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Abstract — An investigation is made to study the heat and mass transfer on an unsteady MHD micropolar fluid 
along a vertical stretching sheet in the presence of induced magnetic field considering both viscosity and 

thermal conductivity to be the inverse linear function of temperature. The governing partial differential 

equations are transformed into dimensionless forms using similarity transformations. The effects of temperature 

dependent viscosity and thermal conductivity and the other parameters involved in the problem are investigated 

on the velocity, micro-rotation, temperature, concentration and induced magnetic field distribution profiles by 

solving the governing transformed ordinary differential equations with the help of Runge-Kutta fourth order 

method with shooting technique and shown graphically and in tabulated form and discussed in details. 
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I. INTRODUCTION 

  The study of the dynamics of micropolar fluids has been the field of very active research due to their numerous 

applications in technological field. Micropolar fluids are defined as those fluids that contain micro-constituents 

and can undergo rotation which affect the hydrodynamics of the flow. These fluids are distinctly non-Newtonian 

in nature. These types of fluids has a microstructure and exhibit microrotational effects and can support surface 

and body couples which are not present in the theory of Newtonian fluids. A number of flow situations such as 

the flow of low concentration suspensions, liquid crystals, real fluid with suspensions and animal blood etc can 

be studied by employing micropolar fluid theory. Initially, Eringen [1] developed the theory of microfluids 

which include the effect of local rotary inertia, the couple stress and inertia spin. The theory of micropolar fluids 

for the case where only microrotational effects and microrotational inertia exists was also developed by Eringen 

[2]  and later on he [3] extended the theory of thermomicropolar fluids and derived the constitutive law for 

fluids with microstructure. Ariman et al. [4] has given an excellent review of micropolar fluids and their 
applications. Gorla [5] investigated the forced convective heat transfer of a micropolar fluid flow over a flat 

plate. Thakur et al. [6] studied the effects of variable viscosity and thermal conductivity on unsteady free 

convective heat and mass transfer MHD flow of micropolar fluid with constant heat flux through porous 

medium. The effects of variable viscosity and thermal conductivity of MHD micropolar fluid in a continuous 

moving flat plate was discussed by Phukan et al. [7]. Adhikari [8] studied the MHD micropolar fluid flow 

towards a stagnation point on a vertical surface under induced magnetic field with radiation heat flux. Unsteady 

MHD forced convection flow and mass transfer along a vertical stretching sheet with heat source/sink and 

variable fluid properties was discussed by Sharma et al. [9]. The objective of this paper is to investigate the heat 

and mass transfer on an unsteady MHD micropolar fluid along a vertical stretching sheet under the influence of 

induced magnetic field. The fluid viscosity and thermal conductivity are assumed to be the inverse linear 

functions of temperature following Lai and Kulacki [10]. The governing partial differential equations of motion 
are reduced to ordinary differential equations using similarity transformations, which are solved numerically for 

prescribed boundary conditions by shooting method. 

 

 

 

II.   MATHEMATICAL FORMULATION 
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Fig.1:  Physical model and coordinate   system 

 

We consider an unsteady two dimensional incompressible MHD micropolar fluid past a stretching sheet in the 

region y>0. The physical model and the coordinate system is depicted in Figure 1. The sheet moves in its own 

plane with a velocity Uw=  where a (>0) is the stretching parameter and α (>0) is the unsteadiness parameter 

and both have dimensions time-1. The temperature Tw(x,t) of the sheet and concentration Cw(x,t)  near the sheet 

are assumed to be vary with time t and distance x along the sheet. The magnetic Reynolds number of the flow is 

taken to be large enough so that induced magnetic field is not negligible. A uniform induced magnetic field of 

strength H0 is assumed to be applied in the positive y-direction, normal to the vertical plate. The normal 

component of the induced magnetic field Hy vanishes when it reaches the wall and the parallel component Hx 

approaches the value of H0. The volumetric rate of heat generation / absorption is given as 

         Q(t)=Q0(1-αt)-1 
      Under the above assumptions, the governing equations are given by as follows: 

Basic Equations: 

Continuity Equation: 

       +  = 0                                                                                                                                           (1) 

                                                                                                                                 

Gauss Law of Magnetism: 

     +  = 0                                                                                                                                         (2) 

                                                                                                                               

Momentum Equation: 

 +u +v  = ( + (  + ) + g (T- ) + g (C- ) + (   +  )  (3)                                                              

                                                                                         

Angular Momentum Equation: 

ρ  + u  + v  ) = - κ (2N +  ) + 𝛾                                                                                      (4) 

 

Energy Equation: 

+u +v = ( + + (T- )                                                      (5) 

                                                                                                                                                                                                              

Magnetic Induction Equation: 

 + u  + v   =                                                                                                                     (6) 

Concentration Equation: 

 + u  + v   = (   )                                                                                                                 (7) 

 

where t is the non-dimensional time, u and v are the components of velocity along x and y- directions 

respectively, ρ is the fluid density, μ
 
is the coefficient of dynamic viscosity, κ is the vortex viscosity, N is the 

microrotation component, g is the acceleration due to gravity, β and β′ are the coefficients of thermal and 

concentration expansion respectively. is the magnetic permeability, Hx and Hy are the x and y component of 

induced magnetic field, 𝛾 is the spin gradient viscosity, j is the micro-inertia density, T is the temperature of the 

fluid, 𝜆 is the thermal conductivity, cp is the specific heat at the constant pressure, 𝜎 is the electrical conductivity, 
C is the concentration of the fluid within the boundary layer, T∞ is the temperature of the fluid far away from the 
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sheet, C∞ is the concentration of the fluid far away from the sheet, Q(x) is the heat generation (>0) or absorption 

(<0) coefficient, Dm 
is the molecular diffusivity of the species concentration. 

The boundary conditions are given as: 

y = 0 : u = Uw(x,t),  v = 0,  N = 0, T = Tw(x,t),     = Hy = 0, C=Cw(x,t) 

y  : u  0,    N   0, T   T∞, Hx =  , C C∞                                                                                  (8) 

                                                                                                                                                     

 
Where Uw is the uniform velocity of the plate, Tw and Cw 

are the temperature and concentration on the surface, 

T∞ and C∞ are the temperature and concentration of the fluid at infinity. 

Following Lai and Kulacki, the variation of the fluid viscosity and thermal conductivity can be assumed as 

follows: 

 = [1 + δ(T-T∞)]  or   = 𝜁(T-Tr) where 𝜁=  and Tr = T∞ -    

 = [1 + 𝜉(T-T∞)]  or   = 𝜀(T-Tc) where 𝜀=  and Tc = T∞ -                                                                 (9) 

              Where 
 
is the viscosity at infinity, 𝜁  and T∞ are constants, Tr is transformed reference temperature, δ 

and 
 
𝜉 are constants based on thermal property of the fluid. Also,  is the thermal conductivity at the infinity, 𝜀 

and Tc 
are constants and their values depend on the reference state and thermal properties of the fluid. 

To solve Eqs. (1)-(7) subject to the boundary conditions given in Eq. (8), the following similarity 

transformations has been introduced: 

η = y ,     ψ(x,y,t) = xf(η),     N = xg(η), 

𝜃(η) =  ,    Tw(x,t) = T∞ +  

𝜙(η) =  ,      Cw(x,t) = C∞ +  

 = h′(η),    =  h(η) 

u =  ,    v =                                                                                                                                       (10) 

 

where η  is the similarity parameter and  stands for kinematic viscosity at T=T∞. 
 From Eqs. (8) and (9),  

ν =   ,                                                                                                                       (11) 

      where and  are the dimensionless parameters that characterise the influence of viscosity and thermal 

conductivity respectively and are given by, 

=  = -   , =  = -                                                                                        (12) 

 
Eqs. (1) and (2) are identically satisfied using Eq. (10) and therefore the velocity field and magnetic fields are 

compatible  and represents the possible fluid motion.  

Using  Eqs. (8) - (12) in Eqs. (3) - (7) we get the following differential equations: 

(  – K)f′′′ = [  + f - Aη] f′′ - (f′+A) f′ + Kg′ + 𝜃 +  𝜙 + M[(h′)2 - hh′′]                         (13) 

  Δg′′ = (g′η+3g) + f′g - fg′ + KG(2g+f′′)                                                                                               (14) 

  𝜃′′=  + Pr[Ec(K- )  + (f -  ) +  (2f′ -  + S)𝜃]                                                      (15) 

   h′′=(  – f) h′′Pm + Ah′Pm + hf′′Pm                                                                                                                (16)                                            

   𝜙′′=  - Sc[A( + ) – 2f′𝜙 - 𝜙′f]                                                                                                          (17)                     

  Where the primes denote differentiation with respect to η.  

The corresponding boundary conditions are, 

f(0)=0, f′(0)=1, g(0)=0, 𝜃(0)=1, h=h′′=0, 𝜙(0)=1 

f′(∞)=0 ,g(∞)=0, 𝜃(∞)=0, h′(∞)=1, 𝜙(∞)=0                                                                                                (18) 

The four important physical quantities for this problem are the skin friction co-efficient (cf), the wall couple 
stress (mw), Nusselt number (Nu) and Sherwood number (Sh), which are defined by,                   

= where the shear stress at the surface is   + kN]y=0, 
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=𝛶   ,   Nu=   where the heat flux is  =-𝜆 ]y=0                                                              

And Sh=-  ,  where Js=[- y=0  

Therefore, 
1/2 = 2(K - )f′′(0),   =𝛶   g′(0),    Nu -1/2= 𝜃′(0) and  Sh 1/2 = - 𝜙′(0) 

 

III.   RESULTS AND DISCUSSION 

 
The system of equations (Eqs.13-17) together with the boundary conditions (Eq.18) are solved for various 

parameters involved in the equations numerically by using the fourth order Runge-Kutta method based on 

shooting technique. To find the solution, the numerical values of different parameters are taken as 𝜃c = -5, 𝜃r = -

5, M=.1, A=.4, G=.2, Pr=.72, Ec=.01, K=.5, Δ =.3, Sc=.2, Gr=.1, Gc=.1, Pm=.1, S=.5, V=1 unless otherwise 

stated. The main aim of this study is to bring out the effects of variable viscosity and thermal conductivity on the 

governing flow with the combination of the other flow parameters involved in the problem. The numerical 

computations have been carried out by developing codes for MATLAB. The results are presented graphically to 

get a physical insight of the problem for the dimensionless velocity profile f´(η), dimensionless microrotation 

profile g(η), temperature  profile 𝜃(η) , induced magnetic field profile H′(η) and concentration profile 𝜙(η)  with 
the variation of different parameters in Figures 2-26. In several practical problems, the characteristics such as 

skin-friction, wall couple stress, Nusselt number and Sherwood number  play important roles. Therefore, the 

missing values of  f´´(0), g´(0), 𝜃´(0), H′(0) and 𝜙´(0)  have been derived in Tables 1-3. Figures 2-11 represent 

the effects of  variable viscosity parameter  and thermal conductivity parameter on velocity profile f´(η), 

microrotation  profile g(η), temperature  profile 𝜃(η), induced magnetic field profile H′(η) and concentration 

profile 𝜙(η) respectively. From Figures 2, 4 and 6, it is observed that velocity, temperature and concentration 

profiles decrease with the increasing values of viscosity parameter whereas opposite trend is observed in Figures 

3 and 5 for microrotation and induced magnetic field profiles. Physically, if viscosity enhances there is an 

increment of the total viscosity in fluid as viscosity is directly proportional to vortex viscosity that makes the 
fluid more viscous and  the convective currents becomes weak. As a result velocity, temperature and 

concentration profiles reduce and  microrotation and induced magnetic fieid profiles enhance. From Figures 7-

11, it is observed that with the increasing values of thermal conductivity parameter, velocity, microrotation, 

temperature and induced magnetic field profiles reduce whereas concentration profile enhances. Due to the 

increase of thermal conduction within the boundary layer, the transposition of heat from region of higher 

temperature to the region of lower temperature increases, so temperature, velocity, microrotation and induced 

magnetic field profiles reduce and concentration profile increases within the boundary layer. Figures 12-15 

represent effects of coupling constant parameter K on velocity profile f´(η),  microrotation  profile g(η), 

temperature  profile 𝜃(η) and induced magnetic field profile H′(η). Since, coupling constant parameter is the 

ratio of vortex viscosity to the dynamic viscosity, so as K increases velocity and induced magnetic field profiles 

enhance and microrotation and temperature profiles are found to be reduced. Figures 16-25 exhibit effects of 
magnetic Prandtl number Pm and unsteadiness  parameter A on velocity profile f´(η),  microrotation  profile 

g(η), temperature  profile 𝜃(η) , induced magnetic field profile H′(η) and concentration profile 𝜙(η) respectively. 

From Figures 16-20, it is observed that velocity, microrotation, temperature, induced magnetic field and 

concentration profiles decrease with the increasing values of Pm. Physically, magnetic Prandtl number is 

defined as the ratio of momentum diffusivity ( or viscosity) to the magnetic diffusivity and hence the above 

results are obvious. From Figures 21, 23-25, it is observed that due to the increasing values of unsteadiness 

parameter A, velocity, temperature, induced magnetic field and concentration profiles decrease whereas 

opposite trend is observed in microrotation  profile from the Figure 22. Physically, since time is inversely 

proportional to velocity, temperature, magnetic diffusivity and mass diffusion and is directly proportional to the 

angular momentum and hence the above results are obvious with time parameter.  Figure 26 represents the 

effect of Schmidt number  on concentration profile. Since  is the ratio of viscosity to the mass diffusion, so 

with the increasing values of , the molecular mass diffusivity decreases and as a result the concentration 

profiles reduces. From the Tables 1-3, it is observed that, with the increasing values of viscosity parameter  , 

thermal conductivity parameter  , unsteadiness parameter A, microrotation parameter G and magnetic Prandtl 

number Pm, the values of f′′(0) and 𝜃′(0) are decreasing. Similarly, the values of g´(0) increases with increasing 

values of , Pm and A whereas decreases with G and . The values of f′(0) decreases with , Pm and A but 

increases with  and G. Also the values of H′(0) reduces with the increasing value of  , G, A and magnetic 

Prandtl number Pm; but opposite trend is observed  with . Tables 4 and 5 display a comparison of  missing 

values of  f´´(0) , 𝜃´(0) and 𝜙´(0) of present study with previous work of Sharma et al. [9] and a significant 

result has been observed  by addition of the new parameters in the present work.                                          
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Figures 2-26 for  dimensionless velocity distribution f′(η), dimensionless microrotation distribution  g(η) , 

temperature distribution  𝜃(η) , induced magnetic field distribution Hˊ(η) and
 
 concentration distribution 𝜙(η) 

with the variation of different parameters and missing value and comparison Tables 1-5  are displayed below : 
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Fig. 2:  Velocity for various                                                 Fig.3: Microrotation  for various  
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Fig.4: Temperature for various                                             Fig. 5: Induced magnetic field for various  
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Fig. 6: Concentration for various                                       Fig. 7:Velocity for various  
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Fig.8: Microrotation  for various                                       Fig.9:Temperature for various  
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Fig.10: Induced magnetic field for various 𝜃c                    Fig.11: Concentration for various 𝜃c 
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Fig.12: Velocity for various K                                               Fig.13: Microrotation for various K 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





K=.1,.4,.7,1

               
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.8

0.85

0.9

0.95

1



H
'

K-.1,.2,.3,.4,.5

 
Fig.14: Temperature for various K                                        Fig.15:Induced magnetic field for various K 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f' Pm=.1,.2,.3,.4,.5

                  
0 1 2 3 4 5

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0



g

Pm=.1,.2,.3,.4,.5

 
Fig.16: Velocity for various Pm                                           Fig.17: Microrotation for various Pm 
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Fig.18:Temperature for various Pm                                   Fig.19: Induced magnetic field for various Pm 
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Fig.20: Concentration for various Pm                                  Fig.21: Velocity for various A 
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Fig.22: Microrotation for various A                                      Fig.23: Temperature for various A 
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Fig.24: Induced magnetic field for various A                     Fig.25: Concentration for  various A 
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Fig.26: Concentration for various  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Estimated missing values of f´´(0), g´(0), 𝜃´(0), H′(0)  and 𝜙´(0) for various  and A and  =-.5, 

M=.1, G=.2, Pr =.72,  =.01, K=.5, Δ =.3, =.2, Gr=.1, Gc=.1, Pm=.1, S=.5, V=1. 

 

A 
 f′′(0) g′(0) 𝜃 ′(0) 𝛷′(0) H′(0) 

.2 -0.5 -1.49401 -0.02806 0.084896 0.190353 1.011265 

-0.4 -1.556 -0.02744 0.070182 0.078275 1.00757 

-0.3 -1.6484 -0.02669 0.046392 -0.15646 1.001574 

.3 -0.5 -1.66681 -0.00794 -0.16695 -0.41431 0.901973 

-0.4 -1.72137 -0.0071 -0.17672 -0.51192 0.899079 

-0.3 -1.80103 -0.0059 -0.19115 -0.67786 0.89472 

.4 -0.5 -1.77678 0.011576 -0.34949 -0.60887 0.81168 
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-0.4 -1.82816 0.012709 -0.35794 -0.70953 0.809137 

-0.3 -1.90462 0.014377 -0.37043 -0.8746 0.8053 

 

Table 2: Estimated missing values of f´´(0) , g´(0), 𝜃´(0) ,H′(0) and 𝜙´(0)for various  and G and  = -.5, 

A=.4, M=.1, Pr =.72, =.01, K=.5, Δ =.3, =.2, Gr=.1, Gc=.1, Pm=.1, S=.5, V=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Estimated missing values of f´´(0) , g´(0), 𝜃´(0), H′(0) and 𝜙´(0) for various  and Pm and  = -.5, 

A=.4, G=.2, Pr =.72, =.01, K=.5, Δ=.3, =.2, Gr=.1, Gc=.1, M=.1, S=.5, V=1. 

 

Pm 
 

f′′(0) g′(0) 𝜃 ′(0) 𝛷′(0) H′(0) 

.1 -0.5 -1.77678 0.011576 -0.34949 -0.60887 0.81168 

-0.4 -1.82816 0.012709 -0.35794 -0.70953 0.809137 

-0.3 -1.90462 0.014377 -0.37043 -0.8746 0.8053 

.2 -0.5 -1.81054 0.01267 -0.36421 -0.62377 0.702587 

-0.4 -1.86301 0.0138 -0.37308 -0.72509 0.698509 

-0.3 -1.94132 0.015461 -0.3862 -0.89079 0.692375 

.3 -0.5 -1.83018 0.013265 -0.3727 -0.6322 0.631238 

-0.4 -1.88325 0.014388 -0.3818 -0.7339 0.626115 

-0.3 -1.9626 0.016038 -0.39527 -0.89995 0.618433 

 

Table 4: Comparison of missing values of f´´(0) , 𝜃´(0)  and 𝜙´(0) for various values of A . 

 

Previous work, Sharma et al [10] Present work 

A f′′(0) 𝜃′(0) 𝛷′(0) f′′(0) 𝜃′(0) 𝛷′(0) 

.2 -2.08074 -0.52859 -0.3099 -1.37548 0.102311 0.246808 

.3 -2.13502 -0.64495 -0.37101 -1.56212 -0.14961 -0.2358 

.4 -2.18574 -0.74768 -0.42744 -1.68935 -0.33481 -0.40749 

 

Table 5: Comparison of missing values of f´´(0) , 𝜃´(0)  and 𝜙´(0) for various values of Gr. 

 

Previous work, Sharma et al [10] Present work 

Gr f′′(0) 𝜃′(0) 𝛷′(0) f′′(0) 𝜃′(0) 𝛷′(0) 

.1 -2.02171 -0.39331 -0.24254 -1.96859 -0.36733 -0.29491 

.2 -1.97715 -0.38864 -0.24223 -1.87887 -0.34914 -0.28426 

.3 -1.93264 -0.38399 -0.24191 -1.79141 -0.3314 -0.27381 

 

 

 

IV.  CONCLUSION 

 

From the above study, the following significant observations has been found: 

 

G  f′′(0) g′(0) 𝜃 ′(0) 𝛷′(0) H′(0) 

.1 

-0.5 -1.84593 0.05171 -1.242 -0.61215 0.815609 

-0.4 -1.85864 0.05142 -1.51657 -0.61077 0.81661 

-0.3 -1.87585 0.05095 -1.98766 -0.6079 0.818168 

.2 

-0.5 -1.85685 0.01093 -1.24224 -0.61052 0.814822 

-0.4 -1.86957 0.01059 -1.51692 -0.60906 0.815826 

-0.3 -1.88678 0.01001 -1.98815 -0.60608 0.817389 

.3 

-0.5 -1.87712 -0.12183 -1.24178 -0.60708 0.8137 

-0.4 -1.8899 -0.12198 -1.51664 -0.60548 0.814702 

-0.3 -1.90717 -0.12233 -1.98809 -0.60231 0.816268 
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     1.  When the effects of variable viscosity and thermal conductivity are taken into account, the flow 

characteristics are significantly changed as shown in the Tables 4-5. 

     2. Velocity reduces with the increasing values of viscosity parameter   , thermal conductivity 

parameter   , magnetic Prandtl number Pm and unsteadiness parameter A; but reverse trend happens with 

coupling constant parameter K. 

   3. Temperature decreases with the increasing values of viscosity parameter   , thermal conductivity 

parameter  , magnetic Prandtl number Pm, unsteadiness parameter A and coupling constant parameter K. 

   4.  Microrotation enhances due to the increasing values of viscosity parameter   , and unsteadiness 

parameter A, whereas it decreases with the increasing values of thermal conductivity parameter  , 

coupling constant parameter K and magnetic Prandtl number Pm . 

  5. Concentration reduces with the increasing values of viscosity parameter  , Schmidt number Sc , 

magnetic Prandtl number Pm and unsteadiness parameter A; but reverse trend happens with thermal 

conductivity parameter  . 

  6. Induced magnetic field reduces with the increasing values of thermal conductivity parameter , 

magnetic Prandtl number Pm and unsteadiness parameter A; but increases with viscosity parameter   and 

coupling constant parameter K. 

  7. With the increasing values of viscosity parameter   and thermal conductivity parameter   the values 

of f′′(0) and 𝜃′(0) decrease.  
  8. It is hoped that the findings of this investigation may be useful for further studies in the field of fluid 

mechanics. 

 

V.  NOMENCLATURE 

 

t                 Non dimensional time, 

(u,v)          Velocity components of the fluid, 

ρ                Fluid density, 

      μ                Coefficient of dynamic viscosity, 

      k                Vortex viscosity, 

      N               Microrotation  component, 
       g                Acceleration due to gravity, 

      (β,β′)           Coefficients of thermal and concentration expansion, 

       e               Magnetic permeability, 

      (Hx,Hy)        x and y component of induced magnetic field, 

        
 𝛶             Spin gradient viscosity, 

        
 j             Micro-inertia density, 

        T               Temperature of the fluid, 

         𝜆             Thermal conductivity , 

        
 cp            Specific heat at the constant pressure , 

         𝜎            Electrical conductivity, 

         C       Concentration of the fluid within the  boundary layer, 

         T∞            Temperature of the fluid far away from the sheet, 

         C∞           Concentration of the fluid far away from the sheet, 

         Q(x)        Heat generation (>0) or absorption (<0) coefficient,
 

          mD          Molecular diffusivity of the species concentration, 

          K           Coupling constant parameter, 

         A            Unsteadiness parameter , 

         rG           Grashof nummber , 

         cG           Modified Grashof number, 

                      Material constant , 

          G            Local microrotation parameter, 

          rP
               Prandtl number , 

          cE           Eckert number 

          cS            Schmidt number , 
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          Pm           Magnetic Prandtl number, 

          e             Magnetic diffusivity, 

          M             Induced magnetic parameter, 

           S          Heat generation/absorption parameter. 
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