Some Specific Operators and a Poset on BEAlgebras

Kulajit Pathak ${ }^{1}$, Pulak Sabhapandit ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, B.H. College, Howly, Assam, India, 781316.
${ }^{2}$ Assistant Professor, Department of Mathematics, Biswanath College, Biswanath Chariali, Assam, India, 784176.

Abstract

Since the introduction of the concepts of BCK and BCI algebras by K. Iseki in 1966, some more systems of similar type have been introduced and studied by a number of authors in the last two decades. K. H. Kim and Y. H. Yon studied dual BCK algebra[1] and M.V. algebra in 2007[4]. H. S. Kim and Y. H. Kim in 2006 have introduced the concept of BE-algebra as a generalization of dual BCK-algebra. Here we want to introduce some specific operators and their properties and a poset on BE-algebras.

Key words: BCK-algebra, BCI-algebra, BE-algebra, M.V. algebra, Operator.

Mathematics Subject Classification: 06F35, 03G25, 08A30, 03B52.

I. Preliminaries:

Definition 1.1. : Let $(X ; *, 1)$ be a system of type $(2,0)$ consisting of a non-empty set X, a binary operation "*" and a fixed element 1 . The system $(X ; *, 1)$ is called a BE- algebra $([2,3])$ if the following conditions are satisfied:
(BE 1) $\mathrm{x} * \mathrm{x}=1$
$(\mathrm{BE} 2) \mathrm{x} * 1=1$
(BE 3) $1 * x=x$
$(\mathrm{BE} 4) \mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z}), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Note 1.1.: In any BE-algebra one can define a binary relation " \leq " as $\mathrm{x} \leq \mathrm{y}$ if and only if $x * y=1, \forall x, y, \in X$.

Example 1.1. : First of all we present a simplest example of a BE-algebra which is of much importance. Let $\mathrm{X}=$ $\{0,1\}$ and the binary operation $*$ is defined on X by the following Cayley table

$*$	0	1
0	1	1
1	0	1

Then $(\mathrm{X} ; *, 1)$ is a BE-algebra.
Example 1.2. : Let X be a non empty set having two or more elements and let A be a non empty subset of X .We consider the collection $T=\left\{X, A, A^{c}, \phi\right\}$ with binary operation $*$ defined as

$$
A * B=(X-A) \cup(A \cap B)
$$

Then Cayley table for this operation is given by

$*$	X	A	B	O
X	X	A	B	O
A		X	X	B
B	B			
B	X	A	X	A
O	X	X	X	X

where $\mathrm{B}=\mathrm{A}^{\mathrm{c}}$ and $\mathrm{O}=\phi$. Here $\mathrm{X}=1$ and $(\mathrm{T} ; *, 1)$ is a $\mathrm{BE}-$ algebra.
Example 1.3. : Let X be a non - empty set and let $\mathrm{Y}=\mathrm{P}(\mathrm{X})$, the power set of X .
For $\mathrm{A}, \mathrm{B} \in \mathrm{Y}$, we define

$$
\mathrm{A} * \mathrm{~B}=\mathrm{A}^{\mathrm{c}} \cup \mathrm{~B} .
$$

Then for $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{Y}$, we have
(i) $\mathrm{A} * \mathrm{~A}=\mathrm{A}^{\mathrm{c}} \cup \mathrm{A}=\mathrm{X}$;
(ii) $\mathrm{X} * \mathrm{~A}=\mathrm{X}^{\mathrm{c}} \cup \mathrm{A}=\mathrm{A}$;
(iii) $\mathrm{A} *(\mathrm{~B} * \mathrm{C})=\mathrm{A} *\left(\mathrm{~B}^{\mathrm{c}} \cup \mathrm{C}\right)$

$$
=A^{c} \cup\left(B^{c} \cup C\right)
$$

$$
=\left(\mathrm{A}^{\mathrm{c}} \cup \mathrm{~B}^{\mathrm{c}}\right) \cup \mathrm{C}
$$

$$
=\left(\mathrm{B}^{\mathrm{c}} \cup \mathrm{~A}^{\mathrm{c}}\right) \cup \mathrm{C}
$$

$$
=\mathrm{B}^{\mathrm{c}} \cup\left(\mathrm{~A}^{\mathrm{c}} \cup \mathrm{C}\right)
$$

$$
=\mathrm{B}^{\mathrm{c}} \mathrm{U}(\mathrm{~A} * \mathrm{C})
$$

$$
=\mathrm{B} *(\mathrm{~A} * \mathrm{C})
$$

$$
\text { (iv) } \quad \mathrm{A} * \mathrm{X}=\mathrm{A}^{\mathrm{c}} \cup \mathrm{X}=\mathrm{X}
$$

Thus we see that $(\mathrm{Y} ; *, 1)$ is a $\mathrm{BE}-$ algebra where 1 denote the set X .

II. A specific poset:

Theorem 2.1. : Let $(X ; *, 1)$ be a system consisting of a non - empty set X, a binary operation " $*$ " and a distinct element 1. Let $Y=X \times X=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in X\right\}$. For $u, v \in Y$ with $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right)$, we define an operation " Θ '" in Y as

$$
\mathrm{u} \Theta \mathrm{v}=\left(\mathrm{x}_{1} * \mathrm{y}_{1}, \mathrm{x}_{2} * \mathrm{y}_{2}\right)
$$

Then $(\mathrm{Y} ; \Theta,(1,1))$ is a $\mathrm{BE}-\operatorname{algebra} \operatorname{iff}(\mathrm{X} ; *, 1)$ is a $\mathrm{BE}-\operatorname{algebra[5,6]}$.
Example 2.1. : We recall $\mathrm{BE}-\operatorname{algebra}(\mathrm{X} ; *, 1)$ considered in example (1.1). Let

$$
Y=\frac{X x X \ldots \ldots \ldots \ldots x X}{8 \text { times }}
$$

Then Y is the set of all bytes considered in computer. Thus each $\mathrm{y} \in \mathrm{Y}$ is expressible as $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right.$, $\left.\ldots, \mathrm{y}_{8}\right)$, where each y_{i} is either 0 or 1 . The set Y contains 256 elements. Also Y is a BE - algebra by theorem (2.1). Here the unit element is $1=(1,1,1,1,1,1,1,1)$. This BE -algebra is a BE-algebra with zero element $0=$ $(0,0,0,0,0,0,0,0)$ because $\quad 0 \Theta \mathrm{x}=1$ for all $\mathrm{x} \in \mathrm{Y}$.

Now we see that Y is partially ordered w. r. t. ordering defined in note (1.1). We have,
(i) Since y $\Theta \mathrm{y}=1$ for all $\mathrm{y} \in \mathrm{Y}$, i. e. $\mathrm{y} \leq \mathrm{y}$, so \leq is reflexive.
(ii) Let $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$. Then

$$
x \Theta y=1 \ldots . .(\mathrm{A}) \text { and } \mathrm{y} \Theta \mathrm{x}=1 \ldots \text { (B). }
$$

Now if $x_{i}=1,1 \leq i \leq 8$, then condition (A) implies that $y_{i}=1$. Again if $x_{i}=0$, then $y_{i}=0$ or 1 . If possible, suppose $y_{i}=1$. Then condition (B) implies that $x_{i}=1$ which is a contradiction. So we see that $x_{i}=1 \Rightarrow$ $y_{i}=1$ and $x_{i}=0 \Rightarrow y_{i}=0$. This proves that $x=y$. So the relation \leq is anti symmetric.
(iii) Let $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$. Then

$$
x \Theta y=1 \text { and } y \Theta z=1
$$

$$
\text { So } x_{i}=1 \Rightarrow y_{i}=1 \Rightarrow z_{i}=1 \quad(1 \leq i \leq 8)
$$

Again $x_{i}=0 \Rightarrow y_{i}=0$ or $1 \Rightarrow z_{i}=0$ or 1
So in all the cases $x \Theta z=1$, i.e. $x \leq z$ and the relation \leq is transitive .
Hence Y is partially ordered w. r. t. the relation \leq.

III. Some specific operators:

Definition 3.1. : Let $(X ; *, 1)$ and $(Y ; o, e)$ be $B E-$ algebras and let $f: X \rightarrow Y$ be a mapping. Then f is called a homomorphism[7] if

$$
\begin{aligned}
& \qquad f(x * y)=f(x) o f(y) \\
& \text { for all } x, y \in X .
\end{aligned}
$$

Proposition 3.1. : Let $\mathrm{f}:(\mathrm{X} ; *, 1) \rightarrow(\mathrm{Y} ; \mathrm{o}, \mathrm{e})$ be a homomorphism. Then
(a) $f(1)=e$

$$
\text { and }(b) x \leq y \Rightarrow f(x) \leq f(y)
$$

Proof: (a) We see that $1 * 1=1 \Rightarrow f(1 * 1)=f(1)$.

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(1) \circ \mathrm{f}(1)=\mathrm{f}(1) \\
& \Rightarrow \mathrm{e}=\mathrm{f}(1) .
\end{aligned}
$$

(b) Again $x \leq y \Rightarrow x * y=1$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{x} * \mathrm{y})=\mathrm{f}(1)=\mathrm{e} \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \circ \mathrm{f}(\mathrm{y})=\mathrm{e} \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y}) .
\end{aligned}
$$

Definition 3.2. : Let $(X ; *, 1)$ be a $B E-$ algebra and let $Y=X^{n}$ be the Cartesian product of X with itself upto n times. Then theorem (2.1) implies that Y is a BE - algebra under the binary operation Θ and fixed element $1^{\mathrm{n}}=$ $(1,1, \ldots ., 1)$.
The mappings P_{k} and $P_{i j}$ defined on X^{n} into itself as

$$
\begin{aligned}
& P_{k}\left(x_{1}, \ldots \ldots, x_{k}, \ldots \ldots . ., x_{n}\right)=\left(1,1, \ldots \ldots ., x_{k}, \ldots, 1\right) \\
& P_{i \mathrm{ij}}\left(x_{1}, \ldots \ldots, x_{i}, \ldots \ldots, x_{j} \ldots \ldots . x_{n}\right)=\left(1,1, \ldots ., x_{i}, 1, \ldots ., x_{j}, \ldots, 1\right)
\end{aligned}
$$

are called dual projection maps.
Theorem 3.1. : P_{k} and $P_{i j}$ are homomorphism on X^{n}.
Proof : Let $x=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)$ be elements of X^{n}. Then

$$
\begin{aligned}
P_{k}(x \Theta y) & =P_{k}\left(x_{1} * y_{1}, \ldots \ldots, x_{k} * y_{k}, \ldots \ldots, x_{n} * y_{n}\right) \\
& =\left(1, \ldots \ldots, x_{k} * y_{k}, \ldots \ldots ., 1\right) \\
& =\left(1, \ldots, x_{k}, \ldots \ldots, 1\right) \Theta\left(1, \ldots, y_{k}, \ldots \ldots, 1\right) \\
& =P_{k}(x) \Theta P_{k}(y) .
\end{aligned}
$$

This implies that P_{k} is a homomorphism.
Definition 3.3. : Let $(X ; *, 1)$ be a $B E-$ algebra and let $Y=X^{n}$. Then forward shift with replacement 1 and backward shift with replacement 1, denoted as (F S 1) and (B S 1) respectively, are defined as

$$
\begin{aligned}
& (\mathrm{FS} 1)(\mathrm{x})=\left(1, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}-1}\right) \\
& (\mathrm{B} \mathrm{~S} 1)(\mathrm{x})=\left(\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}}, 1\right)
\end{aligned}
$$

for all $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . . . \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Y}$.
Theorem 3.2. : (F S 1) and (B S 1) are homomorphism on Y.
Proof : Let $u, v \in \mathrm{Y}$. Then $u=\left(\mathrm{x}_{1}, \ldots \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right)$ and $v=\left(\mathrm{y}_{1}, \ldots \ldots \ldots, \mathrm{y}_{\mathrm{n}}\right)$. We have

$$
\begin{aligned}
(\mathrm{F} \mathrm{~S} 1)(u \Theta v)=\left(1, \mathrm{x}_{1}\right. & \left.* \mathrm{y}_{1}, \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}-1} * \mathrm{y}_{\mathrm{n}-1}\right) \\
& =\left(1, \mathrm{x}_{1}, \ldots \ldots \ldots \ldots . ., \mathrm{x}_{\mathrm{n}-1}\right) \Theta\left(1, \mathrm{y}_{1}, \ldots \ldots \ldots . . ., \mathrm{y}_{\mathrm{n}-1}\right) \\
& =((\mathrm{F} \mathrm{~S} 1)(u)) \Theta((\mathrm{F} \mathrm{~S} 1)(v)) .
\end{aligned}
$$

Also $(B S 1)(u \Theta v)=\left(x_{2} * y_{2}, \ldots \ldots \ldots, x_{n} * y_{n}, 1\right)$

$$
\begin{aligned}
& =\left(\mathrm{x}_{2}, \ldots \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}}, 1\right) \Theta\left(\mathrm{y}_{2}, \ldots \ldots \ldots . . \ldots, \mathrm{y}_{\mathrm{n}}, 1\right) \\
& =((\text { B S 1) })(u)) \Theta((\text { B S 1)(v)). }
\end{aligned}
$$

Hence (F S 1) and (B S 1) are homomorphism.
Note 3.1. : If we consider (FS 0) and ($\mathrm{B} \mathrm{S} \mathrm{0)} \mathrm{on} \mathrm{Y} \mathrm{then} \mathrm{(} \mathrm{~F} \mathrm{~S} \mathrm{0}$) and (B S 0) are not homomorphism on Y, since $0 * 0=1 \neq 0$.

References:

[1] Iseki, K. and Tanaka, S. ; An introduction to the theory of BCK - algebras, Math. Japon. 23(1978), 1-26.
[2] Kim, K.H. ; A note on BE - algebras, Sci. Math. Japon. 72(2010), No. 2, 127 - 132.
[3] Kim, H.S. and Kim.Y. H. ; On BE - algebras, Sci. Math. Japon. 66(2007), No. 1, 113-117.
[6] Pathak, K., Sabhapandit, P. and Chetia B.C. ; Cartesian Product of BE/CI-algebras with Essences and Atoms, Acta Ciencia Indica, Vol. XLM (2014), No.3, 271-279.
[7] Pathak, K. and Chetia B.C. ; On Homomorphism and Algebra of Functions on BE-algebras, International Journal of Mathematics Trends and Technology, Vol. 16(2014), No.1, 52-57.

