[0,0],[0,0]] .

12 12

T T T Tq x l
q q q q q l l 


    

The balanced conditions for triangular fuzzy loads are: 
  [0,0]=

~~
=

~~
=

~~ 3

2

2

4

2

2

1

4

2

1

1

3 QQQQQQ   

 [0,0].=
~

  and  ]5,5055[495=
~ 3

4

3

3 QQ    

Therefore, the condensed equations (13) for uncertain distributed loads becomes  

 

 

 
 
 
   

 

.

0,0

5,5055495
3

200

3

2200
,

3

200
600

15

2408

15

88
,

15

2408

15

4728

]
5

292

5

2212
,

5

292

5

1628
[

=

,

,

,

,

],[

455.62522.500

5.6250.93755.62500

22.55.6257213.52.025

0013.560.751.1391

002.0251.13910.598

10

88

77

66

44

33

6























































































































UU

UU

UU

UU

UU

 

 

Solving the above fuzzy system of linear equations we get the lower and upper bounds of 

fuzzy static responses for triangular fuzzy loads and the obtained results are given in the table 1.  

  

Table  1:  Lower and upper bounds of fuzzy static responses for triangular fuzzy load for 

Example 1: 
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  0  0.2 0.4  0.6  0.8 1 

3U
 

3U  

-0.4512e-3 

 -0.1931e-3 

-0.4254e-3  

-0.2189e-3     

-0.3995e-3 

-0.2447e-3      

-0.3737e-3  

-0.2705e-3     

-0.3479e-3 

-0.2963e-3 

-0.3221e-3 

-0.3221e-3 

4U  

4U  

0.0567e-3 

0.0620e-3 

0.0573e-3  

0.0614e-3    

0.0578e-3 

0.0609e-3     

0.0583e-3  

0.0604e-3    

0.0588e-3 

0.0599e-3 

0.0594e-3 

0.0594e-3 

6U
 

6U  

-0.2406e-3 

-0.2621e-3 

-0.2408e-3 

-0.2600e-3     

-0.2449e-3 

-0.2578e-3     

-0.2471e-3  

-0.2557e-3    

-0.2492e-3 

-0.2535e-3 

-0.2514e-3 

-0.2514e-3 

7U
 

7U  

4.9996e-3 

5.2999e-3 

5.0296e-3  

5.2699e-3    

5.0596e-3 

5.2398e-3     

5.0897e-3 

5.2098e-3     

5.1197e-3 

5.1798e-3 

5.1497e-3 

5.1497e-3 

8U
 

8U
 

-0.5046e-3 

-0.5314e-3 

 -0.5073e-3   

 -0.5288e-3   

-0.5100e-3   

 -0.5261e-3   

-0.5127e-3 

-0.5234e-3     

-0.5154e-3 

-0.5207e-3 

-0.5180e-3 

-0.5180e-3 

 

  
(a)                   (b) 

 
(c)                                    (d) 
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(e) 

 

Figure 3. (a) and (d) represents the minimum and maximum bounds of transverse displacements at 

nodes 2 and 4 respectively. (b),(c) and (e) represents the minimum and maximum bounds of angle 

of rotations at nodes 2, 3 and 4 respectively of problem 1. 
Example 2 : 

Here we consider a two stepped indeterminant beam clamped at left end and whose right 

end is linear elastic spring supported with spring constant k . A rigid loading frame is placed at the 

middle of the beam which is subjected to a point load 0F  as shown in figure 5. The beam is 

discretized into two elements of equal length. On the first element an uniformly distributed load 

0q  is acting. The material and geometric properties are considered crisp as  

 .0.5=  ,and  /10= ;4= ;1050= 626 mdmNkmhmNEI   

The elastic spring acting here as another finite element with element equation as  

                     1 1

2 2

1 1
= (14)

1 1

e e

e e

u Q
k

u Q

     
    

    
 

Where ),( 21

ee QQ  and ),( 21

ee uu  are end forces and end displscements respectively of the spring 

element with spring constant k . We assemble the beam element with spring element in such a 

manner that the vertical displacement of beam is the same as axial displacement of the spring. 

Therefore, three elements (e.g.,two beam elements and one spring element) are used to discuss the 

problem. The transverse displacements 1,3,5,7)=( iUi  and angle of rotations 2,4,6)=( iUi  of 

nodes are considered here.  
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                                Fig.4 
The assembled equations are 

 

   

1
1 1

2 2 1
2 2

1 2
3 3 1

2 2 2 1 2
4 4 23

2 3
5 3 1

2 2 2
6 4

3
7 2

12 6 12 6 0 0 0

6 4 6 2 0 0 0

12 6 18 3 6 3 0
2

=6 2 3 6 3 0

0 0 6 3 6 3

0 0 3 3 2 0

0 0 0 0 0

Uh h q

Uh h h h q

Uh h h q q
EI

Uh h h h h h q q
h

Uh a h a q q

Uh h h h q

Ua a q

     
  

   
     
  

    
      
   

    
     

1

1

1

2

1 2

3 1

1 2

4 2

2 3

3 1

2

4

3

2

(15)

Q

Q

Q Q

Q Q

Q Q

Q

Q

  
  
  
  
  
   

  
  
  

   
  

 

                                     
3

w h e r e ,  = .
2

kh
a

EI
 

With the given geometric and material properties the distributed load 0q  and the concentrated 

load 0F  are considered both as crisp and triangular fuzzy number to compute the static responses 

of the beam.   

 
Case I(Crisp Load): 

 

Let us consider the distributed load 0q  and the point load 0F  as crisp, where  

 .5000= ;/10= 0

3

0 NFmNq  

The contribution of 0q  to the element load vector is given by  

   .]
3

4000
 2000, ,

3

4000
 [2000,=] 6, , [6,

12
=] , , ,[= 01

4

1

3

1

2

1

1

1 TTT hh
hq

qqqqq   

Since, there are no distributed loads on the other elements,the components of load vector 

  2,3)=( for iq i  are zero. The global node 2 have a downward load of .5000=0 NF  and bending 

moment of .. 2500=. 0 mNFd   The specified global displacements, forces and balacced 

equilibrium conditions are  

 0=== 721 UUU  

            0.== .,. 2500=.= ., 5000== 2

4

3

1

2

30

2

2

1

40

2

1

1

3 QQQmNFdQQNFQQ   
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The condensed equations for the unknown global displacements are given by deleting the rows and 

columns corresponding to the specified global displacements. Thus, by deleting rows and columns 

1,2 and 7, one may obtain the 44  matrix equations as 

                 

3

4

6

5

6

7000
28.125 18.75 9.375 18.75

3500
18.75 150 18.75 25 1

= . (16)3
9.375 18.75 10.375 18.75 10

0
18.75 25 18.75 50

0

U

U

U

U

 
      

           
     
         

 

Solving the above systems we get the static responses as  

 .

. 0.0568949

. 1.3744292

. 0.2768036

. 0.8536377

10= 3

6

5

4

3























































rad

m

rad

m

U

U

U
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Case II(Fuzzy Load): 

Next, we consider the distributed load 0q  and the concentrated load 0F  as triangular 

fuzzy number, where  

 .,5100)(4900,5000=
~

 ;/)10,1.05,1010(0.95=~
0

333

0 NFmNq   

The corresponding interval forms in terms of cut  of triangular fuzzy loads are given by  

 

[0,1]. ,where],100,5100100[4900=],[=
~

 and ]50,105050[950=],[=~
000000   FFFqqq

The element load vector due to 0
~q  is  

   =] 6, , [6,
12

~
=]~ ,~ ,~ ,~[=~ 01

4

1

3

1

2

1

1

1 TT hh
hq

qqqqq   

 

  





















































3

200

3

4200
,

3

200

3

3800

100,21001001900
3

200

3

3800
,

3

200

3

4200

]100,2100100[1900

=









 

and the other two load vectors  iq~  2,3)= for( i  are zero. The specified conditions of the internal 

forces for triangular fuzzy loads are  

 

]100,51001000.5[4900=
~

.=
~~

 ., ]100,5100100[4900=
~

=
~~

0

2

2

1

40

2

1

1

3   FdQQNFQQ  

                [ 0 , 0 ] .=
~

=
~~

 .,. ]502450,502500[= 2

4

3

1

2

3 QQQmN    

So, for uncertain distributed loads, the condensed equations (16) takes the form  
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 
 
 

 
 
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0,0

0,0
3

350

3

3150
,

3

350

3

3850

]200,7200200[6800
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1
=

,

,

,

],[

5018.752518.75
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Solving the above systems we get the lower and upper bounds of fuzzy static responses and that 

are given in table 2.  

  

Table  2:  Lower and upper bounds of fuzzy static responses for triangular fuzzy load for 

example 2:  

 
  0 0.2 0.4 0.6 0.8 1 

3U
 

3U  

0.8435e-3 

0.8638e-3 

0.8455e-3  

0.8618e-3    

  0.8475e-3 

  0.8597e-3     

0.8496e-3 

0.8577e-3     

0.8516e-3 

0.8557e-3 

0.8536e-3 

0.8536e-3 

4U
 

4U  

-0.2776e-3 

 -0.2760e-3 

 -0.2774e-3 

-0.2762e-3     

-0.2773e-3 

-0.2763e-3     

-0.2771e-3  

-0.2765e-3    

-0.2770e-3 

-0.2766e-3 

-0.2768e-3 

-0.2768e-3 

5U
 

5U  

1.3838e-3 

  1.3651e-3 

1.3819e-3  

 1.3669e-3   

1.3800e-3  

1.3688e-3  

1.3782e-3  

1.3707e-3    

1.3763e-3 

1.3726e-3 

1.3744e-3 

1.3744e-3 

6U
 

6U  

 -0.0562e-3 

 -0.0576e-3 

 -0.0563e-3 

 -0.0575e-3    

-0.0565e-3  

 -0.0573e-3   

-0.0566e-3 

-0.0572e-3     

-0.0568e-3 

-0.0570e-3 

-0.0569e-3 

-0.0569e-3 

 

 
                        (f)                                              (g) 
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                       (h)                                               (i) 

  

Figure 5. (f) and (h) represents the minimum and maximum bounds of transverse displacements at 

nodes 2 and 3 respectively. (g) and (i) represents the minimum and maximum bounds of angle of 

rotations at nodes 2 and 3 respectively of the problem 2. 
VI.CONCLUSIONS : 

The static responses of some Euler Bernoulli’s beam problems using Fuzzy finite element 

method has been studied here. When the practical problems involve complecated shapes together 

with the loads involving uncertainties, the Fuzzy finite element method discussed here in a smooth 

way. In this paper we considered the loads as triangular fuzzy number only. This study can be 

extended to the other beam problems with loads as interval, trapezoidal and Type-2 fuzzy 

numbers. Instead of fuzzy loads one may consider the uncertainties in geometric and material 

properties. Matlab has been used to depict the results in terms of plots. 
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