EDGE MEAN LABELING OF A REGULAR GRAPHS

K.SuriyaPrabha ${ }^{1}$
Department of Mathematics
Alagappa University, karaikudi-630 003
Tamilnadu, India.

S.Amutha ${ }^{2}$
Ramaujan Centre for Higher Mathematics(RCHM)
Alagappa University, karaikudi-630 003
Tamilnadu, India.

Abstract

In this paper, we introduce a concept of edge odd and even mean labeling of a regular graph and also investigate the behaviour of some standard graphs.

Key words: Mean labeling, edge odd mean labeling, edge even mean labeling.

AMS Subject Classification :05c

1 Introduction

As a standard notation, assume that $G=G(V, E)$ is a finite, simple and undirected graph with p vertices and q edges. Terms and terminology as in Harary [3]. Mean labeling was introduced by S.Somasundaram and R.Ponraj in [6]. In this paper, we study the edge odd and even mean labeling of a regular graph obtained by joining some standard graphs.
Path on r vertices denoted by P_{r} and a cycle on r vertices is denoted by C_{r}. $K_{1, m}$ is called a star and it is denoted by S_{m}. Regular graph on n degree denoted by Q_{n}.
Definition 1.1 A graph labeling is an assignment of integers, to the vertices or edges, or both of a graph. An edge labeling is a function of E to a set of labels. A graph with such a function defined is called a edge labeled graph.

Definition 1.2 A graph G with p vertices and q edges is a mean graph if there is an injective function f from the edges of G to $\{0,1,2, \ldots . . q\}$. Such that when each vertex $u \in V(G)$ is labeled with $\frac{\sum_{n=1}^{k} f\left(e_{n}\right)}{2}$ if $\sum f\left(e_{n}\right)$ is even and $\frac{\sum_{n=1}^{k} f\left(e_{n}\right)+1}{2}$ if $\sum f\left(e_{n}\right)$ is odd. Where $f\left(e_{n}\right)$ is the number of edge labels incident with each vertex $u \in V(G)$. Then the resulting vertices are all distinct.

Definition 1.3 A graph G with p vertices to be an edge odd mean graph if there is an injective function from the edges of G to $\{1,3,5, \ldots . .2 q-1\}$. Such that when each vertex $u \in V(G)$ is labeled with $\frac{\sum_{n=1}^{k} f\left(e_{n}\right)}{2}$ if $\sum f\left(e_{n}\right)$ is even and $\frac{\sum_{n=1}^{k} f\left(e_{n}\right)+1}{2}$ if $\sum f\left(e_{n}\right)$ is odd. Where $f\left(e_{n}\right)$ is the number of edge labels incident with each vertex $u \in V(G)$. Then the resulting vertices are all distinct. Such a function is called an edge odd mean labeling.

Definition 1.4 A graph G with p vertices to be an edge even mean graph if there is an injective function from the edges of G to $\{2,4,6, \ldots . .2 q\}$. Such that the vertex labels are given by $\frac{\sum_{n=1}^{k} f\left(e_{n}\right)}{2}$ are distinct. Such a function is called an edge even mean labeling.

Definition 1.5 The join of graphs k_{1} and $Q_{n}, k_{1}+Q_{n}$ is obtained by joining a vertex of k_{1} with every vertex of Q_{n} with an edge.

Definition 1.6 The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G (which has p vertices and p copies of G_{2}) and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertices in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.7 The graph $\left[Q_{n} ; S_{2}\right]$ is obtained from n copies of S_{2} and the regular $Q_{n}: u_{1}, u_{2}, u_{3}, \ldots . . u_{r}$ by joining u_{j} with the vertex v_{0} of the $j^{\text {th }}$ copy of S_{2} by means of an edge $1 \leq j \leq r$.

2 Edge Odd And Even Mean Labeling

In this section, we prove that the graph $Q_{n}, k_{1}+Q_{n}, P_{r}+Q_{n}, k_{2}+Q_{n}$, $Q_{n}+C_{r}, Q_{n} \odot K_{1},\left[Q_{n} ; S_{2}\right]$, and $Q_{n} \odot K_{1, m}$ are edge odd and even mean labeling.

Theorem 2.1 For $n \geq 3$, the graph Q_{n} has edge odd mean labeling. proof The graph Q_{n} has 2^{n} vertices and $2^{n-1} \cdot n$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, e_{4}, \ldots . . e_{r}$ be the edges of the graph Q_{n}. Define an edge labeling $f: E\left(Q_{n}\right) \rightarrow\{1,3,5,7, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-1 & \text { if } i=1,2,3,4, \ldots . r \\ 4 i-3 & \text { if } i=1,2,3,4, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph Q_{n}.

Theorem 2.2 For $n \geq 3$, the graph Q_{n} has edge even mean labeling. proof Define an edge labeling $f: E\left(Q_{n}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i & \text { if } i \text { is odd and even } \\ 4 i-2 & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph Q_{n}.

Theorem 2.3 For $n \geq 3$, the graph $K_{1}+Q_{n}$ has edge odd mean labeling. proof The graph $K_{1}+Q_{n}$ has $2^{n}+1$ vertices and $2^{n-1} \cdot n+2^{n}$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph Q_{n}.
Define an edge labeling $f: E\left(K_{1}+Q_{n}\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-3 & \text { if } i=1,2,3, \ldots . r \\ 4 i-1 & \text { if } i=1,2,3, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $k_{1}+Q_{n}$.

Example 2.4 The edge odd mean labeling of $K_{1}+Q_{3}$ is given in figure1.

Theorem 2.5 For $n \geq 3$, the graph $K_{1}+Q_{n}$ has edge even mean labeling. proof Define an edge labeling $f: E\left(K_{1}+Q_{n}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}6 i-4 & \text { if } i=1,2,3, \ldots . r \\ 6 i-2 & \text { if } i=1,2,3, \ldots . . r \\ 3 i & \text { if } i \text { is even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $k_{1}+Q_{n}$.

Theorem 2.6 For $n \geq 3$, the graph $P_{r}+Q_{n}$ has edge odd mean labeling. proof The graph $P_{r}+Q_{n}$ has $2^{n}+r$ vertices and $2^{n-1} \cdot n+r \cdot 2^{n}+(r-1)$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph $P_{r}+Q_{n}$.
Define an edge labeling $f: E\left(P_{r}+Q_{n}\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}2 i-1 & \text { if } i \text { is odd } \\ 2 i-1 & \text { if } i \text { is even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $P_{r}+Q_{n}$.

Example 2.7 The edge odd mean labeling of $P_{r}+Q_{n}$ is given in figure2.

Theorem 2.8 For $n \geq 3$, the graph $P_{r}+Q_{n}$ has edge even mean labeling. proof Define an edge labeling $f: E\left(P_{r}+Q_{n}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-2 & \text { if } i=1,2,3,4, \ldots . r \\ 4 i & \text { if } i=1,2,3,4, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $P_{r}+Q_{n}$.

Theorem 2.9 For $n \geq 3$, the graph $k_{2}+Q_{n}$ has edge odd mean labeling. proof The graph $K_{2}+Q_{n}$ has $2^{n}+2$ vertices and $2^{n-1} \cdot n+2^{n+1}+1$ edges. where n is the number of edges touching with each vertex. Let e be an edge of the graph K_{2} and let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph Q_{n}.
Define an edge labeling $f: E\left(K_{2}+Q_{n}\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
\begin{aligned}
& f(e)=1 \\
& f\left(e_{i}\right)=\left\{\begin{array}{ll}
4 i-1 & 1 \leq i \leq r \\
2 i+3 & \text { i is even } r \text { is odd } \\
2 i+3 & \text { i is odd }
\end{array} \quad \text { if } r\right. \text { is odd }
\end{aligned}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $k_{2}+Q_{n}$.

Example 2.10 The edge odd mean labeling of $K_{2}+Q_{n}$ is given in figure3.

Theorem 2.11 For $n \geq 3$, the graph $K_{2}+Q_{n}$ has edge even mean labeling. proof Define an edge labeling $f: E\left(K_{2}+Q_{n}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f(e)=2
$$

$$
f\left(e_{i}\right)=\left\{\begin{array}{lll}
4 i & 1 \leq i \leq r & \text { if } r \text { is odd } \\
2 i+4 & i \text { is odd } & \\
2 i+4 & i \text { is even } & \text { if } r \text { is even }
\end{array}\right.
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $k_{2}+Q_{n}$.

Theorem 2.12 For $n \geq 3$, the graph $Q_{n}+C_{r}$ has edge odd mean labeling. proof The graph $Q_{n}+C_{r}$ has $2^{n}+r$ vertices and $2^{n-1} \cdot n+r \cdot 2^{n}+r$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph $Q_{n}+C_{r}$. Define an edge labeling $f: E\left(Q_{n}+C_{r}\right) \rightarrow$ $\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-1 & \text { if } i=1,2,3, \ldots . r \\ 4 i-3 & \text { if } i=1,2,3, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_{n}+C_{r}$.

Example 2.13 The edge odd mean labeling of $Q_{3}+C_{3}$ is given in figure4.

Theorem 2.14 For $n \geq 3$, the graph $Q_{n}+C_{r}$ has edge even mean labeling. proof Define an edge labeling $f: E\left(Q_{n}+C_{r}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-2 & \text { if } i=1,2,3, \ldots . r \\ 4 i & \text { if } i=1,2,3, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_{n}+C_{r}$.

Theorem 2.15 For $n \geq 3$, the graph $Q_{n} \odot K_{1}$ has edge odd mean labeling. proof The graph $Q_{n} \odot K_{1}$ has 2^{n+1} vertices and $2^{n-1} \cdot n+2^{n}$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph $Q_{n} \odot K_{1}$.
Define an edge labeling $f: E\left(Q_{n} \odot K_{1}\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}6 i-5 & \text { if } i \text { is odd and even } \\ 6 i-3 & \text { if } i \text { is odd and even } \\ 6 i-1 & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_{n} \odot K_{1}$.

Example 2.16 The edge odd mean labeling of $Q_{3} \odot K_{1}$ is given in figure5.

Theorem 2.17 For $n \geq 3$, the graph $Q_{n} \odot K_{1}$ has edge even mean labeling. proof Define an edge labeling $f: E\left(Q_{n} \odot K_{1}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}6 i-4 & \text { if } i \text { is odd and even } \\ 6 i-2 & \text { if } i \text { is odd and even } \\ 6 i & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_{n} \odot K_{1}$.

Theorem 2.18 For $n \geq 3$, the graph $\left[Q_{n} ; S_{2}\right]$ has edge odd mean labeling. proof The graph $\left[Q_{n} ; S_{2}\right]$ has $2^{n}+2^{n+1}$ vertices and $2^{n-1} \cdot n+2^{n+1}$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph $\left[Q_{n} ; S_{2}\right]$.
Define an edge labeling $f: E\left(\left[Q_{n} ; S_{2}\right]\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-3 & \text { if } i \text { is odd and even } \\ 4 i-1 & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $\left[Q_{n} ; S_{2}\right]$.

Example 2.19 The edge odd mean labeling of $\left[Q_{3} ; S_{2}\right]$ is given in figure6.

figure 6
Theorem 2.20 For $n \geq 3$, the graph $\left[Q_{n} ; S_{2}\right]$ has edge even mean labeling. proof Define an edge labeling $f: E\left(\left[Q_{n} ; S_{2}\right]\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}4 i-2 & \text { if } i=1,2,3, \ldots . r \\ 4 i & \text { if } i=1,2,3, \ldots . r\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $\left[Q_{n} ; S_{2}\right]$.

Theorem 2.21 For $n, m \geq 3$, the graph $Q_{n} \odot K_{1, m}$ has edge odd mean labeling.
proof The graph $Q_{n} \odot K_{1, m}$ has $2^{n}+m \cdot 2^{n}$ vertices and $2^{n-1} \cdot n+m \cdot 2^{n}$ edges. where n is the number of edges touching with each vertex. Let $e_{1}, e_{2}, e_{3}, \ldots . . e_{r}$ be the edges of the graph $Q_{n} \odot K_{1, m}$.
Define an edge labeling $f: E\left(Q_{n} \odot K_{1, m}\right) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}8 i-7 & \text { if } i=1,2,3, \ldots . . r \\ 8 i-5 & \text { if } i \text { is odd and even } \\ 8 i-3 & \text { if } i=1,2,3, \ldots . . r \\ 8 i-1 & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_{3} \odot K_{1,3}$.

Example 2.22 The edge odd mean labeling of $Q_{3} \odot K_{1,3}$ is given in figure 7 .

figure 7
Theorem 2.23 For $n, m \geq 3$, the graph $Q_{n} \odot K_{1, m}$ has edge even mean labeling.
proof Define an edge labeling $f: E\left(Q_{n} \odot K_{1, m}\right) \rightarrow\{2,4,6, \ldots . .2 q\}$ by

$$
f\left(e_{i}\right)= \begin{cases}8 i-6 & \text { if } i=1,2,3, \ldots . . r \\ 8 i-4 & \text { if } i \text { is odd and even } \\ 8 i-2 & \text { if } i=1,2,3, \ldots . r \\ 8 i & \text { if } i \text { is odd and even }\end{cases}
$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_{3} \odot K_{1,3}$.

3 Conclusion

The main focus of this paper is resolving the edge mean labeling of a regular graphs for some standard graphs.

4 Acknowledgement

This work was supported by the AURF Fellowship-2017(Ph.D/1475/AURF Fellowship/2017) to the first author.

References

[1] J.A.Bondy and U.S.R Murthy, Graph theory and Applications North-Holland, Newyork(1976).
[2] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 17(2014).
[3] F.Harary, Graph Theory, Addison welsey, Reading Mass.,1972.
[4] K.Manickam and M.Marudai, odd mean labeling of graphs, Bulletin of Pure and Applied Sciences, Vol.25E(1)(2006), 149-153.
[5] N.Revathi, Vertex Odd Mean and Even Mean Labeling of Some Graphs, IOSR Journal of Mathematics, vol.11,(2015), 70-74.
[6] S.Somasundaram and R.Ponraj, Mean labeling of graphs, Natl.Acad, Sci.Let.,26(2003)210-213.
[7] S.Somasundaram and P.Vidhyarani and S.S.Sandhya, Some Results on Geometric Mean Graphs, Internation Mathematical Forum, Vol.7, 2012, No.28, 1381-1391.
[8] R.Vasuki,A.Nagarajan and S.Arockiaraj, Even Vertex odd mean Labeling of graphs, SUT Journal of Mathematics, Vol.49, No.2(2013),79-92.

