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Abstract— This paper deals with Thomas-Fermi equation which is formulated as an Euler-Lagrange equation 

associated with the Fermi energy functional. Drawing upon advanced ingredients of Sobolev spaces and weak 

solutions, an analytic methodology is presented for the quantum correction near the origin of Thomas-Fermi 

equation. By this approach the existence and uniqueness of the minimizer for the energy functional of the 

Thomas-Fermi equation has been proved. It has been demonstrated that by the definition of such a functional 

and the relevant Sobolev spaces, the Thomas-Fermi equation, particularly of a neutral atom, extends to the 

nonlinear Poisson equation. Accordingly, weak solutions for more general Euler-Lagrange equation with more 

singularities are proposed. 
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I. INTRODUCTION  

Thomas–Fermi equation as a special case of nonlinear Poisson equations arises from a statistical model of 

many electron atoms. Physical notions of Thomas-Fermi equation result to local Fermi momentum, Fermi 

sphere, Thomas-Fermi energy density, and finally, Thomas-Fermi model applied to ions [1-3]. All of them will 

be reviewed in Section 2 of this article. This physical approach gives again the self-consistent Thomas-Fermi 

equation. In this manner, an energy functional extermization yield Thomas-Fermi equation can be derived. 

Near the origin, however, (Columb) potential is singular and the Thomas-Fermi energy is no longer reliable 

for the large nuclear charges and it is the main problem of this paper. On the other hand, one special Euler-

Lagrange equation as a minimizer of energy functional gives a nonlinear Poisson equation which is an extended 

version of Thomas–Fermi equation. This fact and in the sequel of applying the differential technique for analytic 

solution to the Thomas–Fermi equation (e.g. in [4-7]) encourage to refer the analytic approach.  

For quantum correction near the origin of Thomas-Fermi equation, in Theorem 1, the minimizer of the energy 

functional will be found by some notions of Sobolev spaces. Also, this minimizer is a solution of a boundary–

value problem for the Euler–Lagrange equation associated with the Fermi energy functional which satisfies in 

the condition for the existence of the solution in the weak sense. This approach is a motivation for the definition 

of weak solution which can be applied to the general Euler-Lagrange equation with more singularities, 

sometimes awkward. Also, structure of the proof of the Theorem 1 can be extended to the Euclidean space n
R  

and then Euler–Lagrange partial differential equation for no smooth functions with the singularities on the sets 

with nonzero measure.  

II. PHYSICAL NOTIONS OF THOMAS-FERMI EQUATION  

As the notations of [6] or [8], if an atom has a large nuclear charge Z , most of the electrons move in orbits 

with large quantum numbers. Filling up all negative energy states with electrons of both spin directions 

produces some local particle density  xn


 which is calculated from the classical local density 
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At each point x


, the electrons occupy all levels up to a Fermi energy      x+VMxFpFE


22 .   
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The associated local Fermi momentum is equal to the local momentum function     xE-VM=xE;ρ


2
 
at 

FE=E ;       x-VFEM=xE;=pxFp


2 . The electrons fill up the entire Fermi sphere  xpp F


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For neutral atoms, the Fermi energy is zero and the density (1) will be recovered. By occupying each state of 

negative energy twice, the classical electron density is 

    ,x
-

cl
ρxn


2                                                                                                                                                       (3)               

the potential energy density associated with the levels of negative energy is  
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To find the kinetic energy density should be integrated  

        
 

   .

1
2

1

21
2

2 1
2

2

2

0
+

D
D

xV
cl

-
kin TF x-V

+
D

Γπ

M

+
D

D

=dExE;ρxE-V=xE























                                                                 (5) 

The sum of the two is the Thomas-Fermi energy density  
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 The total electrostatic potential energy 

 xV


 caused by the combined charges of the nucleus and the electron cloud is found by solving the Poisson 

equation 
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It is convenient to describe the screening effect of the electron cloud upon the Coulomb potential (5) by a 

multiplicative dimensionless function  xf


. Restricting our attention to the ground state, which is rotationally 

symmetric, the solution of the Poisson equation (6) can be written as    rfrZe=-xV 






 2
. At the origin the 

function  rf  is normalized to unity 

  10 =f                                                                                                                                                                   (7)  

to ensure that the nuclear is not changed by the electrons, where has been obtained in equation (3) with 

boundary conditions (4) and (5). All length scales of the electrons will now be specified in units of TFa , i.e., 

ξr=aTF . In these units, the electron density (4) becomes simply 

         2
3

2

3
343232

3
22 ξξfTFπaZ=ξTFaξfπMZe=-xn 














































  . The left-hand side of the Poisson 

equation (6) reads         ξfξTFaZe=-xVdrdr=xV  






















 32221


. So that will be obtained the self-

consistent Thomas-Fermi equation 
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The condition 0ξ  excludes the nuclear charge from the equation, whose correct size is incorporated by the 

initial condition (7). Near the origin, the equation (8) starts out like ...,+-= sξξf 1)(  with a slope 588071.s  . For 

large ξ , it goes to zero like 3144)( ξξf  . This power fall off is a weakness of the model since the true 

screened potential should fall off exponentially fast. The right–hand side by itself happens to be an exact 

solution of (8), but does not satisfy the desired boundary condition (7). It can be derived an energy functional 

whose functional extremization yields the Thomas-Fermi equation (8). For more details refer to [1-3] and [8]. 
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III.  ANALYTIC APPROACH 

A. Statement of the problem 

The Thomas-Fermi energy with exchanges corrections which obtained in Section 2 would be reliable for large 

Z  only if the potential was smooth so that the semiclassical approximation is applicable. Near the origin, 

however, the Coulomb potential is singular and this condition is no longer satisfied. Some more calculational 

efforts is necessary to account for the quantum effects near the singularity, based on the other observation (e.g., 

refer to [9]). This problem can be solves in Theorem 1 by analytic ingredients, especially weak solutions. 

B. Our methodology: Weak solution 

For approximation approach, Fermi energy and Poisson equation (6) which result to the Thomas-Fermi 

equation (8) can be sketched in the functional analysis framework. For the quantum correction near the origin, in 

general case suppose   ,0U  is a bounded, open interval and RRR  UL : ;  p,z,xL=L  is a smooth 

Lagrangian. Also, it should be assumed that the function  .I  have the explicit form 

    ,),(),(
U

dxxxxDL:=I                                                                                                                                   (9) 

for smooth functions RU:  satisfying the boundary condition ω=g  on U . Also, suppose some particular 

smooth function u , satisfying the requisite boundary condition u=g   on U , happens to be a minimizer of  .I . 

In this way, it can be shown that u  solve the nonlinear ODE, i.e., the Euler-Lagrange equation associated with 

the energy functional  .I  defined by (9)  
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thus conversely, it can be tried to find a solution of (10) by searching for minimizers of (9). Consider the 

Sobolev space  U
pk

W
,

 consists of all locally summable functions RUu :  such that for each multiindex   

with k , UD  exists in the weak sense which means that for all test functions  UCc
 , 
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p
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0
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W
,

. More details can be found in analysis books, for example [10-11]. 

Theorem 1. Singularity near the origin of Thomas-Fermi equation (and then singularity of the Coulomb 

potential) as an Euler-Lagrange equation associated with the Fermi energy can be improved in the sense of 

nonsmooth potential. 

Proof. In fact, it will be shown that the weak solution of the Lagrangian which is a minimizer of the Euler-

Lagrange equation is the key for this enigma. 

As the notions of above, let RR :f  be a smooth function and    
z dyyf=zF
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 is its antiderivative. Then 
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Poisson equation  uu=f  in U , which Thomas-Fermi equation is a special case of it and studied this equation 

in Section 2. Now, focus on Lagrangian L  which can be exposed some awkward singularities other than ones 

of Thomas-Fermi energy. Fix any  U
,q

Wv
1
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  and set    vu+=Iτi  , R . It can be checked that the 

Lagrangian L  verifies the growth conditions 
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for some constant C ,  q1  and all Rzp,  and Ux . In view of (11),  it can be seen that  i  is finite for 

all  . Let 0  and write the difference quotient 
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 for almost everywhere Ux . Clearly 
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Then since  U
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,  , inequality (13) and Yong inequality imply after some elementary calculations that 
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Consequently, it can be invoked the Dominated Convergence Theorem to conclude from (13) and (14) that 
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for the Euler-Lagrange equation means is the weak solution. Also the mapping    p,z,xLp,z   is convex. 

Therefore                  
U

uDu dxx-uxwxxuxDuL+DDw-DuxxuxDuD+uI .,,.,,  I , for the weak solution u  and 

any T . In view of (15) the second term on the right is zero, and therefore    IuI   for each T . Then 

this solution is unique, too. 

IV. CONCLUSIONS 

In this paper, a novel methodology for the quantum correction near the origin presented. This consists of 

finding the (weak) solution of the Lagrangian associated with Thomas-Fermi equation which has the 

singularities, especially in the origin. Also, since the Lagrangian mapping corresponded to the Thomas-Fermi 

equation is convex then each weak solution is in fact a minimizer. The main advantage of the proposed 

methodology is that it provides the analytic solution of the problem and it can be applied to the partial 

differential of Euler-Lagrange equations and the nonlinear Poisson equation in more variables and the 

multivariable functions with the big set of singularities.  
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