The Kumar - Lagrenges Formula

Bharath Aldro Cless Saurabh Kumar

A Pass out student of Department Of Mathematics, Poona College Of Art's, Science \& Commerce, University Of Pune, India

ABSTRACT - In this article, I will state the relation between f, b and c where,
f : Function.
b : Point of open interval and closed interval i.e (a, b) and $[a, b]$ respectively.
c : Interior point of (a, b).
KEYWORDS - Open interval \& closed intervals, Interior point and Complex function i.e. $x+i y$
(where ' x ' is the real part and ' y ' is the imaginary part of the complex number).

INTRODUCTION

In this article, I am giving a formula to determine the interior point ' c ', where ' c ' belongs to the open interval (a, b) for any function ' f ' which is continuous on closed interval $[a, b]$ and differentiable at ' c '. Therefore, Kumar - Lagrenges formula is given by:

$$
\mathbf{f}^{\prime}(\mathbf{c})^{*} \mathbf{b}=\mathbf{f}(\mathbf{b})
$$

where, c belongs to the open interval (a, b).

INDENTATIONS AND EQUATIONS

Let ' f ' be a function where, ' f ' is continuous on closed interval [a, b], differentiable on open interval and ' c ' belongs to the open interval (a, b). Then,

$$
\mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(\mathrm{~b})-\mathrm{f}(\mathrm{a})}{\mathrm{b}-\mathrm{a}}
$$

Which is known as, Lagrenges mean value theorem.

$$
\begin{align*}
& \text { Now, consider, } \\
\Rightarrow & f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
\Rightarrow & f^{\prime}(c) *(b-a)=f(b)-f(a) . \\
& \text { Now, on taking } \log _{e} \text { on both sides we get: } \\
\Rightarrow & \log _{e}\left\{f^{\prime}(c) *(b-a)\right\}=\log _{e}\{f(b)-f(a)\} . \\
& {\text { On applying } \operatorname{logarithmic~properties:~}}_{\Rightarrow} \log _{e} f^{\prime}(c)+\log _{e}(b-a)=\log _{e}\{f(b)-f(a)\} . \\
\Rightarrow & \log _{e} f^{\prime}(c)+\log _{e}[b(1-a / b)]=\log _{e}\{f(b)-f(a)\} . \\
\Rightarrow & \log _{e} f^{\prime}(c)+\log _{e} b+\log _{e}(1-a / b)=\log _{e}\{f(b)-f(a)\} \\
\Rightarrow & \log _{e} f^{\prime}(c)+\log _{e} b+\log _{e}(1-a / b)=\log _{e}[f(b)\{1-f(a) / f(b)\}] . \\
\Rightarrow & \log _{e} f^{\prime}(c)+\log _{e} b+\log _{e}(1-a / b)=\log _{e} f(b)+\log _{e}\{1-f(a) / f(b)\} .
\end{align*}
$$

Where $a<b$

And $f(a)<f(b)$
Now, consider:
$\log _{e}(1-a / b)=-a / b-1 / 2 *(a / b)^{2}-1 / 3 *(a / b)^{3} \ldots \ldots$
Also consider:
$\log \{1-\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{b})\}=-\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{b})-1 / 2^{*}\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{b})\}^{2}-1 / 3^{*}\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{b})\}^{3} \ldots .$.
Now, substituting values of equations (2) and (3) in equation (1),

$$
\begin{align*}
& \Rightarrow \log _{\mathrm{e}} * \mathrm{f}^{\prime}(\mathrm{c})+\log _{\mathrm{e}} * \mathrm{~b}+\left\{-\mathrm{a} / \mathrm{b}-1 / 2 *(\mathrm{a} / \mathrm{b})^{2}-1 / 3 *(\mathrm{a} / \mathrm{b})^{3} \ldots \ldots\right\}=\log _{\mathrm{e}} * \mathrm{f}(\mathrm{~b})+\{-\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})-1 / 2 *\{\mathrm{f}(\mathrm{a}) / \tag{3}\\
& \mathrm{f}(\mathrm{~b})\}^{2}- \\
& \Rightarrow \log _{\mathrm{e}} * \mathrm{f}^{\prime}(\mathrm{c})+\log _{\mathrm{e}} * \mathrm{~b}-\log _{\mathrm{e}} * \mathrm{f}(\mathrm{~b})=-\left\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})+1 / 2 *\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{f})\}^{2}+1 / 3^{*} *\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})\}^{3}+\ldots . .\right\}+ \\
& \left\{\mathrm{a} / \mathrm{b}+1 / 2^{*}(\mathrm{a} / \mathrm{b})^{2}+1 / 3^{*}(\mathrm{a} / \mathrm{b})^{3}+\ldots . .\right\}
\end{align*}
$$

Using logarithmic properties, the above equation becomes:

$$
\begin{align*}
& \Rightarrow \log \left\{\mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}\right\} \\
&=-\left\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})+1 / 2^{*}\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})\}^{2}+1 / 3^{*}\{\mathrm{f}(\mathrm{a}) / \mathrm{f}(\mathrm{~b})\}^{3}+\ldots . .\right\}+ \tag{4}\\
&\left\{\mathrm{a} / \mathrm{b}+1 / 2^{*}(\mathrm{a} / \mathrm{b})^{2}+1 / 3^{*}(\mathrm{a} / \mathrm{b})^{3}+\ldots .\right\} .
\end{align*}
$$

Now put $[f(a) / f(b)]=K_{1}$ and $[a / b]=K_{2}$.
Therefore equation (4) becomes:

$$
\Rightarrow \quad \log \left\{\mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}\right\}=\left\{\mathrm{K}_{2}+1 / 2^{*} \mathrm{~K}_{2}^{2}+1 / 3 * \mathrm{~K}_{2}^{3}+\ldots . .\right\}-\left\{\mathrm{K}_{1}+1 / 2 * \mathrm{~K}_{1}{ }^{2}+1 / 3 * \mathrm{~K}_{1}^{3}+\ldots . .\right\}
$$

f(b)

$$
\Rightarrow \log _{\left.\frac{f(\mathrm{f}}{},(\mathrm{c}) * \mathrm{~b}\right\}}^{\operatorname{Lb}}=\left(\mathrm{k}_{2-} \mathrm{k}_{1}\right)+1 / 2^{*}\left(\mathrm{k}_{2}{ }^{2}-\mathrm{k}_{1}{ }^{2}\right)+1 / 3^{*}\left(\mathrm{k}_{2}{ }^{3}-\mathrm{k}_{1}{ }^{3}\right)+\ldots . .
$$

Now, let:

$$
\left(\mathrm{k}_{2-} \mathrm{k}_{1}\right)+1 / 2^{*}\left(\mathrm{k}_{2}^{2}-\mathrm{k}_{1}^{2}\right)+1 / 3^{*}\left(\mathrm{k}_{2}^{3}-\mathrm{k}_{1}^{3}\right)+\ldots . .=\mathrm{P}
$$

Therefore, the above equation becomes:

$$
\underbrace{\log }_{f(b)} \mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}\} \quad=\mathrm{P}
$$

Now taking exponential on both sides of the above equation, we get:

$$
\frac{\mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}}{\mathrm{f}(\mathrm{~b})}=\mathrm{e}^{\mathrm{P}}
$$

By the Euler's function, we know that

$$
\begin{gather*}
\mathrm{e}^{\mathrm{ip}}=\cos (\mathrm{p})+\mathrm{i} \sin (\mathrm{p}) \\
\mathbf{O R} \\
\mathrm{e}-{ }^{\mathrm{P}}=\cos (\mathrm{ip})+\mathrm{i} \sin (\mathrm{ip}) \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
e^{-i p}=\cos (p)-i \sin (p) \tag{7}
\end{equation*}
$$

$e^{p}=\cos (i p)-i \sin (i p)$
Therefore, substituting the value of e^{p} from equation (8) in (5), we get:

$$
\begin{equation*}
f^{\prime}(c) * b=\cos (i p)-i \sin (i p) \tag{8}
\end{equation*}
$$

f(b)

On comparing the real and imaginary parts, we get:

$$
\begin{align*}
& \mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b} \tag{9}\\
& \mathrm{f}(\mathrm{~b})
\end{align*}
$$

After comparing the real and imaginary part in relation (9) we get:

$$
\begin{aligned}
& -\sin (i p)=0 \\
& \Rightarrow \sin (i p)=0 \\
& \Rightarrow \quad i p=0
\end{aligned}
$$

This implies that:

$$
p=0
$$

Now, replacing $p=0$ in equation (7), we get

$$
\begin{aligned}
& \frac{\mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}}{\mathrm{f}(\mathrm{~b})}=\cos (0) \\
\Rightarrow & \frac{\mathrm{f}^{\prime}(\mathrm{c}) * \mathrm{~b}=}{\mathrm{f}(\mathrm{~b})}
\end{aligned}
$$

Which is the required equation known as "The Kumar - Lagrenges formula".

CONCLUSION

"The Kumar - Lagrenges formula" is used to determine the interior point of any open interval (a, b) for any differentiable function ' f ' at point c. The interior value (c) is not depend "a" and " b " at a time.

REFERENE

In this article, I have used the Lagrenges mean value theorem which I have studied in Fy - B.sc Calculus paper. This books is as per the new revised syllabus of University of Pune, June - 2008.

