EDGE MEAN LABELING OF A REGULAR GRAPHS

K.SuriyaPrabha¹ Department of Mathematics Alagappa University, karaikudi-630 003 Tamilnadu, India.

S.Amutha² Ramaujan Centre for Higher Mathematics(RCHM) Alagappa University, karaikudi-630 003 Tamilnadu, India.

Abstract

In this paper, we introduce a concept of edge odd and even mean labeling of a regular graph and also investigate the behaviour of some standard graphs.

Key words: Mean labeling, edge odd mean labeling, edge even mean labeling.

AMS Subject Classification :05c

1 Introduction

As a standard notation, assume that G = G(V, E) is a finite, simple and undirected graph with p vertices and q edges. Terms and terminology as in Harary [3]. Mean labeling was introduced by S.Somasundaram and R.Ponraj in [6]. In this paper, we study the edge odd and even mean labeling of a regular graph obtained by joining some standard graphs.

Path on r vertices denoted by P_r and a cycle on r vertices is denoted by C_r . $K_{1,m}$ is called a star and it is denoted by S_m . Regular graph on n degree denoted by Q_n .

Definition 1.1 A graph labeling is an assignment of integers, to the vertices or edges, or both of a graph. An edge labeling is a function of E to a set of labels. A graph with such a function defined is called a edge labeled graph.

ISSN: 2231-5373

http://www.ijmttjournal.org

Definition 1.2 A graph G with p vertices and q edges is a mean graph if there is an injective function f from the edges of G to $\{0, 1, 2, ..., q\}$. Such

that when each vertex $u \in V(G)$ is labeled with $\frac{\sum_{n=1}^{k} f(e_n)}{2}$ if $\sum f(e_n)$ is even

and $\frac{\sum\limits_{n=1}^{k} f(e_n)+1}{2}$ if $\sum f(e_n)$ is odd. Where $f(e_n)$ is the number of edge labels incident with each vertex $u \in V(G)$. Then the resulting vertices are all distinct.

Definition 1.3 A graph G with p vertices to be an edge odd mean graph if there is an injective function f from the edges of G to $\{1, 3, 5, \dots, 2q - 1\}$.

Such that when each vertex $u \in V(G)$ is labeled with $\frac{\sum\limits_{n=1}^{k} f(e_n)}{2}$ if $\sum f(e_n)$ is

even and $\frac{\sum_{n=1}^{k} f(e_n)+1}{2}$ if $\sum f(e_n)$ is odd. Where $f(e_n)$ is the number of edge labels incident with each vertex $u \in V(G)$. Then the resulting vertices are all distinct. Such a function is called an edge odd mean labeling.

Definition 1.4 A graph G with p vertices to be an edge even mean graph if there is an injective function f from the edges of G to $\{2, 4, 6, \dots, 2q\}$. Such

that the vertex labels are given by $\frac{\sum_{n=1}^{k} f(e_n)}{2}$ are distinct. Such a function is called an edge even mean labeling.

Definition 1.5 The join of graphs k_1 and Q_n , $k_1 + Q_n$ is obtained by joining a vertex of k_1 with every vertex of Q_n with an edge.

Definition 1.6 The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G (which has p vertices and p copies of G_2) and then joining the i^{th} vertex of G_1 to every vertices in the i^{th} copy of G_2 .

Definition 1.7 The graph $[Q_n; S_2]$ is obtained from n copies of S_2 and the regular $Q_n : u_1, u_2, u_3, \dots, u_r$ by joining u_j with the vertex v_0 of the j^{th} copy of S_2 by means of an edge $1 \leq j \leq r$.

2 Edge Odd And Even Mean Labeling

In this section, we prove that the graph Q_n , $k_1 + Q_n$, $P_r + Q_n$, $k_2 + Q_n$, $Q_n + C_r$, $Q_n \odot K_1$, $[Q_n; S_2]$, and $Q_n \odot K_{1,m}$ are edge odd and even mean labeling.

ISSN: 2231-5373

http://www.ijmttjournal.org

Theorem 2.1 For $n \ge 3$, the graph Q_n has edge odd mean labeling. **proof** The graph Q_n has 2^n vertices and $2^{n-1} \cdot n$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, e_4, \dots, e_r$ be the edges of the graph Q_n . Define an edge labeling $f: E(Q_n) \to \{1, 3, 5, 7, \dots, 2q-1\}$ by

$$f(e_i) = \begin{cases} 4i - 1 & \text{if } i = 1, 2, 3, 4, \dots, r \\ 4i - 3 & \text{if } i = 1, 2, 3, 4, \dots, r \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph Q_n .

Theorem 2.2 For $n \ge 3$, the graph Q_n has edge even mean labeling. **proof** Define an edge labeling $f : E(Q_n) \to \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 4i & \text{if } i \text{ is odd and even} \\ 4i - 2 & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph Q_n .

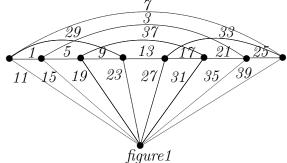
Theorem 2.3 For $n \ge 3$, the graph $K_1 + Q_n$ has edge odd mean labeling. **proof** The graph $K_1 + Q_n$ has $2^n + 1$ vertices and $2^{n-1} \cdot n + 2^n$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph Q_n .

Define an edge labeling $f : E(K_1 + Q_n) \to \{1, 3, 5, ..., 2q - 1\}$ by

$$f(e_i) = \begin{cases} 4i - 3 & \text{if } i = 1, 2, 3, \dots, r\\ 4i - 1 & \text{if } i = 1, 2, 3, \dots, r \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $k_1 + Q_n$.

Example 2.4 The edge odd mean labeling of $K_1 + Q_3$ is given in figure 1.



ISSN: 2231-5373

http://www.ijmttjournal.org

Theorem 2.5 For $n \ge 3$, the graph $K_1 + Q_n$ has edge even mean labeling. **proof** Define an edge labeling $f : E(K_1 + Q_n) \rightarrow \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 6i - 4 & \text{if } i = 1, 2, 3, \dots, r \\ 6i - 2 & \text{if } i = 1, 2, 3, \dots, r \\ 3i & \text{if } i \text{ is even} \end{cases}$$

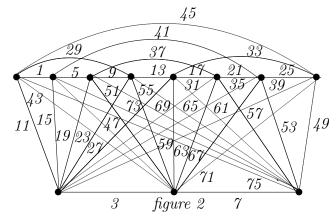
Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $k_1 + Q_n$.

Theorem 2.6 For $n \ge 3$, the graph $P_r + Q_n$ has edge odd mean labeling. **proof** The graph $P_r + Q_n$ has $2^n + r$ vertices and $2^{n-1} \cdot n + r \cdot 2^n + (r-1)$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph $P_r + Q_n$. Define an edge labeling $f : E(P_r + Q_n) \to \{1, 3, 5, \dots, 2q - 1\}$ by

$$f(e_i) = \begin{cases} 2i - 1 & \text{if } i \text{ is odd} \\ 2i - 1 & \text{if } i \text{ is even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $P_r + Q_n$.

Example 2.7 The edge odd mean labeling of $P_r + Q_n$ is given in figure 2.



Theorem 2.8 For $n \ge 3$, the graph $P_r + Q_n$ has edge even mean labeling. **proof** Define an edge labeling $f : E(P_r + Q_n) \rightarrow \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 4i - 2 & \text{if } i = 1, 2, 3, 4, \dots, r\\ 4i & \text{if } i = 1, 2, 3, 4, \dots, r \end{cases}$$

ISSN: 2231-5373

http://www.ijmttjournal.org

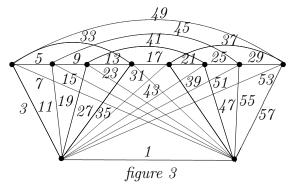
Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $P_r + Q_n$.

Theorem 2.9 For $n \ge 3$, the graph $k_2 + Q_n$ has edge odd mean labeling. **proof** The graph $K_2 + Q_n$ has $2^n + 2$ vertices and $2^{n-1} \cdot n + 2^{n+1} + 1$ edges. where n is the number of edges touching with each vertex. Let e be an edge of the graph K_2 and let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph Q_n . Define an edge labeling $f : E(K_2 + Q_n) \to \{1, 3, 5, \dots, 2q - 1\}$ by f(e) = 1

$$f(e_i) = \begin{cases} 4i - 1 & 1 \le i \le r & \text{if } r \text{ is odd} \\ 2i + 3 & i \text{ is even} \\ 2i + 3 & i \text{ is odd} & \text{if } r \text{ is odd} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $k_2 + Q_n$.

Example 2.10 The edge odd mean labeling of $K_2 + Q_n$ is given in figure 3.



Theorem 2.11 For $n \ge 3$, the graph $K_2 + Q_n$ has edge even mean labeling. **proof** Define an edge labeling $f : E(K_2 + Q_n) \rightarrow \{2, 4, 6, \dots, 2q\}$ by f(e) = 2

$$f(e_i) = \begin{cases} 4i & 1 \le i \le r & \text{if } r \text{ is odd} \\ 2i + 4 & i \text{ is odd} \\ 2i + 4 & i \text{ is even} & \text{if } r \text{ is even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $k_2 + Q_n$.

ISSN: 2231-5373

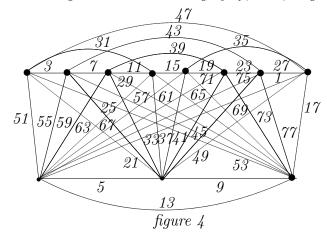
http://www.ijmttjournal.org

Theorem 2.12 For $n \ge 3$, the graph $Q_n + C_r$ has edge odd mean labeling. **proof** The graph $Q_n + C_r$ has $2^n + r$ vertices and $2^{n-1} \cdot n + r \cdot 2^n + r$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph $Q_n + C_r$. Define an edge labeling $f : E(Q_n + C_r) \rightarrow \{1, 3, 5, \dots, 2q - 1\}$ by

$$f(e_i) = \begin{cases} 4i - 1 & \text{if } i = 1, 2, 3, \dots, r\\ 4i - 3 & \text{if } i = 1, 2, 3, \dots, r \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_n + C_r$.

Example 2.13 The edge odd mean labeling of $Q_3 + C_3$ is given in figure 4.



Theorem 2.14 For $n \ge 3$, the graph $Q_n + C_r$ has edge even mean labeling. **proof** Define an edge labeling $f : E(Q_n + C_r) \rightarrow \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 4i - 2 & \text{if } i = 1, 2, 3, \dots, r\\ 4i & \text{if } i = 1, 2, 3, \dots, r \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_n + C_r$.

Theorem 2.15 For $n \ge 3$, the graph $Q_n \odot K_1$ has edge odd mean labeling. **proof** The graph $Q_n \odot K_1$ has 2^{n+1} vertices and $2^{n-1} \cdot n + 2^n$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph $Q_n \odot K_1$.

Define an edge labeling $f: E(Q_n \odot K_1) \rightarrow \{1, 3, 5, \dots, 2q-1\}$ by

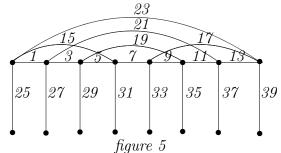
ISSN: 2231-5373

http://www.ijmttjournal.org

$$f(e_i) = \begin{cases} 6i - 5 & \text{if } i \text{ is odd and even} \\ 6i - 3 & \text{if } i \text{ is odd and even} \\ 6i - 1 & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_n \odot K_1$.

Example 2.16 The edge odd mean labeling of $Q_3 \odot K_1$ is given in figure 5.



Theorem 2.17 For $n \ge 3$, the graph $Q_n \odot K_1$ has edge even mean labeling. **proof** Define an edge labeling $f : E(Q_n \odot K_1) \rightarrow \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 6i - 4 & \text{if } i \text{ is odd and even} \\ 6i - 2 & \text{if } i \text{ is odd and even} \\ 6i & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_n \odot K_1$.

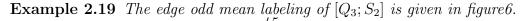
Theorem 2.18 For $n \geq 3$, the graph $[Q_n; S_2]$ has edge odd mean labeling. **proof** The graph $[Q_n; S_2]$ has $2^n + 2^{n+1}$ vertices and $2^{n-1} \cdot n + 2^{n+1}$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph $[Q_n; S_2]$. Define an edge labeling $f : E([Q_n; S_2]) \to \{1, 3, 5, \dots, 2q - 1\}$ by

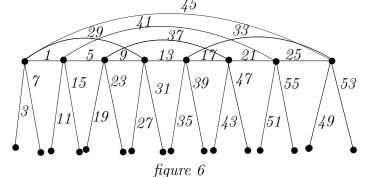
$$f(e_i) = \begin{cases} 4i - 3 & \text{if } i \text{ is odd and even} \\ 4i - 1 & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $[Q_n; S_2]$.

ISSN: 2231-5373

http://www.ijmttjournal.org





Theorem 2.20 For $n \ge 3$, the graph $[Q_n; S_2]$ has edge even mean labeling. **proof** Define an edge labeling $f : E([Q_n; S_2]) \rightarrow \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 4i - 2 & \text{if } i = 1, 2, 3, \dots, r\\ 4i & \text{if } i = 1, 2, 3, \dots, r \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $[Q_n; S_2]$.

Theorem 2.21 For $n, m \geq 3$, the graph $Q_n \odot K_{1,m}$ has edge odd mean labeling.

proof The graph $Q_n \odot K_{1,m}$ has $2^n + m \cdot 2^n$ vertices and $2^{n-1} \cdot n + m \cdot 2^n$ edges. where n is the number of edges touching with each vertex. Let $e_1, e_2, e_3, \dots, e_r$ be the edges of the graph $Q_n \odot K_{1,m}$.

Define an edge labeling $f: E(Q_n \odot K_{1,m}) \to \{1, 3, 5, \dots, 2q-1\}$ by

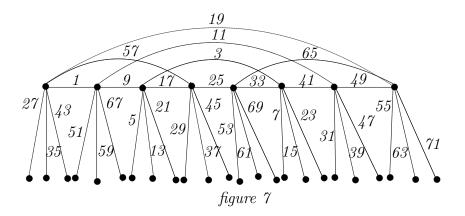
$$f(e_i) = \begin{cases} 8i - 7 & \text{if } i = 1, 2, 3, \dots, r\\ 8i - 5 & \text{if } i \text{ is odd and even}\\ 8i - 3 & \text{if } i = 1, 2, 3, \dots, r\\ 8i - 1 & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge odd mean labeling for the graph $Q_3 \odot K_{1,3}$.

Example 2.22 The edge odd mean labeling of $Q_3 \odot K_{1,3}$ is given in figure 7.

ISSN: 2231-5373

http://www.ijmttjournal.org



Theorem 2.23 For $n, m \geq 3$, the graph $Q_n \odot K_{1,m}$ has edge even mean labeling.

proof Define an edge labeling $f : E(Q_n \odot K_{1,m}) \to \{2, 4, 6, \dots, 2q\}$ by

$$f(e_i) = \begin{cases} 8i - 6 & \text{if } i = 1, 2, 3, \dots, r \\ 8i - 4 & \text{if } i \text{ is odd and even} \\ 8i - 2 & \text{if } i = 1, 2, 3, \dots, r \\ 8i & \text{if } i \text{ is odd and even} \end{cases}$$

Therefore mean of the vertex labels are all distinct. Hence the function f provides edge even mean labeling for the graph $Q_3 \odot K_{1,3}$.

3 Conclusion

The main focus of this paper is resolving the edge mean labeling of a regular graphs for some standard graphs.

4 Acknowledgement

This work was supported by the AURF Fellowship-2017 (Ph.D/1475/AURF Fellowship/2017) to the first author.

References

- [1] J.A.Bondy and U.S.R Murthy, Graph theory and Applications North-Holland, Newyork(1976).
- [2] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, 17(2014).
- [3] F.Harary, Graph Theory, Addison welsey, Reading Mass., 1972.
- [4] K.Manickam and M.Marudai, odd mean labeling of graphs, Bulletin of Pure and Applied Sciences, Vol.25E(1)(2006), 149-153.
- [5] N.Revathi, Vertex Odd Mean and Even Mean Labeling of Some Graphs, IOSR Journal of Mathematics, vol.11, (2015), 70-74.
- [6] S.Somasundaram and R.Ponraj, Mean labeling of graphs, Natl.Acad, Sci.Let.,26(2003)210-213.
- [7] S.Somasundaram and P.Vidhyarani and S.S.Sandhya, Some Results on Geometric Mean Graphs, Internation Mathematical Forum, Vol.7, 2012, No.28, 1381-1391.
- [8] R.Vasuki, A.Nagarajan and S.Arockiaraj, Even Vertex odd mean Labeling of graphs, SUT Journal of Mathematics, Vol.49, No.2(2013), 79-92.