Chromatic Strong(Weak) Excellent $\operatorname{Ink}_{\mathrm{m}} \cup \mathrm{P}_{\mathrm{n}}$

M Anitha ${ }^{\# 1}$,S Balamurugan ${ }^{* 2}$
\# Department of Mathematics
Syed Ammal Arts and Science College
Ramanathapuram, Tamil Nadu, India
*PG Department of Mathematics Government Arts College,Melur, Madurai, Tamil Nadu, India

Abstract

Let G be an simple undirected graphs. A subset D of V is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and $\chi(\langle D\rangle)=\chi(G)$. The minimum cardinality of a chromatic strong(weak) dominating set in a graph G is called the chromatic strong(weak) dominating number and is denoted by $\boldsymbol{\gamma}_{s}^{c}(G)\left(\boldsymbol{\gamma}_{w}^{c}(G)\right)$.A graph G is called a $\boldsymbol{\gamma}_{s}^{c}\left(\boldsymbol{\gamma}_{w}^{c}\right)$-excellent if every vertex of G belongs to a $\boldsymbol{\gamma}_{s}^{c}\left(\boldsymbol{\gamma}_{w}^{c}\right)$ - set. We find that the necessary and sufficient condition for some particular graph, of the form $K_{m} \cup P_{n}$, is $\boldsymbol{\gamma}_{s^{c}}^{c}$ excellent and $\boldsymbol{\gamma}_{w}^{c}$ - excellent.

Keywords-Chromatic strong domination, Chromatic weak domination, Chromatic strong excellent graph, Chromatic weak excellent graph.

I. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple undirected graph with vertex set V and edge set $\mathrm{E} . \mathrm{A} n$ - coloringof a graph G is an assignment of n colors to its vertices so that no two adjacent vertices have the same color. The chromatic number $\chi(G)$ is defined as the minimum n for which G has an n - coloring. The diameter of a connected graph G is defined by $\max \{d(u, v): u, v \in V(G)\}$ and is denoted by $\operatorname{diam}(G)$. Note that diameter of a path P_{n} is the distance betweenthe its end vertices. That is diam $\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}-1$.For graph theoretic terminology, we refer to [2] and [4]. A subset D of V is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D . The domination numbery (G) of G is the minimum cardinality of the dominating set of G.A dominating set with minimum cardinality is called a γ - set of G.A study of domination in graphs and its advanced topics are given in [6].Prof. E.Sampathkumar and L.Pushpalatha have defined strong(weak) domination in graphs shown in [8].A subset D of V is called a strong(weak) dominating set of G if for every vertex in V-D there exists $\mathrm{u} \in \mathrm{D}$ such that $u v \in \mathrm{E}$ and $\operatorname{deg} \mathrm{u} \geq \operatorname{deg} \mathrm{v}(\operatorname{deg} \mathrm{v} \geq \operatorname{deg} \mathrm{u})$.The strong(weak) domination number $\gamma_{s}(\mathrm{G})\left(\gamma_{w}(\mathrm{G})\right)$ of G is the minimum cardinality of a strong(weak) dominating set of G.A Strong(Weak) dominating set with minimum cardinality is called a $\gamma_{s}-\operatorname{set}\left(\gamma_{w}-\right.$ set)of G.

Prof. T. N. Janakiramanand M. Poobalaranjani [7] introduced a new conditional dom chromatic setand Prof. S. Balamurugan et al [3] extended this dom chromatic set to chromatic strong (weak) dominating set.A subset D of V is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and $\chi(\langle\mathrm{D}\rangle)=\chi(\mathrm{G})$.The minimum cardinality of a chromatic strong(Weak) dominating set in a graph G is called thechromatic strong(weak) dominating number and is denoted by $\gamma_{s}^{c}(\mathrm{G})\left(\gamma_{\mathrm{w}}^{\mathrm{c}}(\mathrm{G})\right.$).A chromatic strong dominating set with cardinality $\gamma_{\mathrm{s}}^{\mathrm{c}}\left(\gamma_{\mathrm{w}}^{\mathrm{c}}\right)$ iscalled $\gamma_{\mathrm{s}}^{\mathrm{c}}$ - set $\left(\gamma_{\mathrm{w}}^{\mathrm{c}}-\right.$ set) of G .

Prof N Sridharan and M. Yamuna [9] defined some new classes of excellent graphs with respect to γ - set. Prof CVRHarinarayanan et al [5] extended it to strong (weak) domination excellent graphs.We introduce a chromatic strong (weak) excellent in graphs and find the condition for chromatic strong (weak) very excellent caterpillar in [1].

II. Chromatic Strong (Weak) excellent

A. $\boldsymbol{\gamma}_{s}^{c}\left(\boldsymbol{\gamma}_{w}^{c}\right)$-Excellent [1]

A vertex u in G is said to be $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-good ifu belongs to some $\gamma_{s}^{c}\left(\gamma_{\mathrm{w}}^{\mathrm{c}}\right)$ - set of G and $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-bad otherwise. A graph G is a called $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-excellentif every vertex of G is $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-good. Equivalently, A graph G is said to be excellent with respect to chromatic strong (Weak) dominationif each $\mathrm{u} \in \mathrm{V}(\mathrm{G})$ is contained in some $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - set of G .

B. $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-Just Excellent [1]

A graph G is said to be just excellent with respect to chromatic strong (Weak) domination if each $\mathrm{u} \in \mathrm{V}(\mathrm{G})$ iscontained in a unique $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - set of G . We also says that G is $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - just excellent graph.

C. $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-Very Excellent [1]

A graph G is said to be very excellent with respect to chromatic strong (Weak) dominationif there is a $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - set of G such that to each vertex $u \in V-D$, there exists a vertex $v \in D$ such that $(D-\{v\}) \cup\{u\}$ is $a \gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - set of G. We also says that G is $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - very excellent graph.

D. $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-Rigid Very Excellent [1]

letG be a very excellent graph and D be a very excellent $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$ - set of G. To each u not in D , let $\mathrm{E}(\mathrm{u}, \mathrm{D})$ be the set of vertices of D which are exchangeable with u.

$$
\text { ie., } E(u, D)=\left\{v \in D \mid(D-v) \cup\{u\} \text { is } a \gamma_{s}^{c}\left(\gamma_{w}^{c}\right) \text { - set of } G\right\}
$$

If $|\mathrm{E}(\mathrm{u}, \mathrm{D})|=1$, for all unot in D , then D is said to be a rigid very excellent $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)-$ set of G.If G has atleast one rigid very excellent $\gamma_{s}^{c}\left(\gamma_{w}^{c}\right)$-set then G is said to be rigid very excellent.

III. Chromatic strong excellent Graphs

A. Theorem

Let $G=K_{m} \cup P_{n}$ be a graph where K_{m} is the complete graph with $m(>3)$ vertices andP $n(n \geq 2)$ is the path with the vertex set $\{1,2,3, \ldots, n\}$. Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}$ be a non empty set where x_{i} is the $i^{\text {th }}$ vertex of P_{n} such that $\mathrm{x}_{\mathrm{i}} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$. then G is γ_{s}^{c} - excellent graph if and only if the following hold
i. $\quad V\left(K_{m}\right)$ is a subset of every chromatic strong dominating set of G.
ii. $\quad \operatorname{In} P_{n}$, for $t \in N$,
a. $\quad \mathrm{d}\left(1, \mathrm{x}_{1}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{n}\right)=3 \mathrm{t}-1$
b. $\quad d\left(x_{i}, x_{i+1}\right)=3 t-2$, for all $i=1,2, \ldots, k-1$

Proof:

Given $\mathrm{G}=\mathrm{K}_{\mathrm{m}} \cup \mathrm{P}_{\mathrm{n}}$. Clearly, the chromatic number of G is m . Let D be γ_{s}^{c} - set of G.If G is γ_{s}^{c} - excellent, thenClearly, $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \subset \mathrm{V}(\mathrm{G})$ is a subset of every chromatic strong dominating set, D of G.Therefore (i) holds.

Case : 1

If $\mathrm{k}=1$,ie., $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cap \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{x}_{1}\right\}$.Then, we have to prove that both $\mathrm{d}\left(1, \mathrm{x}_{1}\right)$ and $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{n}\right)$ is of the form $3 \mathrm{t}-1, \mathrm{t} \in \mathrm{N}$, in P_{n}. Suppose $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{n}\right) \neq 3 \mathrm{t}-1$ if $\mathrm{x}_{1} \neq$ n. If $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{n}\right)=3 \mathrm{t}$, thenthe vertices $\mathrm{x}_{1}+1, \mathrm{x}_{1}+4, \mathrm{x}_{1}+7, \ldots, \mathrm{n}-2, \mathrm{n}$ belongs to no $\gamma_{s}^{c}-$ set of G.Otherwise, $|\mathrm{D}|>\gamma_{s}^{c}$. If $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{n}\right)=3 \mathrm{t}+1$, then $\mathrm{D}=\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cup\left\{\mathrm{x}_{1}+3, \mathrm{x}_{1}+6, \ldots, \mathrm{n}-1\right\}$ is a unique γ_{s}^{c} - set of G.Otherwise, $|\mathrm{D}|>\gamma_{s}^{c}$. Since both sub cases lead to contradiction, $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{n}\right)=3 \mathrm{t}-1$. Similarly, $\mathrm{d}\left(1, \mathrm{x}_{1}\right)=3 \mathrm{t}-1$ if $\mathrm{x}_{1} \neq 1$

Case : 2

If $k \neq 1$, If $x_{1} \neq 1$, thenBy case : 1 , the result, $d\left(1, x_{1}\right)=3 t-1$ is true. Similarly, $d\left(x_{k}, n\right)=3 t-1$ if $x_{k} \neq n$.Hence, (ii)(a) holds.Let S_{i} be the set of all vertices lies between x_{i} and x_{i+1} in P_{n}. That is $S_{i}=\left\{s \in P_{n} \mid x_{i}<s<x_{i+1}\right\}$.Let $S_{i}=\left\{s_{i 1}\right.$, $\left.\mathrm{s}_{\mathrm{i} 2}, \ldots, \mathrm{~s}_{\mathrm{i}(\mathrm{ni})}\right\}$. Suppose that $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right) \neq 3 \mathrm{t}-2$ in P_{n}.If $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=3 \mathrm{t}$, thenD $=\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cup\left\{\mathrm{s}_{\mathrm{i} 3}, \mathrm{~s}_{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{i}(3 \mathrm{t})}\right\}$ is a unique $\gamma_{s}^{c}-$ set of G.If $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=3 \mathrm{t}-1$, thenthe vertices $\mathrm{s}_{\mathrm{i} 1}, \mathrm{~s}_{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{i}(3 t+1)}$ belong to no γ_{s}^{c} - set of G.Otherwise, $|\mathrm{D}|>\gamma_{s}^{c}$. Since both sub cases lead to contradiction, $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=3 \mathrm{t}-2$ in P_{n}. Hence (ii)-(b) holds.

Conversely,

Now, we assume that the given graph $G=K_{m} \cup P_{n}$ satisfies the condition (i) and (ii)Suppose G is not a γ_{s}^{c} excellent. Let D be any γ_{s}^{c} - set of G .Then there exists a vertex x in $\mathrm{V}(\mathrm{G})$ such that no γ_{s}^{c} - set, D of G containing x. Since by (i), xnotin $V\left(K_{m}\right)$. Hence $x \in V\left(P_{n}\right)-V\left(K_{m}\right)$.

Case : 1

If x lies between 1 and x_{1} then, Let Sbe the set of all vertices lies between x_{1} and 1 including x_{1} and 1 . Let $R=S \cap D=\left\{r_{1}, r_{2}, \ldots, r_{q}\right\}$, (say).Clearly, $x_{1} \in R$ and x not in R.If $d\left(r_{i}, r_{i+1}\right)=3$, for all $1 \leq i<q$, then, $d\left(x_{1}, 1\right)=3 t+1$, $(t \in$ N), contradicts (ii)-(a).Otherwise, If $\mathrm{d}\left(\mathrm{r}_{\mathrm{j}}, \mathrm{r}_{\mathrm{j}+1}\right)=2$, for a unique j , then $\mathrm{d}\left(\mathrm{x}_{1}, 1\right)=3 \mathrm{t},(\mathrm{t} \in \mathrm{N})$, contradicts (ii)-(a).If
$d\left(r_{j}, r_{j+1}\right)=2$, for any two $j, j=1,2, \ldots, q-1$ ie., $d\left(r_{j 1}, r_{j 1+1}\right)=d\left(r_{j 2}, r_{j 2+1}\right)=2$ then, in particular, let $j 2=j 1+1$ and $r_{j 2+1}$ is adjacent to x.Let r be the adjacent vertex of $\mathrm{r}_{\mathrm{j} 2+1}$ other than x as shown in the following figure.

Then, clearly, $\mathrm{D}-\left\{\mathrm{r}_{\mathrm{j} 2+1}, \mathrm{r}_{\mathrm{j} 2}\right\} \cup\{\mathrm{r}, \mathrm{x}\}$ is a γ_{s}^{c} - set of G containing x.which is contradiction. If $\mathrm{d}\left(\mathrm{r}_{\mathrm{j}}, \mathrm{r}_{\mathrm{j}+1}\right)=2$, for more than two j . then, $|\mathrm{D}|>\gamma_{s}^{c}$.Hence G is γ_{s}^{c} - excellent.

Case :2

If x lies between x_{k} and n.It is similar to case : 1 .Hence, by case :1, G is γ_{s}^{c} - excellent.

Case : 3

If x lies between x_{i} and x_{i+1} then, Let S be the set of all vertices lies between x_{i} and x_{i+1} including x_{i} and x_{i+1} andlet $T=S \cap D=\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}$ (say).Clearly, $x_{i} \in T, x_{i+1} \in T$ and x not in T. If $d\left(t_{i}, t_{i+1}\right)=3$, for all $1 \leq i<p$, then, $d\left(x_{i}, x_{i+1}\right)=3 t,(t \in N)$. Which is contradiction to (ii)-(b). Otherwise, If $d\left(t_{j}, t_{j+1}\right)=2$, for a unique j, then $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=3 \mathrm{t}-1,(\mathrm{t} \in \mathrm{N})$. Which is contradiction to (ii)-(b). If $\mathrm{d}\left(\mathrm{t}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}+1}\right)=2$, for any two $\mathrm{j}, \mathrm{j}=1,2, \ldots$, $\mathrm{p}-$ 1.ie., $\mathrm{d}\left(\mathrm{t}_{\mathrm{j} 1}, \mathrm{t}_{\mathrm{j} 1+1}\right)=\mathrm{d}\left(\mathrm{t}_{\mathrm{j} 2}, \mathrm{t}_{\mathrm{j} 2+1}\right)=2$ thenin particular, let $\mathrm{j} 2=\mathrm{j} 1+1$ and $\mathrm{t}_{\mathrm{j} 2+1}$ is adjacent to x . Let t_{0} be the adjacent vertex of $\mathrm{t}_{\mathrm{j} 2+1}$ other than x as shown in the following figure.

Then, clearly, $\mathrm{D}-\left\{\mathrm{t}_{\mathrm{j} 2+1}, \mathrm{t}_{\mathrm{j} 2}\right\} \cup\left\{\mathrm{t}_{0}, \mathrm{x}\right\}$ is a γ_{s}^{c} - set of G containing x .which is contradiction. Suppose, if $\mathrm{d}\left(\mathrm{t}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}+1}\right)=2$, for more than two j . then, $|\mathrm{D}|>\gamma_{s}^{c}$.Hence G is γ_{s}^{c} - excellent.

B. Corollary

Let $G=K_{m} \cup P$ be a graph where K_{m} is the complete graph with $m(>3)$ vertices andP is the union of disjoint paths $P_{j}(\mathrm{j} \geq 2)$ with the vertex set $\left\{1^{(\mathrm{j})}, 2^{(\mathrm{j})}, 3^{(\mathrm{j})}, \ldots, \mathrm{n}_{\mathrm{j}}{ }^{(\mathrm{j})}\right\}$. Let $\mathrm{X}^{(\mathrm{j})}=\left\{\mathrm{x}_{1}{ }^{(\mathrm{j})}, \mathrm{x}_{2}{ }^{(\mathrm{j})}, \mathrm{x}_{3}{ }^{(\mathrm{j})}, \ldots, \mathrm{x}_{\mathrm{k}}{ }^{(\mathrm{j})}\right\}$ be a non empty set, where $\mathrm{x}_{\mathrm{i}}{ }^{(\mathrm{j})}$ is the $\mathrm{i}^{\text {th }}$ vertex of P_{j} such that $\mathrm{x}_{\mathrm{i}}{ }^{(\mathrm{j})} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$. then G is γ_{s}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic strong dominating set of G .
ii. In P_{j}, for each j and for $t \in N$
a. $\quad \mathrm{d}\left(1, \mathrm{x}_{1}{ }^{(\mathrm{j})}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}{ }^{(\mathrm{j})}, \mathrm{n}\right)=3 \mathrm{t}-1$
b. $\quad d\left(x_{i}{ }^{(j)}, x_{i+1}{ }^{(j)}\right)=3 t-2$, for all $\mathrm{i}=1,2, \ldots, k-1$

C. Theorem

Let $G=K_{m} \cup C_{n}$ be a connected graph where K_{m} is the complete graph with $m(>3)$ vertices andC C_{n} is the cycle with the $(\mathrm{n} \geq 3)$ vertices. Let $\mathrm{H}=\left\langle\left\{\mathrm{V}(\mathrm{G})-\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)\right\} \quad\right\rangle$ and let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{p}}$ be a components of H Then G is γ_{s}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic strong dominating set of G .
ii. $\quad \operatorname{diam}\left(H_{i}\right)=3 t-1, t \in N$, for each $i=1,2, \ldots, p$

Proof:

Given $G=K_{m} \cup C_{n}$ is a connected graph.Then H is a disjoint union of paths. ie., each H_{i} is a path.Let $H_{i}=P_{k i}$ be a path with the vertex set $\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{ki}}\right\}$. It is clear that the chromatic number and clique number of the graph G is m.Let D be γ_{s}^{c} - set of G.If G is γ_{s}^{c} - excellent,Clearly, $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \subset \mathrm{V}(\mathrm{G})$ is a subset of every chromatic strong dominating set, D of G.Therefore (i) holds. Now we have to prove thatdiam $\left(\mathrm{H}_{\mathrm{i}}\right)=3 \mathrm{t}-1$, $\mathrm{t} \in \mathrm{N}$, for each $\mathrm{i}=1,2$, \ldots, p.It is enough to prove that $\mathrm{ki}=3 \mathrm{t}$, for each i.It is clear that the end vertex of P_{ki} is adjacent to vertex of D ,
since $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \subset \mathrm{D}$. Suppose $\mathrm{ki} \neq 3 \mathrm{t}$. If $\mathrm{ki}=3 \mathrm{t}+1$, thenthe vertices $\mathrm{h}_{1}, \mathrm{~h}_{4}, \mathrm{~h}_{7}, \ldots, \mathrm{~h}_{3 t+1}$ belongs to no γ_{s}^{c} - set of G . Otherwise, $|\mathrm{D}|>\gamma_{s}^{c}$. If ki $=3 \mathrm{t}-1$, then $\mathrm{D}=\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cup\left\{\mathrm{h}_{3}, \mathrm{~h}_{6}, \ldots, \mathrm{~h}_{3 \mathrm{t}}\right\}$ is a unique γ_{s}^{c} - set of G . Since both cases lead to contradiction, $\mathrm{ki}=3 \mathrm{t}$.

Hence (ii) holds.
Conversely,
Now, we assume that the given graph $G=K_{m} \cup C_{n}$ satisfies the condition (i) and (ii). Suppose G is not $\mathrm{a} \gamma_{s}^{c}$ excellent. Let D be any γ_{s}^{c} - set of G.Then there exists a vertex x in $\mathrm{V}(\mathrm{G})$ such that no γ_{s}^{c} - set, D of G containing x. Since by (i), x not in $V\left(K_{m}\right)$. Hence $x \in H$ implies $x \in H_{i}$ for some i.Let p and q be the vertices of $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ which is also adjacent to the pendant vertex of H_{i}. Let $\mathrm{S}=\left(\mathrm{H}_{\mathrm{i}} \cap \mathrm{D}\right) \cup\{\mathrm{p}, \mathrm{q}\}$ and let $\mathrm{S}=\left\{\mathrm{p}=\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots\right.$, $\left.\mathrm{s}_{\mathrm{r}}=\mathrm{q}\right\}$ (say).Clearly, x not in S.If $\mathrm{d}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right)=3$, for all $1 \leq \mathrm{i}<\mathrm{r}$, then, $\mathrm{d}(\mathrm{p}, \mathrm{q})=3 \mathrm{t},(\mathrm{t} \in \mathrm{N})$ impliesdiam $\left(\mathrm{H}_{\mathrm{i}}\right)=3 \mathrm{t}-2$, $(\mathrm{t} \in$ N), contradicts (ii). Otherwise, If $\mathrm{d}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}\right)=2$, for a unique j , then $\mathrm{d}(\mathrm{p}, \mathrm{q})=3 \mathrm{t}-1,(\mathrm{t} \in \mathrm{N})$ impliesdiam $\left(\mathrm{H}_{\mathrm{i}}\right)=3 \mathrm{t},(\mathrm{t} \in \mathrm{N})$ contradicts (2). If $\mathrm{d}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}\right)=2$, for any two $\mathrm{j}, \mathrm{j}=1,2, \ldots, \mathrm{r}-1$. ie., $\mathrm{d}\left(\mathrm{s}_{\mathrm{j} 1}, \mathrm{~s}_{\mathrm{j} 1+1}\right)=\mathrm{d}\left(\mathrm{s}_{\mathrm{j} 2}, \mathrm{~s}_{\mathrm{j} 2+1}\right)=2$ thenin particular, let $\mathrm{j} 2=\mathrm{j} 1+1$ and x is adjacent to both $\mathrm{s}_{\mathrm{j} 1}$ and $\mathrm{s}_{\mathrm{j} 1+1}$ as shown in the following figure.

Then, clearly, $\left(\mathrm{S}-\mathrm{s}_{\mathrm{j} 1+1}\right) \cup\{\mathrm{x}\}$ is a γ_{s}^{c} - set of G containing x .which is also contradiction. If $\mathrm{d}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}\right)=2$, for more than two j . then, $|\mathrm{D}|>\gamma_{s}^{c}$.

Hence G is γ_{s}^{c} - excellent.

D. Corollary

Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}} \cup \mathrm{C}$ be a connected graph where K_{m} is the complete graph with $\mathrm{m}(>3)$ vertices andC is the union of disjoint cycles, $\mathrm{C}_{\mathrm{j}},(\mathrm{n} \geq 3)$. Let $\mathrm{H}=\left\{\quad\left\{\mathrm{V}(\mathrm{G})-\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)\right\} \quad\right.$ and let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{p}}$ be a components of H Then G is γ_{s}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic strong dominating set of G .
ii. $\quad \operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=3 \mathrm{t}-1, \mathrm{t} \in \mathrm{N}$, for each $\mathrm{i}=1,2, \ldots, \mathrm{p}$

IV. Chromatic Weak Excellent Graphs

A. Theorem

Let $G=K_{m} \cup P_{n}$ be a graph where K_{m} is the complete graph with $m(>3)$ vertices andP $P_{n}(n \geq 2)$ is the path with the vertex set $\{1,2,3, \ldots, n\}$. Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}$ is non empty, where x_{i} is the $i^{\text {th }}$ vertex of P_{n} such that $x_{i} \in$ $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$. then G is γ_{w}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic weak dominating set of G .
ii. In P_{n}, for $t \in N$,
a. $\mathrm{d}\left(1, \mathrm{x}_{1}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{n}\right)=1$ or 3 t
b. $d\left(x_{i}, x_{i+1}\right)=3$ or $3 t-1$, for all $i=1,2, \ldots, k-1$

B. Corollary

Let $G=K_{m} \cup P$ be a graph where K_{m} is the complete graph with $m(>3)$ vertices andP is the union of disjoint paths $P_{j}(\mathrm{j} \geq 2)$ with the vertex set $\left\{1^{(\mathrm{j})}, 2^{(\mathrm{j})}, 3^{(\mathrm{j})}, \ldots, \mathrm{n}_{\mathrm{j}}{ }^{(\mathrm{j})}\right\}$. Let $\mathrm{X}^{(\mathrm{j})}=\left\{\mathrm{x}_{1}{ }^{(\mathrm{j})}, \mathrm{x}_{2}{ }^{(\mathrm{j})}, \mathrm{x}_{3}{ }^{(\mathrm{j})}, \ldots, \mathrm{x}_{\mathrm{k}}{ }^{(\mathrm{j})}\right\}$ is non empty where $\mathrm{x}_{\mathrm{i}}{ }^{(\mathrm{j})}$ is the $\mathrm{i}^{\text {th }}$ vertex of P_{j} such that $\mathrm{x}_{\mathrm{i}}{ }^{(\mathrm{j})} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$. thenG is γ_{w}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic weak dominating set of G .
ii. In P_{j}, for each j and for $t \in N$
a. $\quad \mathrm{d}\left(1, \mathrm{x}_{1}{ }^{(\mathrm{j})}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{k}}{ }^{(\mathrm{j})}, \mathrm{n}\right)=1$ or 3 t
b. $\quad \mathrm{d}\left(\mathrm{x}_{\mathrm{i}}^{(\mathrm{j})}, \mathrm{x}_{\mathrm{i}+1}{ }^{(\mathrm{j})}\right)=3$ or $3 \mathrm{t}-1$, for all $i=1,2, \ldots, k-1$

C. Theorem

Let $G=K_{m} \cup C_{n}$ be a connected graph where K_{m} is the complete graph with $m(>3)$ vertices andC C_{n} is the cycle with the $(\mathrm{n} \geq 3)$ vertices. Let $\mathrm{H}=\left\langle\left\{\mathrm{V}(\mathrm{G})-\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)\right\} \quad\right\rangle$ and let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{p}}$ be a components of H Then G is γ_{w}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic weak dominating set of G .
ii. $\quad \operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=1$ or3t,t N , for each $\mathrm{i}=1,2, \ldots, \mathrm{p}$

D. Corollary

Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}} \cup \mathrm{C}$ be a connected graph where K_{m} is the complete graph with $\mathrm{m}(>3)$ vertices andC is the union of disjoint cycles, $\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$. Let $\mathrm{H}=\left\langle\quad\left\{\mathrm{V}(\mathrm{G})-\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)\right\} \quad\right\rangle$ andlet $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{p}}$ be a components of H Then G is γ_{w}^{c} - excellent graph if and only if the following hold
i. $\quad \mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)$ is a subset of every chromatic weak dominating set of G .
ii. $\quad \operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=1$ or $3 \mathrm{t}, \mathrm{t} \in \mathrm{N}$, for each $\mathrm{i}=1,2, \ldots, \mathrm{p}$

V. References

[1] M.Anitha, S.Balamurugan, A chromatic strong very excellent in caterpillar, International journal of mathematics and soft computing, Submitted.
[2] R. Balakrishnan, K. Ranganathan, A textbook of graph theory, Springer,2011.
[3] S.Balamurugan, G.Prabakaran and V.Swaminathan,On Chromatic Strong Dominating Sets in Graphs, International journal of engineering science, Advanced computing and Bio-Technology, Vol. 2 No. 3, July-Sep 2011, pp 139-149.
[4] J.A.Bondy, U.S.R.Murthy, Graph theory withApplications, North-Holland, 1982.
[5] C.V.R.Harinarayanan, C.Y.Ponnappan, S.P.Subbiah,R.Sundareswaran and V.Swaminathan, Just Excellence and Very Excellence in Graphs with respect to strong domination, Tamkang Journal of Mathematics, Volume 38, Number 2, 167-175, Summer 2007.
[6] T.W.Haynes, Stephen T.Hedetniemi, PeterJ.Slater, Fundamentals of domination in graphs, Marcel dekker, Inc, New york.
[7] T.N.Janakiraman, N.Popalaranjani, Dom chromatic sets of Graphs, International journal of engineering science, Advanced computing and Bio-Technology, Vol. 2 No. 2, Apr-Jun 2011, pp 88-103.
[8] E.Sampathkumar and Pushpalatha, Strong(Weak) domination and domination balance in graph, Discrete Math. 161, (1996), 235-242.
[9] N.Sridharan, M.Yamuna, Very Excellent Graphs and Rigid Very Excellent Graphs, AKCE J. Graphs. Combin., 4, No. 2 (2007), pp. 211-221.

