Chromatic Strong(Weak) Excellent $Ink_m \cup P_n$

M Anitha^{#1},S Balamurugan^{*2}

[#]Department of Mathematics Syed Ammal Arts and Science College Ramanathapuram, Tamil Nadu, India ^{*}PG Department of Mathematics Government Arts College,Melur, Madurai, Tamil Nadu, India

Abstract—Let G be an simple undirected graphs. A subset D of V is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a chromatic strong(weak) dominating set in a graph G is called the chromatic strong(weak) dominating number and is denoted by $\gamma_s^c(G)$ ($\gamma_w^c(G)$). A graph G is called a $\gamma_s^c(\gamma_w^c)$ - excellent if every vertex of G belongs to a $\gamma_s^c(\gamma_w^c)$ - set. We find that the necessary and sufficient condition for some particular graph, of the form $K_m \cup P_n$, is γ_s^c - excellent and γ_w^c - excellent.

Keywords—*Chromatic strong domination, Chromatic weak domination, Chromatic strong excellent graph, Chromatic weak excellent graph.*

I. INTRODUCTION

Let G=(V,E) be a simple undirected graph with vertex set V and edge set E.An – coloring of a graph G is an assignment of n colors to its vertices so that no two adjacent vertices have the same color. The chromatic number $\chi(G)$ is defined as the minimum n for which G has an n- coloring. The diameter of a connected graph G is defined by max{ $d(u,v) : u,v \in V(G)$ } and is denoted by diam(G). Note that diameter of a path P_n is the distance between the its end vertices. That is diam(P_n)=n-1.For graph theoretic terminology, we refer to [2] and [4]. A subset D of V is a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of the dominating set of G.A dominating set with minimum cardinality is called a γ - set of G.A study of domination in graphs and its advanced topics are given in [6].Prof. E.Sampathkumar and L.Pushpalatha have defined strong(weak) domination in graphs shown in [8].A subset D of V is called a strong(weak) dominating set of G if for every vertex in V-D there exists $u \in D$ such that $uv \in E$ and deg $u \ge deg v$ (deg $v \ge deg u$).The strong(weak) domination number $\gamma_s(G)$ ($\gamma_w(G)$) of G is the minimum cardinality is called a γ_s -set (γ_w - set) of G.

Prof. T. N. Janakiramanand M. Poobalaranjani [7] introduced a new conditional dom chromatic setand Prof. S. Balamurugan et al [3] extended this dom chromatic set to chromatic strong (weak) dominating set. A subset D of V is said to be a *chromatic strong(weak) dominating set* if D is a strong(weak) dominating set and $\chi(<D>)=\chi(G)$. The minimum cardinality of a chromatic strong(Weak) dominating set in a graph G is called the *chromatic strong(weak) dominating number* and is denoted by $\gamma_s^c(G)$ ($\gamma_w^c(G)$). A chromatic strong dominating set with cardinality $\gamma_s^c(\gamma_w^c)$ iscalled γ_s^c - set (γ_w^c - set) of G.

Prof N Sridharan and M. Yamuna [9] defined some new classes of excellent graphs with respect to γ - set. Prof CVRHarinarayanan et al [5] extended it to strong (weak) domination excellent graphs. We introduce a chromatic strong (weak) excellent in graphs and find the condition for chromatic strong (weak) very excellent caterpillar in [1].

II. CHROMATIC STRONG (WEAK) EXCELLENT

A. $\gamma_s^c(\gamma_w^c)$ –*Excellent* [1]

A vertex u in G is said to be $\gamma_s^c (\gamma_w^c)$ -good ifu belongs to some $\gamma_s^c (\gamma_w^c)$ - set of G and $\gamma_s^c (\gamma_w^c)$ - bad otherwise. A graph G is a called $\gamma_s^c (\gamma_w^c)$ -excellent if every vertex of G is $\gamma_s^c (\gamma_w^c)$ - good. Equivalently, A graph G is said to be excellent with respect to chromatic strong (Weak) domination if each $u \in V(G)$ is contained in some $\gamma_s^c (\gamma_w^c)$ - set of G.

B. $\gamma_s^c(\gamma_w^c)$ –Just Excellent [1]

A graph G is said to be *just excellent* with respect to chromatic strong (Weak) domination if each $u \in V(G)$ is contained in a unique γ_s^c (γ_w^c) - set of G. We also says that G is γ_s^c (γ_w^c) - *just excellent graph*.

C. $\gamma_s^c(\gamma_w^c)$ –Very Excellent [1]

A graph G is said to be *very excellent* with respect to chromatic strong (Weak) domination if there is $a\gamma_s^c (\gamma_w^c)$ - set of G such that to each vertex $u \in V$ -D, there exists a vertex $v \in D$ such that $(D - \{v\}) \cup \{u\}$ is $a\gamma_s^c (\gamma_w^c)$ - set of G. We also says that G is $\gamma_s^c (\gamma_w^c)$ - very excellent graph.

D. $\gamma_s^c(\gamma_w^c)$ –*Rigid Very Excellent* [1]

let G be a very excellent graph and D be a very excellent γ_s^c (γ_w^c)- set of G.To each u not in D, let E(u,D) be the set of vertices of D which are exchangeable with u.

ie., $E(u,D) = \{ v \in D \mid (D-v) \cup \{u\} \text{ is } a\gamma_s^c (\gamma_w^c) - \text{ set of } G \}$

If |E(u,D)|=1, for all unot in D,then D is said to be a *rigid very excellent* γ_s^c (γ_w^c) - set of G.If G has atleast one rigid very excellent γ_s^c (γ_w^c) - set then G is said to be *rigid very excellent*.

III. CHROMATIC STRONG EXCELLENT GRAPHS

A. Theorem

Let $G = K_m \cup P_n$ be a graph where K_m is the complete graph with m(>3) vertices and $P_n(n \ge 2)$ is the path with the vertex set $\{1, 2, 3, ..., n\}$. Let $X = \{x_1, x_2, x_3, ..., x_k\}$ be a non empty set where x_i is the ith vertex of P_n such that $x_i \in V(K_m)$. then G is γ_s^c - excellent graph if and only if the following hold

i. $V(K_m)$ is a subset of every chromatic strong dominating set of G.

- ii. In P_n , for $t \in N$,
 - a. $d(1,x_1) = d(x_k,n) = 3t-1$
 - b. $d(x_i, x_{i+1}) = 3t-2$, for all i=1, 2, ..., k-1

Proof:

Given $G=K_m \cup P_n$. Clearly, the chromatic number of G is m. Let D be γ_s^c - set of G.If G is γ_s^c - excellent, then Clearly, $V(K_m) \subset V(G)$ is a subset of every chromatic strong dominating set, D of G.Therefore (i) holds.

Case:1

If k=1,ie., V(K_m) \cap V(P_n)={x₁}. Then, we have to prove that both d(1,x₁) and d(x₁,n) is of the form 3t-1, t∈ N, in P_n. Suppose d(x₁,n)≠3t-1 if x₁≠ n. If d(x₁,n)=3t, then the vertices x₁+1,x₁+4, x₁+7, ..., n-2,n belongs to no γ_s^c -set of G.Otherwise, $|D| > \gamma_s^c$. If d(x₁,n)= 3t+1, then D=V(K_m) \cup {x₁+3,x₁+6,...,n-1} is a unique γ_s^c -set of G.Otherwise, $|D| > \gamma_s^c$. Since both sub cases lead to contradiction, d(x₁,n)=3t-1. Similarly, d(1,x₁)=3t-1 if x₁≠1

Case : 2

If $k \neq 1$, If $x_1 \neq 1$, then By case : 1, the result, $d(1,x_1)=3t-1$ is true. Similarly, $d(x_k, n)=3t-1$ if $x_k \neq n$. Hence, (ii)-(a) holds. Let S_i be the set of all vertices lies between x_i and x_{i+1} in P_n . That is $S_i=\{s \in P_n | x_i < s < x_{i+1}\}$. Let $S_i=\{s_{i1}, s_{i2}, \ldots, s_{i(ni)}\}$. Suppose that $d(x_i, x_{i+1}) \neq 3t-2$ in P_n . If $d(x_i, x_{i+1}) = 3t$, then $D=V(K_m) \cup \{s_{i3}, s_{i6}, \ldots, s_{i(3t)}\}$ is a unique γ_s^c -set of G.If $d(x_i, x_{i+1})=3t-1$, then the vertices $s_{i1}, s_{i4}, \ldots, s_{i(3t+1)}$ belong to no γ_s^c - set of G.Otherwise, $|D| > \gamma_s^c$. Since both sub cases lead to contradiction, $d(x_i, x_{i+1}) = 3t-2$ in P_n . Hence (ii)-(b) holds.

Now, we assume that the given graph $G=K_m \cup P_n$ satisfies the condition (i) and (ii)Suppose G is not a γ_s^c excellent. Let D be any γ_s^c - set of G.Then there exists a vertex x in V(G) such that no γ_s^c - set,D of G containing x. Since by (i), xnotin V(K_m). Hence $x \in V(P_n)$ -V(K_m).

Case:1

If x lies between 1 and x_1 then,Let Sbe the set of all vertices lies between x_1 and 1 including x_1 and 1. Let $R=S\cap D=\{r_1, r_2, \ldots, r_q\}$,(say).Clearly, $x_1\in R$ and x not in R.If $d(r_i,r_{i+1})=3$, for all $1 \le i < q$, then, $d(x_1,1)=3t+1$,($t\in N$), contradicts (ii)-(a).Otherwise, If $d(r_j,r_{j+1})=2$, for a unique j, then $d(x_1,1)=3t$,($t\in N$), contradicts (ii)-(a).If

 $d(r_i, r_{i+1})=2$, for any two j, j=1,2, ..., q-1ie., $d(r_{i1}, r_{i1+1})=d(r_{i2}, r_{i2+1})=2$ then, in particular, let j2=j1+1 and r_{i2+1} is adjacent to x.Let r be the adjacent vertex of $r_{i^{2+1}}$ other than x as shown in the following figure.

Then, clearly, D-{ r_{j2+1} , r_{j2} } \cup {r,x} is a γ_s^c - set of G containing x.which is contradiction. If d(r_j, r_{j+1})=2, for more than two j. then, $|D| > \gamma_s^c$. Hence G is γ_s^c - excellent.

Case :2

If x lies between x_k and n.It is similar to case : 1.Hence, by case :1, G is γ_s^c - excellent.

Case:3

If x lies between x_i and x_{i+1} then,Let S be the set of all vertices lies between x_i and x_{i+1} including x_i and x_{i+1} and let $T=S \cap D = \{t_1, t_2, \dots, t_p\}$ (say). Clearly, $x_i \in T$, $x_{i+1} \in T$ and x not in T. If $d(t_i, t_{i+1})=3$, for all $1 \le i < p$, then, $d(x_i, x_{i+1})=3t$, $(t \in N)$. Which is contradiction to (ii)-(b). Otherwise, If $d(t_j, t_{j+1})=2$, for a unique j, then $d(x_i, x_{i+1})=3t-1$, $(t \in N)$. Which is contradiction to (ii)-(b). If $d(t_j, t_{j+1})=2$, for any two j, j=1,2, ..., p-1.ie., $d(t_{j1},t_{j1+1})=d(t_{j2},t_{j2+1})=2$ then in particular, let j2=j1+1 and t_{j2+1} is adjacent to x. Let t_0 be the adjacent vertex of t_{j2+1} other than x as shown in the following figure.

Then, clearly, D-{ $t_{i_{2+1}}, t_{i_2}$ } \cup { t_0, x } is a γ_s^c - set of G containing x.which is contradiction. Suppose, if $d(t_j, t_{j+1})=2$, for more than two j. then, $|D| > \gamma_s^c$. Hence G is γ_s^c - excellent.

B. Corollary

Let $G = K_m \cup P$ be a graph where K_m is the complete graph with m(>3) vertices and P is the union of disjoint paths $P_j(j \ge 2)$ with the vertex set $\{1_{(i)}^{(i)}, 2_{(i)}^{(i)}, \ldots, n_j^{(i)}\}$. Let $X^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \ldots, x_k^{(i)}\}$ be a non empty set, where $x_i^{(j)}$ is the *i*th vertex of P_isuch that $x_i^{(j)} \in V(K_m)$. then G is γ_s^c - excellent graph if and only if the following hold

- V(K_m) is a subset of every chromatic strong dominating set of G. i. ii.
 - In P_i , for each j and for $t \in N$
- a. $d(1,x_1^{(i)})=d(x_k^{(i)},n)=3t-1$ b. $d(x_i^{(i)},x_{i+1}^{(i)})=3t-2$, for all i=1,2, ..., k-1

C. Theorem

Let $G = K_m \cup C_n$ be a connected graph where K_m is the complete graph with m(>3) vertices and C_n is the cycle with the $(n \ge 3)$ vertices. Let H=({V(G)-V(K_m)}) and let H₁,H₂, ..., H_p be a components of H Then G is γ_s^c - excellent graph if and only if the following hold

 $V(K_m)$ is a subset of every chromatic strong dominating set of G. i.

ii. diam(H_i) = 3t-1, $t \in N$, for each i=1,2, ..., p

Proof:

Given $G=K_m \cup C_n$ is a connected graph. Then H is a disjoint union of paths. ie., each H_i is a path. Let H_i=P_{ki} be a path with the vertex set $\{h_1, h_2, \dots, h_{ki}\}$. It is clear that the chromatic number and clique number of the graph G is m.Let D be γ_s^c - set of G.If G is γ_s^c - excellent, Clearly, V(K_m) \subset V(G) is a subset of every chromatic strong dominating set, D of G.Therefore (i) holds. Now we have to prove that $diam(H_i) = 3t-1$, $t \in N$, for each i=1,2, ...,p.It is enough to prove that ki=3t, for each i.It is clear that the end vertex of Pki is adjacent to vertex of D,

since V(K_m) \subset D. Suppose ki \neq 3t. If ki=3t+1, then the vertices h₁,h₄,h₇, ..., h_{3t+1} belongs to no γ_s^c - set of G. Otherwise, $|D| > \gamma_s^c$. If ki=3t-1, then $D = V(K_m) \cup \{h_3, h_6, \dots, h_{3t}\}$ is a unique γ_s^c - set of G.Since both cases lead to contradiction, ki=3t.

Hence (ii) holds.

Conversely,

Now, we assume that the given graph $G=K_m \cup C_n$ satisfies the condition (i) and (ii). Suppose G is not $a\gamma_s^c$ excellent. Let D be any γ_s^c - set of G. Then there exists a vertex x in V(G) such that no γ_s^c - set, D of G containing x. Since by (i), x not in V(K_m). Hence $x \in H$ implies $x \in H_i$ for some i.Let p and q be the vertices of $V(K_m)$ which is also adjacent to the pendant vertex of H_i. Let $S = (H_i \cap D) \cup \{p,q\}$ and let $S = \{p = s_1, s_2, \dots$ $s_r=q$ (say). Clearly, x not in S.If $d(s_i, s_{i+1})=3$, for all $1 \le i < r$, then, d(p,q)=3t, $(t \in N)$ implies diam (H_i)=3t-2, (t \in N) N), contradicts (ii). Otherwise, If $d(s_i, s_{i+1})=2$, for a unique j, then d(p,q)=3t-1, $(t \in N)$ implies diam $(H_i)=3t$, $(t \in N)$ contradicts (2). If $d(s_{j},s_{j+1})=2$, for any two j, j=1,2, ..., r-1. ie., $d(s_{j1},s_{j1+1})=d(s_{j2},s_{j2+1})=2$ then n particular, let $j_{2=j_{1+1}}$ and x is adjacent to both s_{j_1} and $s_{j_{1+1}}$ as shown in the following figure.

Then, clearly, $(S-s_{i1+1}) \cup \{x\}$ is a γ_s^c - set of G containing x.which is also contradiction. If $d(s_i, s_{i+1}) = 2$, for more than two j. then, $|D| > \gamma_s^c$.

Hence G is γ_s^c - excellent.

D. Corollary

Let $G = K_m \cup C$ be a connected graph where K_m is the complete graph with m(>3) vertices and C is the union of disjoint cycles, C_i , $(n \ge 3)$. Let $H = \langle \{V(G)-V(K_m)\} \rangle$ and let H_1, H_2, \dots, H_p be a components of H Then G is γ_s^c - excellent graph if and only if the following hold

- V(K_m) is a subset of every chromatic strong dominating set of G. i.
- diam(H_i) = $3t-1, t \in N$, for each i=1,2, ..., p ii.

IV. CHROMATIC WEAK EXCELLENT GRAPHS

A. Theorem

Let $G = K_m \cup P_n$ be a graph where K_m is the complete graph with m(>3) vertices and $P_n(n \ge 2)$ is the path with the vertex set $\{1,2,3,\ldots,n\}$. Let $X = \{x_1,x_2,x_3,\ldots,x_k\}$ is non empty, where x_i is the ith vertex of P_n such that $x_i \in$ V(K_m). then G is γ_w^c - excellent graph if and only if the following hold

V(K_m) is a subset of every chromatic weak dominating set of G. i.

- ii. In P_n , for $t \in N$,
 - a. $d(1,x_1)=d(x_k,n)=1$ or 3t
 - b. $d(x_i, x_{i+1})=3 \text{ or } 3t-1$, for all i=1, 2, ..., k-1

B. Corollary

Let $G = K_m \cup P$ be a graph where K_m is the complete graph with m(>3) vertices and P is the union of disjoint paths $P_j(j \ge 2)$ with the vertex set $\{1^{(j)}, 2^{(j)}, 3^{(j)}, \dots, n_j^{(j)}\}$. Let $X^{(j)} = \{x_1^{(j)}, x_2^{(j)}, x_3^{(j)}, \dots, x_k^{(j)}\}$ is non empty where $x_i^{(j)}$ is the ith vertex of P_j such that $x_i^{(j)} \in V(K_m)$. then G is γ_w^c - excellent graph if and only if the following hold

- $V(K_m)$ is a subset of every chromatic weak dominating set of G. i.
- In P_j , for each j and for $t \in N$ ii.

 - a. $d(1,x_1^{(i)})=d(x_k^{(i)},n)=1$ or 3t b. $d(x_i^{(i)}, x_{i+1}^{(i)})=3$ or 3t-1, for all i=1,2,...,k-1

C. Theorem

Let $G = K_m \cup C_n$ be a connected graph where K_m is the complete graph with m(>3) vertices and C_n is the cycle with the $(n \ge 3)$ vertices. Let $H = \langle \{V(G)-V(K_m)\} \rangle$ and let H_1, H_2, \ldots, H_p be a components of H Then G is γ_w^c - excellent graph if and only if the following hold

- i. $V(K_m)$ is a subset of every chromatic weak dominating set of G.
- ii. diam(H_i) = 1or3t,t \in N, for each i=1,2,...,p

D. Corollary

Let $G = K_m \cup C$ be a connected graph where K_m is the complete graph with m(>3) vertices and C is the union of disjoint cycles, $C_n (n \ge 3)$. Let $H = \langle \{V(G)-V(K_m)\} \rangle$ and H_1, H_2, \ldots, H_p be a components of H Then G is γ_w^c - excellent graph if and only if the following hold

- i. $V(K_m)$ is a subset of every chromatic weak dominating set of G.
- ii. diam(H_i) = 1or3t,t \in N, for each i=1,2, ..., p

V. REFERENCES

- [1] M.Anitha, S.Balamurugan, *A chromatic strong very excellent in caterpillar*, International journal of mathematics and soft computing, Submitted.
- [2] R. Balakrishnan, K. Ranganathan, *A textbook of graph theory*, Springer, 2011.
- [3] S.Balamurugan, G.Prabakaran and V.Swaminathan, On Chromatic Strong Dominating Sets in Graphs, International journal of engineering science, Advanced computing and Bio-Technology, Vol. 2 No. 3, July-Sep 2011, pp 139-149.
- [4] J.A.Bondy, U.S.R.Murthy, *Graph theory withApplications*, North-Holland, 1982.
- [5] C.V.R.Harinarayanan, C.Y.Ponnappan, S.P.Subbiah, R.Sundareswaran and V.Swaminathan, Just Excellence and Very Excellence in Graphs with respect to strong domination, Tamkang Journal of Mathematics, Volume 38, Number 2, 167-175, Summer 2007.
- [6] T.W.Haynes, Stephen T.Hedetniemi, PeterJ.Slater, *Fundamentals of domination in graphs*, Marcel dekker, Inc, New york.
- [7] T.N.Janakiraman, N.Popalaranjani, *Dom chromatic sets of Graphs*, International journal of engineering science, Advanced computing and Bio-Technology, Vol. 2 No. 2, Apr-Jun 2011, pp 88-103.
- [8] E.Sampathkumar and Pushpalatha, *Strong(Weak) domination and domination balance in graph*, Discrete Math. 161, (1996), 235-242.
- [9] N.Sridharan, M.Yamuna, Very Excellent Graphs and Rigid Very Excellent Graphs, AKCE J. Graphs. Combin., 4, No. 2 (2007), pp. 211-221.