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Abstract – In this paper, we have studied the Bianchi type-I universe with polytropic equation of state in the 

framework of the second self-creation theory of gravitation proposed by Barber [1]. The field equations have 

been solved by using (i) the power law relation between the average scale factor ''a  and the scalar field ''  

and (ii) the special law of variation for Hubble’s parameter proposed by Berman [2]. Some physical and 
kinematical aspects of the models are also discussed.  
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I. Introduction 

 

 Modified theories of gravitation provide gravitational alternatives for dark energy to explain early inflation 

and late time acceleration of the universe. To extend the concept of theory of general relativity, Brans and Dicke 

[3] formulated a scalar tensor theory of gravitation which includes a long range scalar field interacting equally 

with all forms of matter with the exception of electromagnetism. Barber [1] has formulated two continuous self 

creation theories by the general relativity and Brans and Dicke (BD) theory. The Barber„s first theory is a 

modification of BD theory and the second theory is a modification of general relativity. Several authors 

Mohanty [4, 5], Pradhan [6], Singh and Kumar [7], Rao [8, 9], Reddy [10], Katore [11], Pawar [12], Naidu [13] 

and Santhi [14] have investigated various cosmological models in Barber‟s second self creation theory. 

In this paper, we have studied the polytropic gas model of dark energy to explain the cosmic acceleration of 

the universe. In stellar astrophysics, the polytropic gas model can explain the equation of state of degenerate 

white dwarfs, neutron stars and also the equation of state of main sequence stars (Christensen-Dalsgaard [16]). 
Mukhopadhyay and Ray [17] has been investigated the idea of dark energy with polytropic gas equation of state 

in cosmology. Recently, several authors Karami et al.[17], Karami and Ghaffari [18], Setare et al. [19], Taji and 

Malekjani [20], Rahman [21] and Adhav [22] have investigated polytropic gas models in different contexts. 

For a physically realistic relativistic star we expect that the matter distribution should satisfy a barotropic 

equation of state   pp  . In this paper we assume the polytropic equation of state 

nKp
11

   ,                                                                       

   

  (1) 

where K is a real constant and n is the polytropic index (Christensen-Dalsgaard [16]). 

Motivated by the above investigations, here we take up the study of anisotropic Bianchi type-I universe with 

polytropic equation of state in the framework Barber‟s second self-creation cosmology. This is relevant because 

of the fact that scalar field plays a vital role in the discussion of DE models.  

This paper is organized as follows. In section 2, the metric and field equations are described. Section 3 is 

devoted to the solution of the field equations and we obtained physical properties of model using the law of 

variation of parameter. Section 4 we discuss the physical properties of models and section 5 contains some 

concluding remarks. 

II. The Metric and Field Equations 

We consider the homogeneous and anisotropic Bianchi type-I metric as 

22222222 dzCdyBdxAdtds 
,                         

    (2) 
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where the scale factors A,B and C are functions of time t only.    

The field equations in Barber‟s self creation theory are 

 ijijij TRgR 18
2

1                                                    

  

 

 (3) 

and 

 
i

j

k

k T
3

8,

;


  ,                                                                      

  

 

 (4) 

where  is coupling constant. 

The energy-momentum tensor for DE and DM are respectively given by  

 mmmm

i

j

m pppdiagT ,,,                                          

  

 

 (5) 

and 

 
  pppdiagT

i

j ,,, .                                        

  

 

 (6)          

Here m and mp are energy density and pressure of matter respectively while   and p  are respectively the 

energy density and pressure of the dark energy.  

In co-moving coordinate system, the field equations (3) and (4) for the metric (2), reduce to following set of 

equations: 

 ,8 1

  

m
AC

CA

BC

CB

AB

BA 
 (7)  p

BC
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C

C

B

B 18 


,                                               

  

 

 (8) 

 p
AC

CA

C

C

A

A 18 


,                                              

  
 

 (9) 

 p
AB

BA

B

B

A

A 18 


,                                                  

   

 (10) 
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 


 p
C

C

B

B

A

A
m 3

3

8
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


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


 


 ,               

   

 (11) 

where an overhead dot denotes differentiation with respect to time t. 

The spatial volume for Bianchi type-I metric is given by 

ABCV  .                                                                           

   

 (12) 

The average scale factor „a’ of Bianchi type-I metric is given by   

 3

1

ABCa   .                                                                      

   

 (13) 

The mean Hubble‟s parameter H is given by  

.
3

1




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




C
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H
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 (14) 

The physical quantities i.e. the scalar expansion ( ), anisotropy parameter ( ), shear scalar     ( ) and 

deceleration parameter (q) are defined as 

H3 ,                                                                                

   

 (15) 

,
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1 3

1

2











 


i

i

H

HH
                                                        

   

 (16) 

where 
C
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B
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 (17) 

2a

aa
q




 .                                                                             

   

 (18) 

Subtracting Eq. (8) from Eq. (9), Eq. (9) from Eq. (10) and Eq. (8) from Eq. (10), we obtain 

,0
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 (20) 
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 (21) 

Integrating Eqs. (19), (20) and (21), we obtain 

V

k

B

B

A

A 1


,                                                                      

  
 

 (22) 

V

k

C

C

B

B 2


,                                                                      

   

 (23) 

V

k

C

C

A

A 3


,                                                                       

   

 (24) 

where 1k , 2k and 3k are constants of integration. After solving Eqs.(22) to (24), with some simplification, we 

get 









  V

dt
kd

B

A
11 exp ,                                                         

   

 (25) 









  V

dt
kd

C

B
22 exp ,                                                         

   

 (26) 









  V

dt
kd

C

A
33 exp ,                                                         

   
 (27) 

where 1d , 2d and 3d are constants of integration. Using Eqs. (25), (26) and (27), we can write the metric 

functions A, B and C explicitly as 









  V

dt
baaA 11 exp ,                                                       

  
 

 (28) 









  V

dt
baaB 22 exp ,                                                      

  

 

 (29) 









  V

dt
baaC 33 exp ,                                                       
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 (30) 

where  3

1

211 dda  ,  3
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3

1

12 dda


 ,   3

1
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3
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kk
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
 ,

3

13

2

kk
b


 ,

3

32

3

kk
b


 , 

which satisfies the relations 1321 aaa  and 0321  bbb . 

III. Solutions of Field Equations 

     The field equations (7) to (11) are system of five field equations in seven unknowns A , B , C , m ,  , p

and  . Hence in order to obtain the deterministic solution we use the following two constraints:   

(i) The power law relation between the average scale factor ''a  and the scalar field ''  is given by 

 a ,                                                                              

   
 (31) 

where  and   are constants. 

(ii) The special law of Hubble‟s parameter proposed by Berman [2] which yields the constant deceleration 

parameter which is defined by 

  ,
3

3

m
m

DVABCDH





                                              

   

 (32) 

where 0,0  mD are constants.  

We obtain two cosmological models: A. model for 0m  and B. model for 0m . 

A. for 0m  (Exponential Volumetric Expansion Model) 

For 0m , From Eq. (32) the volume scale factor is given by 
DtecV 3

3 ,                                                                           

   

 (33) 

where 03 c is constant of integration. 

Using Eq. (33) in Eq. (31), we obtain the expression for scalar field as 

Dtec 

 3

3 .                                                                      

   

 (34) 

Using Eq. (33) in Eqs. (28)-(30),we obtain the scale factors as 
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 (36) 
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  

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  Dte

Dc
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DtcaC 3
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exp3
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 (37) 

Using Eqs. (35)-(37) in Eq. (7), we obtain the energy density of matter as 

.3
8

6

2

3

2

3

2

2

2

12





 









 
  Dt

m e
c

bbb
D                 

   

 (38) 

Using Eqs. (35)-(37) in Eq. (8),  the pressure of DE is given by 
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 (39) 

Using Eq. (39) in Eq. (1), the energy density of DE is given by 

.3
8

1

1 6

2

3

21

2

2

2

12





















 



 

n
n

n
n Dte

c

bbbb
DK




                                                                             

  
 

 (40) 

Using Eqs. (30)-(31), we obtain 

The EoS parameter 
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p

  of DE is given by 
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 (41)                           

Using Eqs.(35)-(37), we obtain the mean Hubble‟s parameter(H), scalar expansion ( ), anisotropy parameter (

 ), shear scalar ( ) and deceleration parameter (q)  as 

DH  ,                                                  
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 (45) 

1q .                                                                                

    
 (46) 

The coincidence parameter




mr   i.e. the ratio of matter energy density and DE density is given by 
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The expression for matter energy density m and dark energy density  are given by 
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Using Eqs. (48) and (49), we obtain total energy density parameter 
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 (50) 

B. Model for 0m  (Power Law Volumetric Expansion Model) 

For 0m , from Eq. (32) the volume scale factor is given by 
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where 4c is a constant of integration. 

Using Eq.(51) in (31), we obtain the expression for scalar field as 
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Using Eq. (51) in Eqs. (28)-(30),we obtain the scale factors as 
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Using Eqs. (53)-(55) in Eq. (7), we obtain the energy density of matter as 
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Using Eqs. (53)-(55) in Eq. (8),  the pressure of DE is given by 
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Using Eq. (57) in Eq. (1), the energy density of DE is given by 
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The EoS parameter 





p

  of DE is given by 
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 (59)                                                                                                                                                                                                                                      

Using Eqs. (53)-(55), we obtain the mean Hubble‟s parameter(H), scalar expansion ( ), anisotropy parameter (

 ), shear scalar     ( ) and deceleration parameter (q)  as 
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 (60) 

 4

3

cmDt

D


 ,                                                                  

   

 (61) 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 53 Number 6 January 2018 

 

ISSN: 2231-5373                               http://www.ijmttjournal.org                                     Page 484 

 

 
 

,
3

32

42

2

3

2

2

2

1 m
m

cmDt
D

bbb 




   (62)   mcmDt
bbb 6

4

2

3

2

2

2

12

2






 ,                                    

   

 (63) 

1 mq .                                                                              

   

 (64) 

The coincidence parameter




mr   i.e. the ratio of matter energy density and DE density is given by 
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 (65) 

The expression for matter energy density m and dark energy density  are given by
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and 
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 (67)                                                                                                                                                                                             
 

Using Eqs. (66) and (67), we obtain total energy density parameter
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 (68) 
 

The physical and kinematical properties of the model are as follows 

A. Barber’s Scalar Function  

    From Fig.1, it is observed that, for both the models, the scalar function  is increasing function of time. 

1 2 3 4 5 6

1

2

3

4

t

             model for 0m

----------model for 0m



 
Fig.1 The plot of scalar function versus     cosmic time t for 5.0,0,1  mD ,    1.0,2.0 43  cc  

B. Expansion Scalar  
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        model for 0m

---------model for 0m

 
 Fig.2 The plot of expansion scalar versus cosmic time t for 5.0,0,1  mD , 1.0,2.0 43  cc  

    From Fig. 2, it is observed that, for model 0m (i.e. exponential volumetric expansion model) the 

expansion scalar  is constant throughout the evolution of the universe and 0dt
dH , which implies that greater 

the value of Hubble‟s parameter faster the rate of expansion of universe. Whereas for model 0m (i.e. power 

law volumetric expansion model) the expansion scalar  is infinite at t=0 and it tends to zero at some finite 

time. 

C. Shear Scalar   

    From Fig. 3, it is observed that, in both the models, the shear scalar  as 0t  and it tends to zero as 

time is increases. 

1 2 3 4

1

2

3

4

t


        model  for 0m

--------model for 0m

 
 Fig.3 The plot of shear scalar  versus cosmic      time t for 5.0,0,1  mD , 1.0,2.0 43  cc  

D. The Anisotropy Parameter   

    Fig. 4 is the plot of anisotropy parameter  versus time t. It shows that, in both the models anisotropy 

parameter   as 0t  and it tends to zero as time is increases. 

1 2 3 4

1

2

3

4

t

           model for 0m

----------model for 0m

 
Fig.4 The plot of anisotropy parameterversus cosmic time t for 5.0,0,1  mD , 1.0,2.0 43  cc  

The anisotropy parameter 0 , therefore the models does not approach isotropy. 

E. The deceleration parameter q 
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   We have the sign of q indicates whether the models inflates or not. The positive sign of  q indicates the model 

is decelerating where as negative sign of q  indicates the inflationary model. From Eqs. (46) and (64) it is 

observed that, the deceleration parameter the deceleration parameter q is negative for m = 0 and 0<m<1 , which 

shows that the universe undergoes accelerating expansion. The model for 0m  is inflationary whereas model 

for 0m   is inflationary for 0<m<1 but for m>1, the model is decelerating model. 

F. The EoS Parameter   

The behaviour of equation of state parameter in terms of cosmic time t is shown in Fig. 5. This figure shows that 

the EoS parameter for model 0m  is varies in phantom region  1 , whereas the EoS parameter for 

model 0m is starts from phantom region  1 , increases rapidly and attains the value  1  after 

some finite time t. i.e. our model approaches toCDM model after some finite time. The CDM models are 

best candidate for describing the cosmological evolution of the universe. Hence our models are in good 

agreement with well established theoretical results (Spergel [23], Riess [24, 25], Astier [26] and Bamba [27]. 

1 2 3 4

-3

-2

-1

t

              model for 0m

--------- model for 0m



 
Fig.5 The plot of EoS parameter 

  versus cosmic time t for 5.0,0,1  mD , 1.0,2.0 43  cc  

G. Coincidence Parameter 

The coincidence parameter is the ratio of two energy densities (




mr  ). From Eqs. (47) and (65), it is 

observed that the coincidence parameter r  at very early stage of evolution varies, but after some finite time it 

converges to a constant value and remains constant throughout the evolution, thereby avoiding the coincidence 

problem(unlike CDM). 

H. Overall Density Parameter  

From Fig. 6, it is observe that for 0<m<1 the overall density parameter approaches to one
 
as T . Thus 

derived    models predict a flat universe at late time. 

2 4 6 8

2

4

6

8

t



              model for 0m

-----------model for 0m

 
Fig.6 The plot of total energy density versus cosmic time t for 5.0,0,1  mD , 1.0,2.0 43  cc  

V. CONCLUSION 

    In this paper, we have we have studied the anisotropic Bianchi type-I cosmological models with polytropic 

DE in the framework of Barber‟s second self creation cosmology (1982). The exact solutions of field equations 

have been obtained by considering (i) the power law relation between the average scale factor ''a  and the scalar 

field ''   and (ii) the special law of variation for Hubble‟s parameter proposed by Berman (1983). Model for

0m  is non-singular, since spatial volume
DtecV 3

3  not vanishes at any values of t. Therefore model 
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0m does not have any physical singularity. But for model 0m have a big bang singularity at mD
ct 4 , 

since spatial volume   mcmDtV
3

4 is zero at mD
ct 4 . The physical and kinematical parameters such as 

Barber‟s scalar function, anisotropic parameter, shear scalar, expansion scalar, deceleration parameter, EoS 

parameter, coincidence parameter and total energy density are discussed. 
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