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Abstract  

     Since the introduction of the concepts of BCK and BCI algebras by K. Iseki in 1966, some                                                                                                                                                                                                                                                                    

more systems of similar type have been introduced and studied by a number of authors in the last two decades. 

K. H. Kim and Y. H. Yon studied dual BCK algebra[1] and M.V. algebra in 2007[4]. H. S. Kim and Y. H. Kim in 

2006 have introduced the concept of BE-algebra as a generalization of dual BCK- algebra. Here we want to 

introduce some specific operators and their properties and a poset on BE-algebras.    
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I. Preliminaries: 

Definition 1.1. : Let (X; ∗, 1) be a system of type (2, 0) consisting of a non-empty  set X, a   binary operation 

“ ∗ ” and a fixed element 1. The system (X; ∗, 1) is called a BE- algebra ([2,3]) if the following conditions are 

satisfied: 

              (BE 1) x ∗ x = 1 

              (BE 2) x ∗ 1 = 1 

              (BE 3) 1 ∗ x = x 

              (BE 4) x ∗ (y ∗ z) = y ∗ (x ∗ z),  ∀ x, y, z ∈ X.  

Note 1.1. :  In any BE-algebra one can define a binary relation “ ≤ ” as x ≤  y if and only if  

x ∗ y = 1, ∀ x, y, ∈ X.  

Example 1.1. : First of all we present a simplest example of a BE-algebra which is of much importance. Let X = 

{0, 1} and the binary operation ∗ is defined on X by the following Cayley table   

∗ 0 1 

0 1 1 

1 0 1 

         

Then (X; ∗, 1) is a BE-algebra. 

Example 1.2. : Let X be a non empty set having two or more elements and  let A be a non empty subset of  X 

.We consider the collection T = {X, A, A
c
, } with binary operation  ∗ defined as 

  A ∗ B = (X – A ) ∪ ( A  ∩ B). 
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Then Cayley table for this operation is given by   

        *        X     A     B     O 

        X       X      A     B     O 

        A     X     X      B    B 

        B    X     A      X    A 

       O     X     X      X    X 

       

where B  =  A
c
 and O  =  . Here X = 1 and (T ; ∗ , 1) is a BE – algebra. 

Example 1.3. : Let X be a non - empty set and let Y = P (X), the power set  of  X.              For A, B  Y, we 

define  

                 A ∗ B = A
c
  ∪ B.         

  Then for A, B, C  Y, we have  

(i) A ∗ A =  A
c 
 ∪ A = X ; 

(ii) X ∗ A = X
c
  ∪  A = A;  

(iii) A ∗ (B ∗ C)  = A ∗  (B
c
 ∪ C)   

                     =  A
c
  ∪ (B

c
 ∪ C) 

                     = (A
c
 ∪ B

c
)  ∪ C 

                     = (B
c
 ∪ A

c
)  ∪ C 

                     =  B
c
 ∪ (A

c ∪ C) 

                     =  B
c
  ∪ (A

 ∗ C) 

                      =   B ∗  (A ∗ C) 

(iv) A ∗ X   = A
c
 ∪ X  = X. 

 Thus we see that (Y ; ∗ , 1) is a BE – algebra where 1 denote the set X. 

II. A specific poset: 

Theorem 2.1. : Let  (X; ∗, 1) be a system consisting of a non – empty set X,  a binary operation „„∗‟‟ and a distinct 

element 1. Let Y = X  x  X ={( x1, x2) : x1 , x2  X}. For  u, v  Y with         u = (x1, x2), v = (y1, y2), we define an 

operation  „„  ‟‟ in Y as  

                 u  v = ( x1 ∗  y1 , x2  ∗ y2)                                 

Then (Y; , (1, 1)) is a BE – algebra iff (X; ∗, 1) is a BE – algebra[5,6].  

Example 2.1. : We recall BE – algebra (X; ∗, 1) considered in example (1.1). Let 

   
times

XxXxX
Y

8


   

Then Y is the set of all bytes considered in computer. Thus each y Y is expressible as y = (y1, y2, 

..........,y8),  where each yi is either 0 or 1. The set Y contains 256 elements. Also Y is a BE – algebra by theorem 

(2.1). Here the unit element is 1 = (1, 1, 1, 1, 1, 1, 1, 1). This BE –algebra is a BE- algebra with zero element 0 = 

(0, 0, 0, 0, 0, 0, 0, 0) because           0  x = 1 for all x  Y. 

 Now we see that Y is partially ordered w. r. t. ordering defined in note (1.1). We have, 

(i) Since y  y = 1 for all y  Y, i. e. y ≤ y, so  ≤  is reflexive. 

(ii) Let x ≤ y and y ≤ x. Then  

x  y  = 1 .....(A)  and y  x = 1 ...(B).  

 Now if xi = 1, 1 ≤  i ≤ 8, then condition (A) implies that yi = 1. Again if    xi  = 0, then   yi = 0 or 1. If 

possible, suppose yi = 1. Then condition (B) implies that xi = 1 which is a contradiction. So we see that xi = 1 

yi = 1 and   xi = 0  yi = 0. This proves that x  =  y. So the relation ≤ is anti symmetric.  

(iii) Let x ≤ y and y ≤ z . Then 

x  y = 1 and y  z = 1 
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  So x i = 1  yi = 1  zi = 1     ( 1 ≤ i ≤ 8 ) 

  Again x i = 0  yi = 0 or 1  zi = 0 or 1 

  So in all the cases x  z = 1, i.e. x ≤ z 

  and the relation ≤ is transitive . 

 Hence Y is partially ordered w. r. t. the relation ≤. 

 

III. Some specific operators: 

Definition 3.1. : Let (X; ∗, 1) and (Y; o, e) be BE – algebras and let f : X  Y be a mapping. Then f is called a 

homomorphism[7] if  

   f(x ∗ y)  = f(x) o f(y)     

                                   for all x, y  X. 

 

Proposition 3.1. : Let f : (X; ∗, 1)  (Y; o, e) be a homomorphism. Then 

(a) f (1) = e  

    and  (b) x ≤  y  f(x) ≤  f(y). 

Proof : (a) We see that   1 ∗ 1 = 1 f(1 ∗ 1) = f (1) . 

                      f(1) o f(1) = f(1)  

            e =  f(1). 

(b)   Again  x ≤ y   x ∗ y = 1 

      f(x ∗ y) = f(1) = e 

       f(x) o f(y) = e  

       f(x) ≤  f(y). 

Definition 3.2. : Let (X; ∗, 1) be a BE – algebra and let Y = X
n
 be the Cartesian product of X with itself upto n 

times. Then theorem (2.1) implies that Y is a BE – algebra under the binary operation  and fixed element 1
n  

= 

(1,1,....,1). 

 The mappings Pk and Pij defined on X
n
 into itself as  

  Pk(x1, ......., xk,........., xn) = (1,1,......., xk, ...,1)    

  Pij(x1, ......., xi,......, xj........,xn) = (1,1,....., xi,1,...., xj, ...,1)  

are called dual projection maps. 

Theorem 3.1. : Pk and Pij are homomorphism on X
n
. 

Proof : Let x = (x1, x2,......., xn) and y = (y1, y2,......., yn) be elements of X
n 
. Then   

  Pk(x  y)     =  Pk(x1 ∗ y1,......, xk ∗ yk,......, xn ∗ yn) 

= (1, ......, xk ∗ yk,........,1) 

    = (1,..., xk ,.......,1)  (1,..., yk ,.......,1)  

=  Pk(x)  Pk(y). 

This implies that Pk is a homomorphism.  

Definition 3.3. : Let (X; ∗, 1) be a BE – algebra and let Y
 
= X

n
. Then forward shift with replacement 1 and 

backward shift with replacement 1, denoted as (F S 1) and (B S 1) respectively, are defined as  

  (F S 1)(x)  = ( 1, x1, x2,........, xn – 1)     

  (B S 1)(x)  = ( x2, x3,........, xn , 1)     
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           for all x = (x1, x2,........, xn)  Y. 

Theorem 3.2. : (F S 1) and (B S 1) are homomorphism on Y. 

Proof : Let 𝓊,𝓋 Y. Then 𝓊 = (x1,.............., xn) and  𝓋 =  (y1,.............., yn).                       We have  

     (F S 1)(𝓊  𝓋)  = ( 1, x1 ∗  y1,........, xn – 1 ∗ yn -1 ) 

      = (1, x1,.............., xn -1)  (1, y1,............, yn - 1) 

     = (( F S 1)(𝓊))  ((F S 1)(𝓋)). 

 Also     (B S 1)(𝓊  𝓋)   = ( x2 ∗ y2,........,xn ∗ yn , 1 ) 

      = ( x2,............, xn, 1)  (y2,.............,yn, 1) 

     = (( B S 1)(𝓊))  ((B S 1)(𝓋)). 

             Hence (F S 1) and (B S 1) are homomorphism. 

Note 3.1. : If we consider (F S 0) and (B S 0) on Y then (F S 0)  and (B S 0) are not homomorphism on Y, since 

0 ∗ 0 = 1  0.  

 

References: 
[1]  Iseki, K. and Tanaka, S. ;  An introduction to the theory of  BCK – algebras, Math. Japon. 23(1978), 1 – 26. 

[2]  Kim, K.H. ; A note on BE – algebras, Sci. Math. Japon. 72(2010), No. 2, 127 – 132. 
[3]    Kim, H.S. and Kim.Y. H. ;  On BE – algebras, Sci. Math. Japon. 66(2007), No. 1, 113-117. 

[4]  Kim, K.H. and Yon, Y.H. ;  Dual BCK – algebra and MV – algebra, Sci. Math. Japon. 66(2007), 247 – 253. 

[5]   Pathak, K., Sabhapandit, P. and Chetia B.C. ; On Cartesian product of           BE/CI-algebras, J. Assam Acad. Maths. 6(2013), 33-
40. 

[6]  Pathak, K., Sabhapandit, P. and Chetia B.C. ; Cartesian Product of BE/CI-algebras with Essences and Atoms, Acta Ciencia Indica, 

Vol. XLM (2014), No.3, 271-279. 
[7]  Pathak, K. and Chetia B.C. ; On Homomorphism and Algebra of    Functions on BE-algebras, International Journal of 

Mathematics Trends and Technology, Vol. 16(2014), No.1, 52-57.  

 

   

 

 

 

 


